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RÉSUMÉ

Pour toute Planification de Traitement par Radiothérapie (PTR), il est essentiel d’avoir
des outils pour calculer rapidement et avec exactitude les profils de dose. Bien que les
solveurs de transport de rayonnement de Monte Carlo aient traditionnellement été considérés
comme la référence en PTR, leur application dans les environnements cliniques est limitée
en raison de leur temps d’exécution excessifs et de leur nature stochastique. Pourtant, il
existe une multitude de méthodes dites déterministes capables de simuler l’ensemble des
interactions physiques avec une tout aussi grande exactitude. Le solveur Acuros®, le code
de Varian Medical Systems qui utilise des méthodes déterministes, est déjà utilisé pour les
faisceaux de rayons X dans les systèmes de PTR. Malgré certaines avancées dans les capacités
déterministes, telles que la dérivation de l’équation de Boltzmann Fokker-Planck (BFP) ou le
développement du code CEPXS, les modèles déterministes existants pour la PTR présentent
des limitations qui entravent leur utilisation généralisée et sans contrainte à tout faisceau de
photons et d’électrons. L’objectif principal de cette thèse est d’examiner et de proposer des
solutions à ces lacunes.

L’équation de Boltzmann Fokker-Planck (BFP) est au coeur de cette dissertation, car tous
les développements algorithmiques qu’elle présente s’articulent autour de cette équation.
Des lacunes ont été identifiées et d’innovants algorithmes ont été proposés dans trois axes de
recherche, soit 1) la production de données atomiques couplées pour les photons, les électrons
et les positrons, 2) la discrétisation angulaire de l’équation de BFP et 3) les relations de
fermeture associées aux méthodes de Galerkin.

Jusqu’à récemment, le code CEPXS, développé en 1989, était le seul code à produire des
sections efficaces multigroupes photon-électron de haute précision pour l’équation de BFP.
Bien que les solveurs de Monte-Carlo aient affiné leurs modèles physiques depuis, tel qu’avec
l’introduction de section efficace explicite pour les positrons et l’utilisation de données éval-
uées plus récentes, CEPXS n’a point évolué. De plus, des problèmes ont été identifiés dans
la méthodologie de CEPXS pouvant entraîner des échecs dans les calculs de dépôt de dose.
Il a été décidé de développer une alternative à CEPXS en libre accès pour améliorer à la fois
les modèles physiques et la méthodologie de production de sections efficaces multigroupes,
tout en offrant un outil aisément accessible pour développer et produire des sections efficaces
couplées photon-électron-positron pour l’équation de BFP. La performance de ces données
atomiques a été évaluée à l’aide de calculs de référence Monte-Carlo pour différents éner-
gies, matériaux et types de faisceaux. Pour le calcul de dose, les comparaisons montrent
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des différences relatives typiques de quelques pourcents, tandis que les spectres énergétiques
montrent une excellente correspondance.

La méthode des ordonnées discrètes (SN) est une technique de discrétisation angulaire large-
ment utilisée en génie nucléaire pour le transport de neutrons. Cependant, des études ont
montré que les diffusions hautement anisotropes, comme celle des électrons et des positrons,
peuvent engendrer de graves problèmes de convergence ou de précision. La méthode de
quadrature Galerkin rectifie les principales lacunes de la méthode SN avec ce type de dif-
fusion, mais il appert que cette technique fut négligée dans les solveurs SN en PTR. Un
solveur incorporant cette méthode a été développé de manière à être compatible avec tout
choix de quadrature, mais il a été observé que les diffusions hautement anisotropes génèrent
d’indésirables oscillations dans la solution, distrinctes de l’effet de raie. Un schéma, basé
sur la méthode des différences finies, a été développé pour l’opérateur angulaire de Fokker-
Planck (AFP) afin de faire face à ce problème. Le schéma est monotone, il préserve les
deux premiers moments de l’opérateur AFP et est compatible avec des quadratures non or-
thogonales. Les résultats numériques montrent que ces méthodes permettent l’utilisation de
quadrature optimale, diminuant la quantité de calcul requise pour atteindre un niveau de
précision donné, tout en assurant un traitement strictement monotone, précis et stable des
diffusions fortement anisotropes.

Finalement, les solutions de l’équation de BFP varient immensément en espace et en énergie.
L’obtention de solutions précises à partir de la discrétisation couplée de ces deux variables
est très ardue. Même avec les méthodes Galerkin discontinues et des relations de ferme-
tures linéaires, des oscillations parasites et des négativités apparaissant dans la solution. Des
relations de fermeture d’ordre supérieur furent étudiées, mais elles ne permettaient pas de
résoudre les problèmes de positivité et de monotonicité. Sur la base de précédentes études
portant sur des schémas linéaires adaptatifs d’ordre 2, il a été postulé qu’un tel schéma
pourrait produire des solutions améliorant la positivité et monotonicité du schéma discon-
tinu linéaire Galerkin. Ces schémas ont été développés pour des maillages 1D et 2D afin
d’améliorer la positivité et la monotonie des solutions tout en garantissant une précision
d’ordre 2. Des comparaisons entre les principales relations de fermeture, autant pour les
solutions de dépôt d’énergie que pour les spectres énergétiques, montrent que ces schémas
adaptifs permettent d’obtenir des solutions positives et monotones.
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ABSTRACT

An essential requirement of Radiation Treatment Planning (RTP) is efficient and accurate
dose deposition estimation capacities. While Monte Carlo radiation transport solvers have
traditionally been considered the gold standard for RTP, their application in clinical environ-
ments is limited due to their significant execution time and stochastic nature. Yet, a broad
family of algorithms can simulate the physics of radiation therapy with similar accuracy
called deterministic methods. The solver Acuros®, from Varian Medical Systems, is one of
them and is already used for X-ray beams in RTP systems. Despite breakthroughs in deter-
ministic capacities, such as the derivation of the Boltzmann Fokker-Planck (BFP) equation
or the development of CEPXS code, existing RTP deterministic models have limitations that
hinder their widespread use. The main objective of this thesis is to investigate and address
these shortcomings.

The Boltzmann Fokker-Planck (BFP) equation is central to this dissertation since every
development in this work revolves around it. The investigations have led to innovative al-
gorithms in three areas of research: 1) the production of coupled photon-electron-positron
atomic data, 2) the angular discretization, and 3) the energy-space closure relations.

Until recently, the CEPXS code, developed in 1989, was the sole code to produce high-
accuracy multigroup photon-electron cross-sections for the BFP equation and was used as
the source of atomic data for transport solvers. While Monte-Carlo solvers have refined their
physics models since then, such as having explicit positrons cross-sections or using more re-
cent data, CEPXS still lacks these improvements. Moreover, issues were identified in the
CEPXS methodology, which can lead to failure in energy deposition calculations. It was
decided to develop an open-source alternative to CEPXS to improve both the physics mod-
els and the multigroup cross-section production methodology while offering to the research
community an easily accessible tool to develop and produce coupled photon-electron-positron
cross-sections for the BFP equation. Accuracy of resulting atomic data were compared using
Monte-Carlo reference calculations for varying energies, materials and external beam types.
The benchmark, consisting of energy deposition benchmark and energy spectra per particle
species, has shown typical agreement of a few percent for energy deposition calculations and
the ability of deterministic codes to replicate energy spectra.

The discrete ordinates (SN) method is a widely used angular discretization technique in
nuclear engineering for neutron transport. However, studies have shown that highly forward-
peaked scattering, such as the one of electrons and positrons, leads to severe convergence
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or accuracy issues. The Galerkin quadrature method is a paramount feature to implement
alongside the SN method, tackling these issues, but it is overlooked in existing RTP dis-
crete ordinates codes. This method was implemented to be compatible with any choice of
quadrature and tested, but those tests have shown that forward-peaked elastic scattering
generates spurious oscillations distinct from the well-known ray effect. A monotone and
moment-preserving finite-difference scheme for the Angular Fokker-Planck (AFP) operator,
compatible with nonorthogonal quadrature, is developed to grapple with this issue. Nu-
merical results show that these methods permit optimal quadrature, which is very efficient
since they reduce the computational requirement for accurate calculations while producing
monotone, precise and stable treatment of forward-peaked scattering.

Finally, solutions of the BFP equation vary enormously in space and energy. Obtaining accu-
rate solutions with the simultaneous discretization of these variables is challenging, even for
Discontinuous Galerkin Finite-Element Method (DG-FEM) with coupled linear closure rela-
tions. Indeed, these solutions often exhibit spurious oscillations and negativities, which make
no physical sense. At first, quadratic and higher-order closure relations were investigated,
but they failed to solve the problem. Based on previous studies on adaptive 2nd-order accu-
rate linear schemes, it was postulated that such a scheme could produce more positive and
monotone solutions than the state-of-the-art linear discontinuous Galerkin scheme. These
schemes were developed for 1D and 2D meshes to improve the positivity and monotonicity of
the solutions while enforcing 2nd-order accuracy. Transport calculations for energy spectrum
and energy deposition benchmark show that such adaptive schemes can provide positive and
monotone solutions.
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CHAPTER 1 INTRODUCTION

1.1 Simulation of Ionizing Radiation in Radiation Therapy Planning

Ionizing radiation is present in a wide variety of fields, such as nuclear energy, medical imag-
ing, radiotherapy, radiation protection, accelerator physics, food irradiation, shielding, non-
destructive testing, security scanning equipment and even cultural heritage, where assessing
its effect with accuracy is critical [1–3]. For a nuclear power plant, the study of neutrons
transport and reaction rates in the reactor core is a requisite to determine quantities such as
its energy output, its reactivity or the depletion of fissile atoms [4]. For radiotherapy, it is
critical to have quality estimate of the dose distribution in the patient to adequately target
the tumor while minimizing the damage to healthy tissues. Beyond technologies relying on
ionizing radiation, there is an important risk assessment incentive since exposition to such
radiation presents a health hazard among other things. For example, in hospital, both pa-
tient and medical personnel are exposed to some level of radiation due to proximity of nuclear
technologies such as linear accelerator (LINAC) or Computed Tomography (CT) scanner. In
space, astronaut are exposed to significant quantities of cosmic rays. In every house, people
are exposed to various level of radon gas. These health risks have to be mitigated by taking
radiation protection measures, which requires an understanding of, not only how the human
body reacts to different types of ionizing radiation, but how the ionizing particles behaves
inside the human body. As specified, risk assessment is not limited to health and ionizing
radiation can have significant impact on inanimate entity, such as electronic devices. For
satellites in orbit, cosmic rays can deposit their energy and charge in electronics compo-
nents, potentially making them unusable and since repairing in space can be quite expansive,
anticipating these effect beforehand is primordial.

RTP is a process to determine the treatment parameters, such as the kind of sources, the
particle energies and the beam angles. Nowadays, the planning begins by acquiring 3D images
of the tumour and its surroundings using CT and MRI technologies. Afterward, volumes
of interest for the treatment are delineated to encompass the solid tumour, the planning
volume, uncertainties and organs at risk. The International Commission on Radiological
Units and Measurements (ICRU), in its reports 50 and 62, proposed a general framework
which is widely used [5]. Then, treatment parameters must be found to deliver the dose
to the defined volumes subject to established constraints, for example exposition limits to
organs at risk. The dosimetrist relies on algorithms to estimate accurately the delivered dose
to the tumour and its surroundings. The RTP is an inverse problem, in which the treatment
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parameters are adjusted to provide the required dose deposition to the tumor. The American
Association of Physicists in Medicine (AAPM) recommends in its report 85 that the dose
calculation accuracy should be between 1 to 2% [6].

Despite advancements in computational capacities in the last decades, the complexity of the
physics processes leading to dose deposition events in heterogeneous media makes accurate
estimation of quantities such as energy or charge deposition challenging to obtain without
time-consuming calculations. The underlying physics and the displacement of the different
species of particles in matter fall under the scope of an integro-differential equation, the
steady-state Boltzmann transport equation, which solution determines the particle distribu-
tion in the media. Using stochastic processes to simulate the transport of particles in matter,
Monte Carlo algorithms have reached unprecedented accuracy and thus are considered the
gold standard in RTP [7]. They are very flexible since general geometries and physics inter-
actions can be implemented quickly. The leading issue with these methods is their execution
times, which can easily become exceedingly long, notably when low-probability events have
to be simulated or high accuracy is needed. This issue limits their application to RTP since
the delay between imaging and treatment should be short enough to prevent the cancer
from propagating in between. Other disadvantages of Monte Carlo include 1) the inability
to get rid of statistical noise, 2) difficulty of setting important parameters like step length
adapted for a specific problem in order to have a good equilibrium between accuracy and
running time [8], 3) systematic error, for example at layer boundaries, can be produced by
the condensed history method [1, 9] 4) its limits when applied to inverse problem such as
the RTP one, since it would require solving multiples times the already time-expansive for-
ward problem [10, 11]. Therefore, these high-accuracy Monte Carlo methods are set aside
for clinical usage in favour of simpler, less accurate, but much faster semi-empirical models,
such as point kernel, pencil beams, collapsed cone convolution, convolution/superposition, or
confined to limited scopes of applications by simplifying physics or geometry, implementing
variance reduction techniques, or using massively parallel computing architectures.

Nevertheless, there are other approaches to solving the steady-state Boltzmann transport
equation with similar accuracy than Monte Carlo solvers. While there is a belief that Monte
Carlo methods are superior to any deterministic ones in the medical field [12, 13], many
researchers, myself included, contest that claim [9,14]. Deterministic methods, which encom-
pass a broad family of algorithms, have been widely used for neutron transport to describe
nuclear reactors’ physics since the middle of the 20th century, and many are pretty mature.
Charged particle transport, which is required for RTP, had its challenges, but the more
notable of them were lifted by the advent of critical developments in the eighties, notably
the Boltzmann Fokker-Planck approximation [15], the multigroup cross-sections production
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code CEPXS [16] and the Galerkin quadrature method [17]. At the start of the 21th century,
the discrete ordinates Attila solver from Los National Laboratories was applied to external
photon beam radiotherapy. Gifford et al. compared its energy deposition solution on hetero-
geneous media to reference Monte Carlo calculations, which showed a typical discrepancy of
2%, up to 5% at some locations [7]. Further validation has been done, showing that 99% of
voxels agreed with Monte Carlo using a criterion of 3% or 3 mm distance-to-agreement [18].
This research resulted in a commercial product, Acuros® from Varian Medical Systems [19].
Over the years, it was shown to be more accurate than the analytical anisotropic algorithm
(AAA) and the collapsed-cone convolution (CCC) algorithm, two semi-empirical algorithms
which are widely used in planning systems [20–22]. Deterministic solvers are very advan-
tageous when multiple beams are considered, such as with arc therapy, since it does not
increase the workload as it is the case with semi-empirical and Monte-Carlo methods [19].

The advent of deterministic methods in RTP has prompted new research directions. At
University of Alberta, researchers have added the magnetic component of the Lorentz force
into the transport equation to treat external magnetic field, enabling its use for MRI-guided
radiotherapy, for both the discrete ordinates or coupled space-angle finite-element discretiza-
tion [23–27]. At Delft University of Technology, researchers have developed coupled space-
angle finite-element discretization and angular refinement methods and are leading the de-
terministic proton RTP effort [28–31]. Outside the medical application, the SCEPTRE code
of Sandia National Laboratories, whose primary purpose is radiation-driven electrical effect,
is one of the most advanced codes for charged particle transport [32]. The Lorentz force,
including the electric field, has been implemented [33,34]. At Polytechnique Montréal, there
is an effort to extend NJOY nuclear data code [35] capabilities to electron transport through
a new module ELECTR using open source evaluated ENDF formatted data [36]. Naceur
et al. have implemented and validated pure electron CEPXS models in ELECTR over the
entire periodic table up to multi-GeV energies [37], while the development of ENDF mode is
underway [38,39].

1.2 Research Motivation

The primary motivation of this thesis is to address flaws of the Acuros® solver and to develop
open source tools to make discrete ordinates solvers more reliable for RTP applications. These
shortcomings are related to three areas of research regarding the BFP equation, namely 1)
the production of atomic data, 2) the angular discretization and 3) the energy-space schemes.
Let’s discuss them separately:
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1. Production of atomic data : From its release in 1989 to recent times, the CEPXS
code from Sandia National Laboratories is technically the sole accurate tool to produce
coupled multigroup electron-photon cross-sections for the BFP equation. While some
coupled multigroup electron-photon cross-sections can be found in literature [40, 41],
none cover as much interactions as the CEPXS code, whose cover Compton effect,
photoelectric effect, pair production, annihilation, inelastic and elastic scattering of
electrons, bremsstrahlung and relaxation.. It is the source of the atomic data used
in Acuros®. The physics models it contains are not up-to-date with those used in
Monte Carlo codes specialized in coupled photons, electron and positron transport
such as GEANT4 [42], PENELOPE [43], or EGSnrc [44]. For example, it does not
contain subshell-dependant inelastic electron scattering or photoelectric effect, and is
valid only for low-Z atoms, as implied in [37]. It also does not have explicit positrons
cross-sections, which limits its use at high-energy where pair production becomes a
dominant phenomenon. While the CEPXS code is widely used, it still contains many
deficiencies. It was noted that energy deposition calculations fail when a low number
of energy groups are used. It was also noted that the group-based CEPXS definition of
soft and catastrophic domain and the resulting arbitrary definition of group boundary’s
stopping power leads to noticeable errors when the number of energy groups is low.
These issues can be mitigated using more energy groups, increasing the computational
cost. There is also an additional limitation, which is the proprietary nature of the code
that does not have an open source alternative, which hinders the development and
testing of newer physics models for deterministic transport.

2. Angular discretization : The average scattering angle of charged particles is tiny,
which means the scattering of these particles is far from being isotropic. While the
classical discrete ordinates method performs very well with weak anisotropic scatter-
ing, more tools are needed with highly forward peaked scattering. Morel has shown,
in a consequential paper [17], that the SN method can give very inaccurate results
(and even diverge, as pointed out by Pautz and Adams [45]) and proposed a method
called Galerkin quadrature, which ensures accurate treatment of forward-peaked scat-
tering. We have found no documentation showing that Acuros® nor its mother code
Attila have implemented Galerkin quadrature [7, 9]. In a 2015 whitepaper about their
product Acuros® XB, Varian Medical Systems shows an explicit formula showing that
classical discrete ordinates, with level-symmetric quadrature, are used [46]. Moreover,
no Galerkin quadrature method have strictly positive weights, which comes with mono-
tonicity issues with forward-peaked scattering [17, 47]. These issues are distinct from
the ray effect. These can cause, as will be shown, significant and unpredictable oscil-
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lations in the solution, depending on the choice of quadrature, flux angular expansion
basis, discretization order, spatial discretization and other parameters.

3. Energy-space schemes: It is well-known that charged particle transport generates
a solution that varies strongly along both the space and energy axis, which is chal-
lenging to converge even high-order discretization [47]. Acuros® is based on a linear
discontinuous Galerkin space-energy scheme. While being a significant improvement
over constant schemes, this scheme produces oscillations and negativities in the flux
solution, which can be passed on to the dose deposition profiles [48].

This thesis focuses on developing mathematical tools and frameworks addressing these short-
comings. Another motivation, which was not explicited yet, is to provide a state-of-the-art
deterministic transport capacities in open access, which neither CEPXS nor Acuros® are.
Our research group promotes the FAIR guiding principles (FAIR: Findability, Accessibility,
Interoperability and Reuse) [49] and supports the idea that publicly funded research should
remain available.

1.3 Thesis Outline

The development of the novel capacities for the Boltzmann Fokker-Planck is elaborated in
the upcoming chapters. In Chapter 2, the coupled transport framework is implemented. It
describes the principal discretizations, the energy deposition calculations, the BFP equation,
and how to solve them. In Chapter 3, coupled photon-electron-positron multigroup cross-
sections and other atomic data are produced based on an improved physics model compared
to CEPXS. Validation and performance of these cross-sections are done by comparing BFP
dose and energy spectrum calculations using them in Monte Carlo reference calculations. In
Chapter 4, a finite-difference scheme for the Fokker-Planck operator compatible with optimal
quadrature is developed and is used to mitigate monotonicity issues. In Chapter 5, adaptive
linear schemes are developed for the BFP equation. Finally, Chapter 6 summarizes this thesis
findings and future perspectives.
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CHAPTER 2 COUPLED DETERMINISTIC PARTICLE TRANSPORT

2.1 Foreword

This chapter introduces the foundation of this thesis’ coupled electron-photon-positron trans-
port solver. It describes the main discretization techniques, such as the Fokker-Planck (FP)
approximation, the multigroup formalism, and the discrete ordinates method. It also ex-
plains how this equation is solved. Finally, a novel energy deposition formula is proposed as
a function of the angular flux.

There is three novelty introduced in this section. First, the proposed scattering cross-section
is expanded using an arbitrary subset of spherical harmonics rather than all spherical har-
monics up to a specified Legendre order, as it is usually done. Second, a new definition of
catastrophic and soft domain is proposed for the Boltzmann Fokker-Planck (BFP) equation,
in Sect. 2.3.3. Third, energy and charge deposition cross-section formula, that take into
account positron annihilation and variation of rest mass energy, defined in Sect. 2.7.

2.2 The Transport Equation

The linear Boltzmann Transport Equation (BTE), which describes radiation transport in a
medium, is derived to enforce particle conservation. It is assumed that transported particles
do not interact between themselves and that the medium has isotropic properties. Since
neither the medium properties nor the sources evolve in applications covered by this thesis,
only the time-independent (i.e. steady-state) transport equation is used [50].

Let E be the particle energy, r = (x, y, z) be the particle position in R3, Ω = (µ, ϕ) = (µ, η, ξ)
be the moving particle direction, where µ is the principal direction cosine aligned with x-
axis, ϕ is the azimuthal angle, while η and ξ are the secondary direction cosines under the
constraint µ2 + η2 + ξ2 = 1. Let

S2 =
{
Ω = (µ, η, ξ) ∈ R3 : ||Ω|| = 1

}
(2.1)

be the unit sphere. Let P be the set of all simulated particles, which in this thesis will be
restricted to P = {γ, e-, e+}, corresponding to photons, electrons and positrons respectively.
The steady-state linear BTE for a particle p ∈ P is given by [50]

Ω · ∇Ψp(r, Ω, E) + Σp
t (r, Ω, E)Ψp(r, Ω, E) = QB

p(r, Ω, E) + Qext
p (r, Ω, E) , (2.2)
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where the first and second terms on the left side of the equation will respectively be referred
to as the streaming and collision terms, Qext

p (r, Ω, E) account for fixed volume sources (see
Sect. 2.4.2) and the Boltzmann operator, which accounts for both particle scattering and
production in the medium, is given by

QB
p(r, Ω, E) =

∑
p′∈P

∫
S2

d2Ω′
∫ ∞

0
dE ′Σp′→p

s (r, E ′ → E, Ω′ → Ω)Ψp′(r, Ω′, E ′) , (2.3)

where Σp
t (r, E) is the macroscopic total cross-section for particle p and Σp′→p

s (r, E ′ → E, Ω′ →
Ω) is the macroscopic double differential scattering cross-section describing the probability of
a particle p′ with energy E ′ and direction Ω′ to yield a particle p with energy E and direction
Ω. The solution of this equation, Ψp(r, Ω, E), is the angular flux for particle p. It is defined
as the product of the population density np(r, Ω, E) and the particle speed vp(E)

Ψp(r, Ω, E) = vp(E)np(r, Ω, E) . (2.4)

The integrated flux for particle p is given by integrating the angular flux over the unit sphere

Ψp(r, E) =
∫
S2

d2ΩΨp(r, Ω, E) . (2.5)

This integrated flux can be used to compute so-called reaction rates, such as energy or charge
deposition. In the scope of this work, all materials considered have isotropic properties, which
further simplify the transport equation by making the total cross-sections independent in
angle, such as Σp

t (r, Ω, E) = Σp
t (r, E) , and the scattering cross-sections only dependent on

the scattering angle Ω ·Ω′, such as Σp′→p
s (r, E ′ → E, Ω′ → Ω) = Σp′→p

s (r, E ′ → E, Ω ·Ω′).
Using Legendre expansion of the scattering cross-sections in that scattering angle is common
practice. The resulting Boltzmann operator is given by

QB
p(r, Ω, E) =

∑
p′∈P

∫ ∞

0
dE ′

Nq∑
q=1

2ℓq + 1
4π

Σp′→p
s,ℓq

(r, E ′ → E)Rmq

ℓq
(Ω)Φp,q(r, E ′) , (2.6)

where the qth moment of the angular flux is given by

Φp,q(r, E) =
∫
S2

d2Ω′R
mq

ℓq
(Ω′)Ψp(r, Ω′, E) , (2.7)

where Σp′→p
s,ℓ (r, E ′ → E) is the qth Legendre moment of the scattering cross-section and

R
mq

ℓq
(Ω) are the real spherical harmonics, as defined in Annex A. Each index q ∈ {1, Nq}

leads to a unique pair (ℓq, mq) and their choice will be discussed later.
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2.3 Energy Discretization

2.3.1 Multigroup discretization

The multigroup discretization divides the energy domain in G meshes, often referred to
as energy group, in which particles share the same energy and averaged energy-dependant
variables [50]. The convention where g = 1 corresponds to the highest energy group is
used. The midpoint energy of the group g is Eg, its width is ∆Eg, and its upper and
lower boundaries are respectively Eg−1/2 and Eg+1/2, as shown in Fig. 2.1. The lower energy
boundary of the lowest energy group, EG+1/2, is called the cutoff energy. Particles that
scatter or are produced under this energy cutoff are considered to be absorbed locally. It also
means that charge and energy are deposited locally. This energy should be chosen carefully,
being low enough to ensure that the absorbed particle mean free path is lower than the
spatial meshes’ width to be realistic. For electron or photon transport, which is not affected
by resonance like neutrons, it is recommended to use logarithmically spaced energy groups
for an energy domain stretching over several orders of magnitude. The classical multigroup
discretization assumes that the angular flux is separable in energy, such that [51]

Ψp(r, Ω, E) = Ψp,g(r, Ω)fg(E) (2.8)

for E ∈
[
Eg−1/2, Eg+1/2

]
, where the group-averaged flux is given by

Ψp,g(r, Ω) =
∫ Eg−1/2

Eg+1/2

dE Ψp(r, Ω, E) , (2.9)

and the weighting function fg(E), as it can be deduced from the two previous equations, is
constrained to ∫ Eg−1/2

Eg+1/2

dE fg(E) = 1 . (2.10)

Figure 2.1 Energy discretization.
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In this thesis, it is also assumed that fg(E) is constant over each group, which results in
f(E) = 1/∆Eg. Applying the Galerkin method of weighted residuals to the transport equa-
tion, the resulting equation is the multigroup discretized transport given by

Ω · ∇Ψp,g(r, Ω) + Σp
t,g(r)Ψp,g(r, Ω) = QB

p,g(r, Ω) + Qext
p,g (r, Ω) , (2.11)

where the multigroup total cross-section is given by

Σp
t,g(r) =

∫ Eg−1/2

Eg+1/2

dE Σp
t (r, E)Ψp(r, Ω, E)∫ Eg−1/2

Eg+1/2

dE Ψp(r, Ω, E)
= 1

∆Eg

∫ Eg−1/2

Eg+1/2

dEΣp
t (r, E) (2.12)

and the multigroup ℓ Legendre moment of the scattering cross-section is given by

Σp′→p
s,ℓ,g′→g(r) =

∫ Eg−1/2

Eg+1/2

dE Σp′→p
s,ℓ,g′ (r, E)Φp,q(r, E)∫ Eg−1/2

Eg+1/2

dE Φp,q(r, E)
= 1

∆Eg

∫ Eg−1/2

Eg+1/2

dE Σp′→p
s,ℓ,g′ (r, E) , (2.13)

with
Σp′→p

s,ℓ,g′ (r, E) = 2π
∫ E′

g−1/2

E′
g+1/2

dE ′
∫ 1

−1
dµ Pℓ(µ)Σp′→p

s (r, E ′ → E, µ) , (2.14)

where Pℓ(µ) is the ℓ-order Legendre polynomial. The generalized multigroup method consists
of an ME-order expansion of the angular flux in energy within each energy group [52]. It
results in a set ME moment equations to solve. This method is more accurate since it can
better deal with highly varying solutions from one group to another. Such a method will be
partially applied in this work, in Chap. 5.

2.3.2 The Fokker-Planck approximation

While it is very successful with neutral particles such as neutrons and photons in reactor
physics, the multigroup Boltzmann equation becomes inefficient in dealing with charged par-
ticles. This failure is due to the highly forward-peaked scattering of charged particles, the
large amount of scattering events due to interactions with atomic electrons in the medium,
and the small energy lost in each of these scattering events. For example, Berger and Wang
estimated that slowing-down electron from 500 to 250 keV requires 4000 diffusions in alu-
minum and 7000 in gold, while it reduces to a few dozen for neutral particles such as photons
or neutrons [53]. An accurate discretization of the energy domain would require an astro-
nomical number of energy meshes to capture these small energy losses effectively [16].
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Under the assumption of forward-peaked and small energy-loss processes, it is possible to
derive an alternate form of the Boltzmann operator. Indeed, using Taylor expansion in the
angles and energy variables, the Boltzmann operator reduces to the FP operator. The steady-
state FP equation for a particle p ∈ P , where P is the set of all simulated particles, is given
by [54,55]

Ω · ∇Ψp(r, Ω, E) + Σp
a(r, E)Ψp(r, Ω, E) = QFP

p (r, Ω, E) + Qext
p (r, Ω, E) , (2.15)

where Σp
a(r, E) is the macroscopic absorption cross-section for particle p and where the FP

operator is given by

QFP
p (r, Ω, E) = QCSD

p (r, Ω, E) + QAFP
p (r, Ω, E) , (2.16)

where the Continuous Slowing-Down (CSD) operator is given by

QCSD
p (r, Ω, E) = ∂

∂E

[
Sp(r, E)Ψp(r, Ω, E)

]
(2.17)

and the Angular Fokker-Planck (AFP) operator is given by

QAFP
p (r, Ω, E) = T p(r, E)

[
∂

∂µ

(
1− µ2

) ∂

∂µ
+ 1

1− µ2
∂2

∂ϕ2

]
Ψp(r, Ω, E) . (2.18)

where Sp(r, E) is the stopping power and T p(r, E) is the momentum transfer, which are
given [55]

Sp(r, E) = 2π
∫ ∞

0
dE ′

∫ 1

−1
dµ(E − E ′)Σp→p

s (r, E ′ → E, µ) (2.19)

and
T p(r, E) = π

∫ ∞

0
dE ′

∫ 1

−1
dµ(1− µ)Σp→p

s (r, E ′ → E, µ) . (2.20)

A higher-order FP term from the Taylor expansion is often kept, which is the energy straggling
operator, and is important to obtain more accurate results [54,56]. Generalized FP operators
have also been developed [41,57,58]. The presented form, which is fairly minimal, is sufficient
for the needs of this work because of the method presented in the following section. While
this equation performs well with very fast or heavily charged particles [56], electrons and
positrons often change direction when interacting. These large deflections often come with
large energy transfers, which cannot be ignored without making significant errors.

While the multigroup discretization of the AFP is straightforward, it is more complicated
with the CSD term, which has a derivative in energy. This discretization is describes in
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detail in Chap. 5. The stopping powers at boundaries of group g for particle p, which will
be required to solve the BFP equation, are

Sp
g+1/2(r) = Sp(r, Eg+1/2) and Sp

g−1/2(r) = Sp(r, Eg−1/2) , (2.21)

while the group-averaged stopping powers of group g for particle p, used in the energy depo-
sition cross-sections calculations, are

Sp
g (r) =

∫ Eg−1/2

Eg+1/2

dE Sp(r, E)Ψp(r, Ω, E)∫ Eg−1/2

Eg+1/2

dE Ψp(r, Ω, E)
= 1

∆Eg

∫ Eg−1/2

Eg+1/2

dE Sp(r, E) (2.22)

and the group-averaged momentum transfers in group g for particle p are

T p
g (r) =

∫ Eg−1/2

Eg+1/2

dE T p(r, E)Ψp(r, Ω, E)∫ Eg−1/2

Eg+1/2

dE Ψp(r, Ω, E)
= 1

∆Eg

∫ Eg−1/2

Eg+1/2

dE T p(r, E) . (2.23)

2.3.3 The Boltzmann Fokker-Planck equation

In order to have the best of both worlds, Przybylski and Ligou proposed to divide the scatter-
ing events into two domains: soft, which consists of small change of direction and energy-loss,
and catastrophic, for large change of direction and energy-loss [15]. The catastrophic inter-
actions are treated with the Boltzmann operator, while the soft interactions are treated with
the FP operator. The two domains are defined as a function of the particle energy E by
a function Ec(E) ≤ E, over which interactions are considered soft and under which they
are considered catastrophic. The steady-state Boltzmann Fokker-Planck (BFP) equation is
given by

Ω ·∇Ψp(r, Ω, E)+Σp
t (r, E)Ψp(r, Ω, E) = QB

p(r, Ω, E)+QFP
p (r, Ω, E)+Qext

p (r, Ω, E) . (2.24)

The mathematical structures of the Boltzmann source QB
p or the FP source QFP

p remains the
same as in the BTE and FP equations. The BFP can be seen as a generalized form for these
equations. However, it should be clear that the definitions of the cross-sections, stopping
powers, and momentum transfer differ from the BTE and FP equations. Their complete
definitions are given in Chap. 3. It should be assumed that these new definitions overwrite
their previous definition in the following sections and chapters.



12

Figure 2.2 Definition of the soft and catastrophic interactions at energy group boundaries.
The green dots represent the energy of the incident particle which interact with the medium,
while the red dots correspond to the cutoff energies between soft and catastrophic energy
domains. The cutoff energy corresponding to any incident particle energy anywhere in group
g, or between Eg−1/2 and Eg+1/2, is given by Eq. 2.26.

The energy separating the soft and catastrophic domains on the energy spectrum, Ec(E), is
a function of E, the incident particle in a given interaction. There are two limiting cases:
1) if Ec(E) = 0, the BFP reduces to the FP equation, and 2) if Ec(E) = E, it reduces to
the Boltzmann transport equation. A choice can be made between these two limiting cases
to fully use the potential of the BFP. In CEPXS, the catastrophic interactions are defined
as the ones in which the particle in group g down-scatter into a non-adjacent energy group,
with energy lower than Eg+3/2, while with soft interactions, the particle down-scatter in the
adjacent energy group [16]. In other words, for E ∈ [Eg−1/2, Eg+1/2], the energy Ec(E) is
given by

Ec(E) = Eg+3/2 . (2.25)

This definition is problematic since it leads to ambiguous definitions of the soft stopping
powers at group boundaries because the definition of the soft stopping power Sp

g+1/2 differs
whether it is viewed from the energy group g or g+1. Lorence et al. address this challenge by
averaging these two definitions, which is somewhat arbitrary and lacks consistency with the
BFP equation. This method produces numerical errors in the solution of the BFP equation,
which are exacerbated with rough energy discretization. For example, the relative difference
between the two stopping power definitions, in each group, range between 3% and 25% for
impact ionization in aluminum, while it ranges between 72% and 862% for bremsstrahlung,
with 80 logarithmically spaced energy groups between 1 keV and 10.58 MeV, and based on the
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stopping powers defined later. A more robust definition can be proposed in order to solve such
ambiguity. The definition of soft and catastrophic domains on the energy spectrum at group
boundaries are shown in Fig. 2.2, where two points (E, Ec(E)) are defined as (Eg−1/2, Eg+1/2)
and (Eg+1/2, Eg+3/2) for any group g, with the additional definition EG+3/2 = 0. A smooth
transition between these two coordinates is required and is set to be linear in E. The resulting
energy dividing the soft and catastrophic domains, for E ∈ [Eg−1/2, Eg+1/2], is given by

Ec(E) =
(

Eg+1/2 − Eg+3/2

Eg−1/2 − Eg+1/2

)
E −

E2
g+1/2 − Eg−1/2Eg+3/2

Eg−1/2 − Eg+1/2
(2.26)

for any 1 ≤ g ≤ G. This new definition solves the ambiguity of the definition of soft stopping
powers, cancelling out the numerical issues it could generate.

2.4 Angular Discretization

Many methods have been developed to discretize the angular domain. For charged particle
transport, which deals with strong anisotropy, there are three major methods:

1. The discrete ordinates (SN) method: The SN method only enforces the trans-
port equation along a discrete set of directions. This method is very flexible since it
is easily extendable to multidimensional geometries, keeps the angular and spatial dis-
cretization separated, and is well-suited for parallelization in angle. It also leaves the
spatial domain easily parallelizable [59] and can deal with highly anisotropic scattering.
However it generates ray-effect with point sources in weakly diffusive media. This flaw
is discussed in Sect. 2.4.3.

2. The spherical harmonics (PN) method: This PN method consists of representing
the flux as a truncated linear combination of spherical harmonics, substituting it in the
transport equation, which is multiplied by the spherical harmonics and integrated over
the whole angular domain [50]. It generates an intricate coupling between angular and
spatial unknowns, which is ineffective in multidimensional (2D and 3D) geometries,
albeit a simplified PN (SPN) method exists that is useful for sightly anisotropic flux
[60]. The SCEPTRE code, specialized in electron transport, contains different PN

methods [61] and does not exhibit ray effect like the SN method.

3. The discontinuous Galerkin finite-element method (DG-FEM): The flux,
expanded in space and angle using a polynomial basis, is substituted in the transport
equation, multiplied by the basis function and integrated over a discretized space-angle
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mesh. This method gives highly intricate space-angle relations, that depend on the
discretization choice of the angular domain [24,28,29].

Since the SN method is easily parallelizable, it is a significant argument to go with this
method rather than the others to achieve the fast and accurate solution goal, required in
RTP. As will be shown in this thesis, most of the flaws of the SN method can be mitigated,
even the infamous ray-effect issue.

2.4.1 Discrete ordinates method

The discrete ordinates or SN method is one of the most efficient angular discretizations of
the transport equation [62]. It is a discretization of the angular domain, the unit sphere S2,
in Nd directions Ωn with n = 1, Nd. Numerical quadratures are used to deal with integrals
over S2 using weights ωn associated with each direction Ωn. Each of these weights can be
conceived as the area of an angular mesh, or solid angle, over S2, with

ωn =
∫

Ωn

d2Ω (2.27)

such that the integration over the unit sphere gives the area of the unit sphere, i.e.

∫
S2

d2Ω =
Nd∑

n=1

∫
Ωn

d2Ω =
Nd∑

n=1
ωn = 4π . (2.28)

The angular flux along the Ωn direction is given by Ψn = Ψ(Ωn). The SN equation is
obtained by enforcing the one-speed transport equation, in group g, to hold when evaluated
at each direction Ω = Ωn such as

Ωn · ∇Ψp
g,n(r) + Σp

t,gΨp
g,n(r) = QCSD

p,g,n(r) + QAFP
p,g,n(r) + QB

p,g,n(r) + Qext
p,g,n(r) , (2.29)

for n = 1, Nd. The AFP operator discretization is given in Chap. 4, while the energy-
discretized CSD operator QCSD

p,g,n(r) is given in Chap. 5. The Boltzmann operator is given
by

QB
p,g,n(r) =

∑
p′∈P

Ng,p∑
g′=1

Nq∑
q=1

2ℓq + 1
4π

Σp′→p
s,ℓq ,g′→g(r)Rmq

ℓq
(Ωn)Φp′

g′,q(r) , (2.30)

where the moments of the angular flux are given by

Φp
g′,q(r) =

Nd∑
n=1

ωnR
mq

ℓq
(Ωn)Ψp

g′,n(r) . (2.31)
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In a transport solver, it is inevitable to decompose the Boltzmann operator into three com-
ponents to avoid costly recalculation. The elastic component (g′ = g and p′ = p)

QB,el
p,g,n(r) =

Nq∑
q=1

2ℓq + 1
4π

Σp→p
s,ℓq ,g→g(r)Rmq

ℓq
(Ωn)Φp

g,q(r) , (2.32)

also called within group scattering or self-scattering by the nuclear engineering community
[50], has to be updated before each sweeping step until convergence of the one-speed transport
equation in group g. The inelastic component (g′ ̸= g and p′ = p)

QB,inel
p,g,n (r) =

Ng,p∑
g′=1
g′ ̸=g

Nq∑
q=1

2ℓq + 1
4π

Σp→p
s,ℓq ,g′→g(r)Rmq

ℓq
(Ωn)Φp

g′,q(r) (2.33)

also called up- and down-scattering, has to be computed only once before solving each one-
speed transport equation in the group g. The particle production component (p′ ̸= p)

QB,pp
p,g,n(r) =

∑
p′∈P
p′ ̸=p

Ng,p∑
g′=1

Nq∑
q=1

2ℓq + 1
4π

Σp′→p
s,ℓq ,g′→g(r)Rmq

ℓq
(Ωn)Φp′

g′,q(r) (2.34)

has to be calculated only once before solving the transport equation for a specific particle p.
The Boltzmann operator is given by the sum of these components, i.e.

QB
p,g,n(r) = QB,el

p,g,n(r) + QB,inel
p,g,n (r) + QB,pp

p,g,n(r) . (2.35)

The discrete ordinates methods and their limits are further discussed in Sect. 4.2.

2.4.2 Fixed external sources

For radiotherapy applications, two kinds of fixed sources are of interest, namely 1) boundary
monodirectional sources and 2) volume isotropic sources. On the one hand, with a combina-
tion of boundary monodirectional sources, it is possible to reconstruct the profile of external
particle sources from the so-called phase space [63] of medical linear accelerator (LINAC) or
radioisotope such as cobalt-60. On the other hand, volume isotropic sources can represent
radioactive sources inside the patient, such as iodine-125 or cesium-137 [5].
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Boundary monodirectionnal sources

The definition of monodirectional for the discrete ordinates transport equation is not straight-
forward. Let V be the volume of the spatial domain, which is divided into orthogonal meshes
along the Cartesian system axis. Let Ndim ∈ {1, 2, 3} be the geometry dimension. The
boundary monodirectional sources will take the form

Qext(r, Ω, E) = Iδ(Ω−Ω0)δ(ra − rs
a) (2.36)

for a ̸= b ̸= c, with s ∈ {1, Na}, such as r1
a and rNa

a corresponding to the leftmost and
rightmost boundaries respectively along axis a, and


a = x if Ndim = 1

a, b ∈ {x, y} if Ndim = 2

a, b, c ∈ {x, y, z} if Ndim = 3

, (2.37)

and where 
I = I(E) if Ndim = 1

I = I(rb, E) if Ndim = 2

I = I(rb, rc, E) if Ndim = 3

. (2.38)

I is the intensity [in cm1−Ndims−1] and Ω0 is the source particle direction. The main difficulty
encountered is that the direction Ω0 may not be in the set of discrete direction Ωn for
n = 1, Nd, meaning that simply evaluating Eq. 2.36 will result in the absence of source in
the discrete ordinates formulation. An inverse distance weighting is established, such as the
source term is given by

Qext(r, Ω, E) = Iδ(ra − rs
a)

N∑
n=1
Wnδ(Ω−Ωn) , (2.39)

where the inverse distance weight, normalized over the quadrature nodes such that the in-
tensity is conserved, is given by

Wn =



1

∥Ω0 −Ωn∥r
m∑

m=1
ωm

N∑
k=1

δ(Ωm −Ωk)
∥Ω0 −Ωk∥r

if Ω0 /∈ {Ωn : n = 1, Nd}

δ(Ωn −Ω0) otherwise

, (2.40)
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where r ≥ 2 establishes the penalty strength to being far from the source direction Ω0. In
this research work, r = 3 is chosen, to enforce a strong penalty for quadrature directions
that are far from the given source particle direction. The discrete ordinates monodirectional
source is therefore given by

Qext
n (r, E) =WnIδ(ra − rs

a) . (2.41)

The discretized source is given by integrating this term over the corresponding energy group
and voxel. In 1D Cartesian geometry (Ndim = 1), the discretized monodirectional source is
given by

Qext,s
n,g,i =


Wn

∫ Eg−1/2

Eg+1/2

dEI(E) if i = s

0 otherwise
, (2.42)

while for 2D Cartesian geometry (Ndim = 2),

Qext,s
n,g,i,j =


Wn

∫ Eg−1/2

Eg+1/2

dE
∫ rb,j+1/2

rb,j−1/2

drbI(E, rb) if i = s

0 otherwise
(2.43)

and in 3D Cartesian geometry (Ndim = 3),

Qext,s
n,g,i,j,k =


Wn

∫ Eg−1/2

Eg+1/2

dE
∫ rb,j+1/2

rb,j−1/2

drb

∫ rc,k+1/2

rc,k−1/2

drcI(E, rb, rc) if i = s

0 otherwise
. (2.44)

This source is added to the transport equation as boundary conditions.

Volume isotropic sources

A volume isotropic sources will take the form

Qext(r, Ω, E) = I(r, E) , (2.45)

where I(r, E) is the intensity [in cm−Ndim s−1], where Ndim is the geometry dimension. The
Legendre moments of the isotropic sources are given by

Qext
ℓ (r, E) =

I(r, E) ℓ = 0

0 otherwise
(2.46)
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and the discretized form is given by integrating space and energy. This term is added to the
transport equation as a source term.

2.4.3 Ray effects

An important flaw of the discrete ordinates method is the ray effect [64]. Since the SN method
only enforces the fulfillment of the transport equation along a discrete set of directions, it
forces the radiation to travel along these directions. Without significant scattering in the
medium, the flux remains aligned with the discrete directions. The ray effect manifests on
the solution as artificial streaks along the discrete directions, deteriorating the accuracy of
the local solutions. The most straightforward way to address this issue is to increase the
quadrature order, but it is computationally expansive and still produces numerical artifacts
[50]. While there are finite-element methods for angular discretization, it results in intricate
coupling of the angular and spatial variables in a dense system of equations, which becomes
very expansive to solve [28]. There is an incentive to keep the discrete ordinates formalism
for efficiency and to develop ray effect mitigation compatible with that approach.

An important ray effect mitigation technique is the first collision source (FCS) method, which
divides the flux into uncollided and collided components [65]. Since the uncollided flux is
often the dominant source of ray effect and the uncollided flux equation is less complicated
than the full transport equation, the uncollided flux can be computed using methods that do
not produce or produce less ray effect, such as ray tracing, low-order SN or PN methods [66].
The uncollided flux solution can then be used as a source in the collided flux equation, which
is solved using the discrete ordinates method. For the BFP equation, the uncollided equation
includes the CSD operator, which requires ray tracing through not only space but through
space and energy domain [67–69]. Additional preoccupations can arise with FCS methods,
such as ensuring that ray tracing remains conservative [70], ensuring compatibility with
unstructured meshes [71], dealing with different kinds of sources, such as omnidirectional
boundary and isotropic sources, and keeping computational time reasonable. Other ray
effects mitigation has been proposed, such as adding a quadrature rotation step [72] or an
artificial source [73], for example.

Despite all these efforts, ray effect mitigation remains a significant challenge. In RTP, electron
transport solutions do not suffer much from the ray effect since electrons scatter a lot, but
photons travel long distances before interacting with the medium and, therefore, notably
suffer from it. While this issue is not addressed in this work, ray mitigation techniques will
be required to efficiently treat external photon beams and brachytherapy’s localized isotropic
sources.
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2.5 Spatial Discretization

The most straightforward spatial discretization is obtained by dividing the spatial domain
into voxels, which are 3D box meshes defined on a Cartesian grid. A good deal of research
work resort to unstructured meshes [7,74], because that kind of meshes offer greater flexibility
to fit interface boundaries, such as the skin surface and the air, and it can ensure thinner
discretization is a critical subpart of the spatial domain without needlessly over-discretizing
another part of the domain, contrary to structured geometries. However, they complicate
the sweeping and parallelization procedures, whereas these procedure are straightforward
to implement in Cartesian geometry. Moreover, since a typical CT scan generates a 3D
Cartesian grid of 1283 voxels, whose size varies from 0.5 to 1.5 mm, there is already a bias
toward a Cartesian representation in imaging. Therefore, in this work, the spatial domain is
assumed to be discretized along Cartesian coordinates.

The spatial domain along an axis x (y or z) is divided in Nx (Ny or Nz) mesh. The midpoint
of the mesh i (j or k) is xi (yj or zk), its width is ∆xi (∆yj or ∆zk), and its upper and lower
boundaries are respectively xi−1/2 (yj−1/2 or zk−1/2) and xi+1/2 (yj+1/2 or zk+1/2), as shown in
Fig. 2.3. The transport equation is then discretized using the Galerkin method of weighted
residuals, which development is continued in Chap. 5.

2.6 Resolution of the Coupled Photon-Electron-Positron Transport Equations

The resolution of the coupled system of three BFP equations, one per particle, is done by
solving the transport equation individually for each particle. By obtaining the flux solution
for a particle, it can be used to compute the production of the other two particles based
on the corresponding scattering cross-sections (see Chap. 3). The resulting source term is
then added to the following particle equation. This iterative loop between particle can be
continued until convergence or a predetermined number of generations Ngen. For a given
particle, the cumulative flux solution is given by the sum of the Ngen flux solution of that

Figure 2.3 Spatial discretization.
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Figure 2.4 Sweeping process assuming A) µ > 0 and η > 0 and B) µ > 0 and η < 0. The
numbers indicate the order in which calculations can take place.

particle. It should be noted that fixed sources for a given particle are used only the first time
the BFP is solved for that specific particle.

The BFP has to be solved for each particle. Neither the electron, the positron, nor the
photon has an upscattering interaction; they encounter no interaction in which the particle
itself acquires energy. Therefore, the multigroup transport equation is solved by sweeping for
the highest energy group, g = 1, to the lowest energy group only once. In each group, the
transport equation is solved by Source Iteration (SI). The angular flux is computed along
each direction Ωn by sweeping through the domain from the geometry side to the other
following the direction of Ωn, as shown in Fig. 2.4. The source terms are then actualized for
subsequent sweeping and so on. The sweeping procedure is repeated until the convergence
of the angular flux. The speed of convergence is given by the spectral radius ρ, which can be
estimated by [47]

ρ = lim
ℓ→∞

∥∥∥Ψ(ℓ) −Ψ(ℓ−1)
∥∥∥

∥Ψ(ℓ−1) −Ψ(ℓ−2)∥
, (2.47)

where ℓ is the iteration index. A spectral radius ρ ≪ 1 is associated with fast convergence,
which slows as ρ approach one and if ρ ≥ 1, then the SI process do not converge. A Fourier
analysis shows that the spectral radius of the SI is given by the ratio of the elastic scattering
cross-section to the total cross-section [47]. Therefore, the more elastic scattering is the dom-
inant process over absorption and out-of-group scattering, the slower the convergence. As
shown in Chap. 3, the electron and positron elastic interactions are very dominant, and cal-
culations can become extremely slow. Many methods have been developed to accelerate the
convergence. The most important one for electron and positron is the transport correction,
given in Sect. 3.5.3, which reduces the magnitude of elastic cross-sections while leaving the
solution intact [17]. The diffusion synthetic acceleration (DSA) method is a well-known and
widely used method to reduce the number of iterations until convergence [75]. Unfortunately,
the DSA method becomes ineffective for highly anisotropic forward-peaked scattering. Morel
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and Manteuffel have developed an acceleration method that reduces the scattering ratio to
0.6 in the Fokker-Planck scattering limit for 1D geometries [76], but an extension of this
method to multidimensional geometries was inconclusive [47]. Livolant acceleration, based
on the minimization of residuals, was used in this thesis to accelerate the iterative process [50].
Krylov subspace methods like Generalized minimal residual (GMRES) and its low-memory
form GMRES(m) can be very efficient and stable techniques to accelerate convergence. While
they were not used in this work, Krylov’s methods are powerful tools to reduce drastically
the number of iterations for convergence.

The discrete ordinates method produces an inherently parallel problem since the calculation
along each direction can be performed simultaneously without interference. The sweeping
procedure can be further accelerated in 2D and 3D Cartesian geometries. As shown in
Fig. 2.4, meshes that share the same number can be performed simultaneously since they only
depend on previous mesh information. Therefore, the sweeping procedure can be performed
along waves using the Koch-Baker-Alcouffe (KBA) method [59,77–79]. These calculations can
be distributed to multiples Central Processing Unit (CPU) or Graphic Processing Unit (GPU)
threads, or both, on a personal laptop or distributed over several computers. The KBA
procedure has to be optimized for each of these choices to account for communication delay
between threads, which is far from being trivial [80]. Parallelization methods will be essential
to achieving highly efficient dose calculation solvers.

2.7 Energy Deposition

The solution of the BFP for each particle p, in each voxel j of volume Vj and in each energy
group g is given by the integrated flux Ψp

g,j. Such integrated fluxes can be used to compute
reaction rates such as energy deposition or charge deposition. The volume Vj is given in
cmNdim , with Ndim is the geometry dimension. The total energy deposition in voxel j, in
mec2/g × cm3−Ndim , is given by [16,81]

Dj = 1
ρVj

∑
p∈P


G∑

g=1
Σp

e,g,jΨ
p
g,j + Σp

e,G+1,jΨ
p
G+1/2,j

 with Σp
e,g,j =

∑
x

Σp,x
e,g,j , (2.48)

where ρ is the medium density in g/cm3. Ψp
G+1/2,j is the flux evaluated at the cutoff energy

EG+1/2, which is computed using an energy closure relation as defined in Chap. 5. The first
term of the total energy deposition formula correspond to the net energy deposited in each
energy group, while the second term is required with the BFP equation, due to the CSD
operator, to take into account particle slowing-down to the energy cutoff [81]. The energy



22

deposition cross-sections, Σp
e,g,j, is the sum of the Σp,x

e,g,j for each interaction x in energy group
g for incident particle p. The energy deposition cross-sections for a given interaction x, which
caraterize the net energy gain or loss following that interaction, is given by

Σp,x
e,g = Sp,x

g + 1
∆Eg

∫ Eg−1/2

Eg+1/2

dE

{
(E −∆Qx)Σp,x

t (E)

−
∑

p′∈P

[∫ E

EG+1/2

dE ′ E ′Σp→p′,x
s,0 (E → E ′)

]
− Σp,x

uc (E)

 ,

(2.49)

for 1 ≤ g ≤ G. It encompass the CSD energy-loss in the group, the kinetic energy of the
interaction’s incident particle in the group, the kinetic energy of the particle leaving the inter-
action, and the variation of rest mass energy of the nucleus and the elementary particle, given
by ∆Qx (∆Qx > 0 for increase in mass, ∆Qx < 0, for a decrease in mass) [13]. For example,
the pair production interaction causes an electron and a positron to appear, which correspond
to ∆Qx = 2 mec2. Conversely, the annihilation interaction makes the incoming positron and
an atomic electron to disappear, resulting in a decrease of mass of ∆Qx = −2 mec2. In in-
teraction such as Compton or elastic scattering, no change of mass occur, i.e. ∆Qx = 0. The
last term, Σp,x

uc (E), corresponds to the particle production from processes occurring under the
cutoff energy, which is restricted to positron annihilation in this work. Physically, positrons
always end up annihilating by producing two photons. Three interactions can scatter or
produce positrons under the energy cutoff EG+1/2, following either 1) catastrophic impact
ionization positron interactions, 2) catastrophic positron-induced Bremsstrahlung interac-
tions, or 3) following pair production. To take the annihilation of these positrons, which
scatter under the cutoff, into account, the following contribution,

Σp,x
uc (E) =

∫ EG+1/2

0
dE ′(∆Q′ + ∆Qx + E ′)Σp→p′,x′

s,0 (E → E ′) , (2.50)

should be added to the energy deposition, with p′ = γ and ∆Q′ = −2 mec2, corresponding
respectively to the annihilation photon and to the loss of rest mass energy in annihilation.
The annihilation cross-sections under the cutoff energy are given in Sect. 3.7.4. There is
another contribution to energy deposition with the BFP equation due to soft interaction,
which causes particles to slow-down until it reaches the cutoff, where they are absorbed
locally. The energy deposition cross-sections at the cutoff energy is given by [2, 81]

Σp,x
e,G+1 = EG+1/2

Sp
G+1/2,j

∆EG

, (2.51)

where Sp
G+1/2,j is the soft stopping power at the cutoff energy.
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2.8 Charge Deposition

The total charge deposition in voxel j, in cm3−Ndim/g, is given by [2, 16]

Cj = 1
ρVj

∑
p∈P


G∑

g=1
Σp

c,g,jΨ
p
g,j + Σp

c,G+1,jΨ
p
G+1/2,j

 with Σp
c,g,j =

∑
x

Σp,x
c,g,j , (2.52)

where the charge deposition cross-sections for a given interaction x is given by

Σp,x
c,g = − 1

∆Eg

∫ Eg−1/2

Eg+1/2

dE

qpΣp,x
t (E)−

∑
p′∈P

δxqp′

[∫ E

EG+1/2

dE ′ Σp→p′,x
s,0 (E → E ′)

] (2.53)

for 1 ≤ g ≤ G, where qp is the particle charge given by

qp =


−1 if p = e-

0 if p = γ

1 if p = e+

(2.54)

and where δx is a parameter to account for particle that are neither extracted from the
medium nor deposited in it. For pair production, it is given by δx = 0 since the electron-
positron pair does not change the net charge of the medium. Otherwise, δx = 1. As for
dose deposition, there is a charge deposition component at the cutoff energy due to soft
interaction. The charge deposition cross-sections at the cutoff energy is given by [2]

Σp,x
c,G+1 = −qp

Sp
G+1/2,j

∆EG

. (2.55)
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CHAPTER 3 COUPLED PHOTON, ELECTRON AND POSITRON
MULTIGROUP CROSS-SECTIONS

3.1 Foreword

The main motivation in this chapter is to close the gap between deterministic and Monte
Carlo physics models. Coupled photon-electron-positron multigroup cross-section models
compatible with the BFP equation are developed based on 9 interaction kinds, namely im-
pact ionization, elastic scattering of leptons, bremsstrahlung, annihilation, Rayleigh scatter-
ing, Compton scattering, photoelectric effect, pair production and relaxation cascades. This
work led to the development of RADIANT, an open-source alternative to CEPXS for deter-
ministic coupled photon-electron cross-sections. A comparative study is conducted between
RADIANT and Monte Carlo calculation results, consisting of energy deposition and energy
spectrum per particle species at varying depths.

My original contributions to cross-section production include the introduction of updated
models that advance beyond the state-of-the-art CEPXS code, as well as the explicit incor-
poration of positron cross-sections. I have also introduced novel methodologies, such as the
efficient analytic integration of elastic scattering Legendre moments and improved energy
deposition cross-section calculation. Additionally, I have developed a new open-source code,
RADIANT, capable of generating comprehensive photon-electron-positron cross-section li-
braries. The developments discussed in this section, along with the innovations presented
in the preceding section, have been submitted to the Journal of Computational Physics on
May 1st, 2024 [82]. The manuscript has undergone peer review and is currently under revi-
sion (major revisions required). I have also contributed to a peer-reviewed Scientific Reports
paper on pure high-energy electron determinist cross-section library validation [37].

Sect. 3.2 presents the particle species present during conventional radiotherapy treatment.
Sect. 3.3 establishes some definitions for the upcoming sections. Sect. 3.4 to 3.12 describes
the 9 interaction kinds and their multigroup models. In Sect. 3.13, the atomic models of the
previous section are consolidated. Sect. 3.14 proposes a comparison of the solutions of the
BFP equation using these cross-sections to the reference Monte Carlo ones and discuss its
findings. Sect. 3.15 concludes the chapter by looking at perspectives.
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3.2 Ionizing Radiation in Radiotherapy Treatment

The goal of radiotherapy is to use the properties of ionizing radiation to deliver energy to
tumorous cells to kill them, either directly or through the production of highly reactive, thus
damaging, free radicals [13]. This ionizing radiation usually takes the form of subatomic
particles such as photons, electrons, protons or ions. The range of energies for conventional
radiation therapy, which relies on photons or electron sources, scales from 10 keV to 25
MeV [13]. Nonetheless, this range will likely expand in the following decades to encompass
very-high energy electron beams (50 MeV to 300 MeV) and ultra-high energy electron beams
(300 MeV - few GeV) [37]. These energetic electrons can treat deep-seated tumours as
demonstrated in many publications [83–85]. On the other end of the spectrum, researchers
are pushing to improve understanding of microdosimetry under 10 keV. GEANT4-DNA, for
example, is a project to develop a simulation of low-energy ionizing radiation, down to a
few eV, and of the radiation-induced DNA damage [86]. Evaluating the impact of low doses
can help assess its health effects. To this day, radiation protection for these low energy
deposition events is based on extrapolation of epidemiology data assuming no threshold [87].
Such an approach implies that any dose poses a risk, and caution is always required. This
hypothesis is still controversial to this day since it can lead people to avoid medical imaging,
therefore missing cancer detection due to radiophobia [88]. Under the muons pair production
threshold of 211 MeV [89], in a medium exempt from fissile atoms, only three particles
are of interest using either photons or electrons sources: photons, electrons and positrons.
Therefore, this section proposes models of interactions of these three particles with matter
over energies ranging from 1 keV to 211 MeV, compatible with the multigroup BFP equation.
This thesis does not evaluate the validity of the models for transport calculations over 211
Mev, neglecting muons production.

Photons are massless and uncharged particles carrying electromagnetic energy. The ones
that possess enough energy to ionize matter are often called X-rays and gamma-rays. In
the defined energy range, these ionizing photons can have 4 dominant interactions: Rayleigh
scattering, Compton scattering, photoelectric effect and pair production. The photoelectric
effect is the dominant effect for low energies up to hundreds of keV; the Compton interaction
dominates at intermediate energies between hundreds of keV and about 10 MeV, while the
pair production is the most important interaction at higher energies. Due to their lack of
charge, photons pass through matter without interacting much, making them particularly
useful for penetrative radiotherapy treatment. The energy lost during either Compton or
photoelectric interaction is almost totally transferred to an atomic electron, becoming a new
receptacle to transport energy in the medium. Extracting an inner-shell atomic electron can
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trigger relaxation cascades that produce more ionizing radiation, namely fluorescence and
Auger electrons. When a pair production interaction occurs, the photon energy is transferred
to the newly produced electron and positron.

Electrons, the negatively charged particles with mass, play a significant role in energy trans-
port. The total energy they carry is a combination of their kinetic energy and mass. In the
defined energy range, electrons interact with matter in three major ways: elastic scattering,
impact ionization, and bremsstrahlung. Impact ionization is the dominant energy-loss process
up to about 10 MeV, while bremsstrahlung production takes over at high energies. Elastic
interaction, unlike photons, is a dominant phenomenon. As discussed in the previous chap-
ter, electrons lose their energy either following the CSD approximation or in catastrophic
large energy-loss events. The CSD approximation is used for both impact ionization and
bremsstrahlung interaction. In a catastrophic impact ionization event, almost all the kinetic
energy lost by the incoming electron is transferred to an ionized atomic electron. Such in-
teraction can also trigger relaxation cascades, producing fluorescence and Auger electrons.
In catastrophic bremsstrahlung interactions, a significant part of the electron’s energy is
transferred to a bremsstrahlung photon.

Positrons, the positively charged particles that share the same mass as their antiparticles,
the electrons, have a unique fate. In the defined energy range, they interact with matter in
four major ways: elastic scattering, impact ionization, bremsstrahlung interaction, and an-
nihilation. While positron elastic, impact ionization, and bremsstrahlung interactions share
many similarities with their electron counterparts, positrons are the only ones that always
end up annihilating with an atomic electron into two photons. This annihilation process
becomes inevitable as the kinetic energy of the positron approaches zero. The relevance of
positron transport is only significant if photons of 1.022 MeV or more are present, which is
the threshold for pair production.

3.3 Definitions

A few constants, variables, units, and parameters, which will be used in the following sections,
need to be defined. In this chapter, the energies are given in reduced electron energy (in mec2),
where mec2 ≈ 0.510999 MeV is the electron rest energy, the length unit is the centimetre
(cm), and the unit of mass is the gram (g) unless noted otherwise. The classical electron
radius is given by re ≈ 2.81794× 10−13 cm. The ratio of the particle velocity on the speed of
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light and the Lorentz factor are respectively given by

β2 = E(E + 2)
(E + 1)2 and γ = E + 1 . (3.1)

The Avogadro constant is given by Na ≈ 6.022094 × 1023 u/g, where u is the atomic mass
unit. The following section’s atomic data calculations apply to any compound material of
Ne constituent elements. The density of a monoelemental material is given by

Nn,i = ρNa

Ai

, (3.2)

where i is the element atomic number, ρ is the compound density (in g/cm3) and Ai is
the atomic weight (in u) of the ith-element of the compound. The weight fraction of the
ith-element of a compound is given by fi, which can be used to compute the density of the
ith-element in that compound, given by fiNn,i.

The function Hb is introduced to simplify the notation of integrals greatly. This special
function, which can be defined only inside an integral, acts as a Heaviside function on the
difference between upper and lower integral bounds, i.e.

∫ b

a
dxf(x)Hb ≡

∫ b

a
dxf(x)H(b− a) , (3.3)

where H(x) is the Heaviside function such as

H(x) =

1 x ≥ 0

0 otherwise
. (3.4)

Many tables are used to generate multigroup atomic data. Any interpolation over these tables
is done using the monotone cubic Hermite spline interpolation from Fritsch and Carlson [90].

3.4 Impact Ionization

When travelling through the medium, an electron or a positron ionizes atomic electrons in
impact ionization. When an inner-shell electron is ionized, a relaxation cascade is initiated
(see Sect. 3.12). A schematic representation of this interaction is presented in Fig. 3.1.
This interaction is the dominant energy-loss phenomenon up to a few MeV for electrons
and positrons [91]. In CEPXS, the Møller cross-section, assuming unbounded atomic elec-
trons, describes the inelastic interactions of incoming electrons [16, 92]. In medical physics,
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Figure 3.1 Impact ionization by incoming electrons (in blue) or positrons (in orange).

an intelastic interaction is a collision where the particle loses energy, which differ from the
definition in [50]. While adequate for low-Z medium and fast incoming electrons, such an
approximation fails when the incoming electron energy is not significantly greater than the
electron binding energy, which can be really important for inner subshells of high-Z material.
For example, the K subshell of gold (Z = 79) has a binding energy of 80.96 keV [93], an en-
ergy greater than usual energy cutoffs in both Monte Carlo and determinist transport codes.
The Møller cross-section diverges as the energy-loss approach zero, dealt with in CEPXS
by dividing the domain into soft and catastrophic components and employing an alternate
model for soft interactions. This alternate models consist of tabulated stopping powers values
from Bethe theory [94], to which the semi-empirical density correction from Sternheimer [95]
and an empirical low-energy correction under 10 keV are applied (see [16]). The atomic re-
laxation from the inelastic collision is taken into account using subshell-dependant impact
ionization models, such as Kolbenstvedt [96], or Gryzinski [97] models, which means that
impact ionization and its relaxation are uncorrelated in CEPXS. In this thesis, the BFP
formalism is also used to treat impact ionization. The catastrophic cross-sections are defined
by subshell-dependant Møller [92] and Bhabha [98] models, for electrons and positrons re-
spectively, based on models developed by Seltzer [99,100] and Salvat et al. [91,101]. The soft
stopping powers are developed based on the state-of-the-art stopping power models of Salvat
and Andreo [102]. The following models represent an advancement over CEPXS by account-
ing for subshell-dependent catastrophic cross-sections essential for high-Z material transport.
In contrast to CEPXS, which only offers electron models, the proposed models also include
explicit positron cross-sections and stopping powers. These models utilize cutting-edge stop-
ping powers, incorporating shell correction and an analytic form of the Fermi density effect,
thereby replacing the semi-empirical methods used in CEPXS. Additionally, atomic relax-
ation is directly linked to the inelastic cross-sections. The new soft and catastrophic domain
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definition, presented in Sect. 2.3.3, is applied.

3.4.1 Catastrophic inelastic cross-section

The total inelastic cross-section describes the interaction of an incoming electron (p′ = e-) or
positron (p′ = e+) with an atomic electron. Such interaction results in the scattering of the in-
coming particle (p′ = e- or p′ = e+) and the production of knock-on electrons (p′ = e-). The
impact ionization is the sum of three components: the close collisions, the distance collisions
and a density effect term [100]. Distance collisions consist of the interaction of the incident
electron or positron perturbing field, which can ionize atomic electrons and be interpreted as
virtual photons producing photoionization [99]. Since catastrophic collisions do not deal with
small energy losses and distant collisions result in such energy transfer, they are neglected
in the catastrophic cross-section model [103]. The density effect component accounts for the
material dielectric polarization and can also be neglected in catastrophic cross-sections since
by inspection, the corresponding Scofield cross-section [100,104] is important only when small
energy losses occur.

The collisional inelastic differential cross-section in energy of the knock-on electron in a
monoelemental material i is given by the sum of the differential cross-section per electron
subshell k [16, 43,105]

σi
s(E → W ) =

Nshells∑
k=1

Zi,kσi,k
s (E → W ) , (3.5)

where Zi,k is the mean number of electrons in subshells k for element i, E is the incoming
electron or positron energy, E ′ is the scattered electron or positron energy and W = E−Ui,k−
E ′ is the knock-on electron energy, where Ui,k is the binding energy of the kth subshell. The
values of Zi,k and Ui,k are extracted from the Evaluated Atomic Data Library (EADL) [93].
The close interaction cross-section is given by

σi,k
s (E → W ) = 2πr2

e

β2 F ±
i,k(E, W ) , (3.6)

where the subshell-dependant Møller factor, for electrons, is given by [92,99]

F −
i,k(E, W ) = 1

(W + Ui,k)2 + 1
(E −W )2 + 1

(E + 1)2 −
(2E + 1)

(E + 1)2(E −W )(W + Ui,k) (3.7)
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and the subshell-dependant Bhabha factor, for positrons, is given by [98]

F +
i,k(E, W ) = 1

(W + Ui,k)2

[
1− b1

(
W + Ui,k

E

)
+ b2

(
W + Ui,k

E

)2

−b3

(
W + Ui,k

E

)3
+ b4

(
W + Ui,k

E

)4]
,

(3.8)

with

b1 =
(

γ − 1
γ

)2 2(γ + 1)2 − 1
γ2 − 1 , b2 =

(
γ − 1

γ

)2 3(γ + 1)2 + 1
(γ + 1)2 ,

b3 =
(

γ − 1
γ

)2 2γ(γ − 1)
(γ + 1)2 , b4 =

(
γ − 1

γ

)2 (γ − 1)2

(γ + 1)2 .

(3.9)

The scattering angles for the incoming particle and knock-on electron are respectively [16]

µp =

√√√√E ′(E + 2)
E(E ′ + 2) and µs =

√√√√W (E + 2)
E(W + 2) , (3.10)

and their double differential cross-sections are respectively given by

σs(E → E ′, µ) = 1
2π

σs(E → E ′)δ(µ− µp) (3.11)

and
σs(E → W, µ) = 1

2π
σs(E → W )δ(µ− µs) . (3.12)

The maximum energy of knock-on for incoming electron and positron, which results from
classical kinematics and the indistinguishability of electrons, are given respectively by

W −
max = E − Ui,k

2 and W +
max = E − Ui,k . (3.13)

Scattering cross-sections for incoming electrons or positrons

The Legendre moments of the differential scattering cross-sections are given by

σi,k
s,ℓ(E → E ′) = 2π

∫ 1

−1
dµ Pℓ(µ)σi,k

s (E → E ′, µ) = Pℓ(µp)σi,k
s (E → E ′) . (3.14)
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The macroscopic Legendre moments of the scattering cross-sections for particle scattering
from group g′ are therefore given by

Σe±→e±
s,ℓ,g′ (E) =

Ne∑
i=1
Nn,ifi

Nshells∑
k=1

Zi,k

∫ min
{

E′
g−1/2,Ec(E),E−Ui,k

}
max

{
E′

g+1/2,W ±
max

} dE ′σi,k
s,ℓ(E → E ′)Hb , (3.15)

where Ec(E) is given by Eq 2.26. This equation is evaluated using numerical quadrature.

Scattering cross-sections for knock-on electrons

The Legendre moments of the differential scattering cross-sections are given by

σi,k
s,ℓ(E → W ) = 2π

∫ 1

−1
dµ Pℓ(µ)σi,k

s (E → W, µ) = Pℓ(µs)σi,k
s (E → W ) . (3.16)

The multigroup Legendre moments of the scattering cross-sections are therefore given by

Σe±→e-
s,ℓ,g′ (E) =

Ne∑
i=1
Nn,ifi

Nshells∑
k=1

Zi,k

∫ min
{

E′
g−1/2,W ±

max

}
E′

g+1/2

dWσi,k
s,ℓ(E → W )Hb . (3.17)

This equation is integrated using numerical quadrature.

Catastrophic total cross-sections

The catastrophic inelastic total cross-sections are defined by

Σe±
t (E) =

Ne∑
i=1
Nn,ifi

Nshells∑
k=1

Zi,k

∫ W ±
max

E−Ec(E)
dWσi,k

s,0(E → W )Hb , (3.18)

which is evaluated analytically.

Absorption cross-sections for incoming positrons

The inelastic catastrophic absorption cross-sections for inelastic interaction with incoming
positrons, which include both soft and catastrophic contributions and are required for anni-
hilation calculations, are given by

Σinel
a (E) =

Ne∑
i=1
Nn,ifi

Nshells∑
k=1

Zi,k

∫ W +
max

E−min{EG+1/2,Ec}
dWσi,k

s,0(E → W )Hb , (3.19)

which is evaluated analytically.
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3.4.2 Soft stopping power

Total stopping power

The total collisional stopping powers of electron and positron for any compound, in mec
2 ×

cm−1, are given by the density- and shell-corrected Bethe formula [106]

St(E) = 2πr2
e

β2 N
eff
e

[
ln
{

E + 2
2

(
E

Ieff

)2}
+ f (±) − δF − 2C(E)

]
, (3.20)

where E is the energy of the incoming electron or positron, N eff
e is the effective electron

density in the medium given by

N eff
e =

Ne∑
i=1
Nn,ifiZi , (3.21)

with fi is the weight percent of the ith-element of the compound, Zi is the atomic number
of the ith-element of the compound. δF is the Fermi density effect, defined in the next
subsection, and C(E) is the shell correction, extracted from SBETHE program files [106], a
state-of-the-art program to compute stopping power of charged particle. Ieff is the effective
mean excitation energy of the compound is given by [43]

Ieff = exp
{

1
Zeff

Ne∑
i=1

fiZi log(Ii)
}

with Zeff =
Ne∑
i=1

fiZi , (3.22)

where the mean excitation energy of the ith-element of the compound is Ii (tabulated by
Seltzer and Berger [107]), unless more accurate value is provided. For water, Ieff = 78 eV
is used, as recommended by the ICRU report 90 [102,108]. The electron factor f (−) is given
by [109]

f (−) = 1− β2 − (2E + 1)
(E + 1)2 ln(2) + 1

8

(
E

E + 1

)2
(3.23)

and the positron factor f (+) is given by

f (+) = 2 ln(2)− β2

12

[
23 + 14

E + 2 + 10
(E + 2)2 + 4

(E + 2)3

]
. (3.24)

Fermi density effect

The following calculation of the Fermi density effect is the same as described in SBETHE
and the same used in the Monte Carlo transport code PENELOPE [43]. It is based on the
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formula from Fano [110,111], which is

δF = 1
Zeff

Ne∑
i=1

Nshells∑
k=1

fiZi,k ln
(

1 + L2

W 2
i,k

)
− L2

Ω2
p

(1− β2) , (3.25)

where L is given by solving

(1− β2) =
Ω2

p

Zeff

Ne∑
i=1

Nshells∑
k=1

fiZi,k

W 2
i,k + L2 . (3.26)

which can be done using the Newton-bisection method presented in Annex C. The plasma
energy is given by

Ω2
p = 4πN eff

e ℏ2c2r2
e (3.27)

and the resonance energy in the ith-subshell is [95]

Wi,k =
√

(aUi,k)2 + 2
3

Zi,k

Zi

Ω2
p , (3.28)

where a is given by solving

Zi ln
(
Ieff

)
=

Nshells∑
k=1

Zi,k ln
(√

(aUi,k)2 + 2
3

Zi,k

Zi

Ω2
p

)
, (3.29)

again using the Newton-bisection method.

Soft stopping powers

The inelastic collisional soft stopping power, Se±(E), is given by removing the catastrophic
stopping power from the total stopping power. It is given by

Se±(E) = St(E)−
Ne∑
i=1
Nn,ifi

Nshells∑
k=1

Zi,k

∫ W ±
max

E−Ec(E)
dW (W + Ui,k)σi,k

s,0(E → W )Hb , (3.30)

which is evaluated analytically.

3.5 Elastic Scattering for Electrons and Positrons

An interaction in which the particle changes direction without losing energy is said to be
elastic. Elastic interaction of electron and positron with matter, as pictured in Fig. 3.2, is
of utmost importance to accurately model the distribution of this particle in the medium up
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Figure 3.2 Elastic scattering for electrons (in blue) and positrons (in orange).

to hundreds of MeV. In CEPXS, a combination of Mott [112] and Rutherford [113] cross-
sections, with Molière screening [114], is employed over 256 keV, while Riley cross-sections
[115] are employed under that threshold down to 1 keV [16]. The same approach is used
in MCNP Monte Carlo for elastic electron cross-sections [116]. The Mott cross-sections,
which take into account spin and relativistic effects, are obtained under the assumption
of an unscreened point-like nuclei. Adding screening by combination of the Mott and the
screened Rutherford cross-sections seems a common practice [44, 117]. Riley cross-sections
are computed by solving the partial-wave solution of the Dirac equation for an electron in
the screened Coulomb potential of the atom [115,118], which makes it more precise than the
Mott-Rutherford marriage. Seltzer has proposed a semi-empirical correction of the Molière
screening for the Mott-Rutherford cross-sections to fit partially the ones of Riley at lower
energies [118]. GEANT4 uses Urban’s multiple scattering model under 100 MeV and a mixed
single/multiple scattering model over 100 MeV [119]. While it is efficient and accurate, both
PENELOPE and EGSnrc outperform it in accuracy [120]. The PENELOPE code computes
cross-sections using ELSEPA [121], a state-of-the-art program made for elastic cross-section
calculations from partial-wave solutions of the Dirac equation. The EGSnrc code uses Mott-
Rutherford cross-sections down to 1 keV to which a correction term is added to take into
account sub-threshold inelastic scattering by atomic electrons while enforcing coherence with
the knock-on production model [44, 122]. In this thesis, a similar approach to EGSnrc is
employed. A combined Molière screened Mott-Rutherford cross-section is employed, based
on an interpolation formula and data proposed by Lijian et al. [117, 123], jointly with the
knock-on dependent correction from Kawrakow [122] and Seltzer’s adjustment to Molière
screening factor [118]. It has a few improvements compared to CEPXS. Contrary to CEPXS,
the methodology and its tabulation are available in open source. Seltzer’s correction is an
alternative to the mixed use of two disjoint physical models. Analytical Legendre moments
of the elastic cross-sections are proposed, which is very useful since numerical integration on
very anisotropic cross-sections is highly inefficient and slow. Finally, explicit positron elastic
cross-sections are produced.
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The Mott cross-section describes the elastic interaction of an incoming electron (p = p′ = e-)
or positron (p = p′ = e+) with the Coulomb field of an atom. The microscopic differential
scattering cross-section in a monoelemental material i is given by

σi
s(E, µ) = 2πZi(Zi + ξ±

i )r2
e

β2E(E + 2)
1

(1− µ + 2ηi)2R
i
Mott , (3.31)

with η, the Molière screening factor with Seltzer’s adjustment, obtained by [16,114,118]

ηi =
α2Z

2/3
i

(
1.13 + 3.76

(
Ziα

β

)2√
E

E+1

)
4
(

9π2

128

)2/3
E(E + 2)

, (3.32)

where α ≈ 1/137 is the fine structure constant. Note that when the incoming electron or
positron has increasingly more kinetic energy, ηi becomes tiny, and the scattering cross-section
becomes increasingly large as µ tends to 1, producing highly forward-peaked scattering. Lijian
et al. [123] proposed the following interpolation formula for Ri

Mott, the ratio of the unscreened
Mott differential cross-section to Rutherford’s cross-section:

Ri
Mott =

4∑
j=0

ai,j(1− µ)j/2 , where ai,j =
6∑

k=1
bk,j(Zi)

(
β − β̄

)k−1
(3.33)

and β̄ = 0.7181287. Boschini et al. [117] have generated bk,j(Zi) parameters for any Zi ≤ 118,
for both electron and positron, and these are valid for energies between 1 keV and 900 MeV.

For incoming electrons or positrons, to take into account atomic electron contribution to the
multiple scattering of charged particle transport, Z2 is often replaced by Z(Z + 1) [124].
However, a double counting issue was observed in Monte Carlo codes due to an overlap with
knock-on electrons [125], which are already taken into account by the Møller and Bhabha
models (see Sect. 3.4.1). Kawrakow proposed a correction for this issue, which is significant
for low Z material or when cutoff energy EG+1/2 is low [122]. This correction is given by

ξ±
i = 1−

g±
inel,i

gel,i

, (3.34)

with gel,i, which is calculated using methodology described by Kawrakow for the Mott cross-
sections rather than the screened Rutherford ones, is given by

gel,i =
σ̃i

s,0(E)− σ̃i
s,2(E)

3 , (3.35)
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where σ̃i
s,ℓ(E) is given by Eq. 3.38, and with ginel,i is given by

g±
inel,i =

Nshells∑
k=1

Zi,k

Zi

E(E + 2)
∫ W ±

max

EG+1/2

dW
(
1− µ2

p

)
F ±

i,k(E, W )Hb , (3.36)

where EG+1/2 is the minimum energy transfer to knock-on electron, W ±
max is given by Eq. 3.13,

µp, by Eq. 3.10 and F ±
i,k(E, W ), by Eq. 3.7-3.8. This equation is evaluated analytically.

3.5.1 Legendre moments of the scattering cross-sections

For deterministic transport calculations, the Legendre moments of the elastic cross-sections
are required, namely

Σe±→e±
s,ℓ (E) =

Ne∑
i=1
Nn,ifi

∫ 1

−1
dµPℓ(µ)σi

s(E, µ) =
Ne∑
i=1
Nn,ifi

2πZi(Zi + ξ±
i )r2

e

β2E(E + 2) σ̃i
s,ℓ(E) , (3.37)

with the following definition

σ̃i
s,ℓ(E) =

∫ 1

−1
dµPℓ(µ) Ri

Mott
(1− µ + 2ηi)2 . (3.38)

Calculating these Legendre moments using numerical quadrature is highly inefficient due
to the near singularity that often occurs at µ = 1, when ηi is small. As demonstrated in
the following lines, the integration can be fast, done analytically and in a way that ensures
numerical stability.

First, the Legendre polynomial can be expressed as a sum of powers of µ as [126]

Pℓ(µ) = 1
2ℓ

⌊ℓ/2⌋∑
k=0

Cℓ,kµℓ−2k , where Cℓ,k = (−1)k(2ℓ− 2k)!
k!(ℓ− k)!(ℓ− 2k)! , (3.39)

and therefore, the Legendre moments can be expressed as

σ̃i
s,ℓ(E) = 1

2ℓ

⌊ℓ/2⌋∑
k=0

Cℓ,k

∫ 1

−1
dµ

Ri
Mott

(1− µ + 2ηi)2 µℓ−2k = 1
2ℓ

⌊ℓ/2⌋∑
k=0

Cℓ,k

2∑
r=1

Iℓ,k
r , (3.40)

where Iℓ,k
1 is given by

Iℓ,k
1 =

∫ 1

−1
dµ

µℓ−2k

(1− µ + 2ηi)2

[
αi,0 + αi,1µ + αi,2µ

2
]

=
2∑

j=0
αi,j

(
Gℓ−2k+j

1 (1 + 2ηi,−1, 1)− Gℓ−2k+j
1 (1 + 2ηi,−1,−1)

) (3.41)
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and Iℓ,k
2 is given by

Iℓ,k
2 =

∫ 1

−1
dµ

µℓ−2k
√

(1− µ)
(1− µ + 2η)2 [α3 + α4µ]

= 2
1∑

j=0
αi,j+3

ℓ−2k+j∑
g=0

(−1)g (ℓ− 2k + j)!
g!(ℓ− 2k + j − g)!G

2+2g
2 (2ηi, 1,

√
2) ,

(3.42)

with αi,0 = ai,0 + ai,2 + ai,4, αi,1 = −(ai,2 + 2ai,4), αi,2 = ai,4, αi,3 = ai,1 + ai,3 and αi,4 = −ai,3.
The first integral is obtained using the following integral from Gradshteyn et al. (Eq. 4, Sect.
2.111) [127]

Gn
1 (a, b, x) =

n−1∑
g=1

(−1)g−1 gag−1xn−g

(n− g)bg+1 + (−1)n−1 an

bn+1(a + bx) + (−1)n+1 nan−1

bn+1 ln(a + bx) ,

(3.43)
while the second integral is evaluated by applying the change of variable u =

√
1− µ, using

the binomial theorem and then formulae from Gradshteyn et al. (Sect. 2.172, Eq. 1 Sect.
2.173 and Eq. 1 Sect. 2.174)

Gn
2 (a, b, x) =


x

2aR
+ 1

2a
√

ab
arctan

(
bx√
ab

)
n = 0

− xn−1

(3− n)bR + (n− 1)a
(3− n)bG

n−2
2 (a, b, x) n even > 0

. (3.44)

This fully analytical solution can be numerically unstable, because of catastrophic cancella-
tions for high-order Legendre terms when ηi is large (> 1), which happens when the elastic
scattering is becoming more or less isotropic, notably at low energies. Since an isotropic flux
is characterized by ℓ ≥ 1 Legendre moments equal to zero, the following correction for ℓx ≥ 1
is proposed:

if
∣∣∣σi

s,ℓx
(E)

∣∣∣ >
∣∣∣σi

s,0(E)
∣∣∣ then σi

s,ℓ(E) = 0 ∀ ℓ ≥ ℓx , (3.45)

which are based on the upper bound of high-order Legendre moments, found in Annex A.

3.5.2 Total cross-sections

The elastic total cross-sections are simply given by

Σe±
t (E) = Σe±→e±

s,0 (E) . (3.46)
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3.5.3 Transport correction and elastic decomposition in soft and catastrophic
components

The elastic scattering cross-sections can be decomposed into soft and catastrophic compo-
nents [128]. Let L be the order of the cross-sections Legendre expansion and Σe±→e±

s,ℓ,g→g be the
ℓ-order Legendre moment of the elastic scattering cross-section in group g. Let Lmax ≤ L be
the last non-zero Legendre moments of the scattering in group g. The Legendre moments of
the soft are assumed to be given by

Σe±→e±,soft
s,ℓ,g→g = Σe±→e±,soft

s,0,g→g − Tgℓ(ℓ + 1) (3.47)

for ℓ ∈ {1, ..., Lmax}. This expression is obtained by establishing equality between the eigenval-
ues of the Boltzmann and the AFP operator applied to the Legendre polynomials [54]. This
method sets a relation, which depends on two undefined parameters Σe±→e±,soft

s,0,g→g and Tg, such
as moments of the Boltzmann operator are preserved by the Fokker-Planck operator. Lan-
desman and Morel proposed to equate Σe±→e±,soft

s,Lmax−1 = Σe±→e±
s,Lmax−1,g→g and Σe±→e±,soft

s,Lmax,g→g = Σe±→e±
s,Lmax,g→g

to define these parameters, which results in

Tg =
Σe±→e±

s,Lmax−1,g→g − Σe±→e±
s,Lmax,g→g

2Lmax
, (3.48)

and
Σe±→e±,soft

s,0,g→g = Σe±→e±
s,Lmax,g→g + TgLmax(Lmax + 1) . (3.49)

The soft component of the elastic cross-sections should then be withdrawn from cross-sections,
since the AFP operator, jointly with the momentum transfer given by Eq. 3.48, is used to
treat that soft scattering. The total elastic cross-sections are redefined as

Σt,g ← Σt,g − Σe±→e±
s,Lmax,g→g − TgLmax(Lmax + 1) , (3.50)

and the ℓ-order Legendre moment of the scattering cross-sections are redefined as

Σe±→e±
s,ℓ,g→g ← Σe±→e±

s,ℓ,g→g − Σe±→e±
s,Lmax,g→g − Tg [Lmax(Lmax + 1)− ℓ(ℓ + 1)] . (3.51)

The goal of this operation is to transfer the handling of forward-peaked scattering from the
Boltzmann operator, which encounters monotonicity issues with such scattering [47], to the
Fokker-Planck operator, which can be tackled by finite-difference discretization schemes (see
Chap. 4).

This method, as presented, includes the extended transport correction [50, 68, 129]. The
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transport correction is a method that reduces the amplitude of the elastic cross-sections for
the BFP solver while leaving intact the flux solution, which requires the use of Galerkin
quadrature [47], as described in Sect. 4.2.3. This amplitude reduction aims to reduce the
scattering ratio, which is very close to one in charged particle transport. Without this
correction, the source iteration process would require an astounding number of iterations,
thus a long time, to converge [17].

3.6 Bremsstrahlung

Figure 3.3 Bremsstrahlung production (in black) by incoming electrons (in blue) or positrons
(in orange).

The bremsstrahlung interaction occurs when an incoming electron or positron interacts with
the field of the atomic nucleus and its electrons. This interaction, vital at high energies,
slows the incoming particle by producing a bremsstrahlung photon. CEPXS uses a weighted
sum of bremsstrahlung formulas from Koch and Motz [130], as prescribed by Berger and
Seltzer [131], with Sommerfield angular distribution of photons, to describe catastrophic
events [16]. Soft events are characterized based on Berger’s radiative stopping powers [37,94].
The PENELOPE code uses tables from Seltzer and Berger [132] for both differential cross-
sections and stopping powers, which are still considered the most accurate and comprehensive
energy-dependent bremsstrahlung data available [102], with a modified dipole distribution
of emitted photons distribution [133,134]. This code also uses a formula to convert electron
cross-sections or stopping powers to positron ones [106]. The bremsstrahlung model pre-
sented in this work is almost identical to the one of PENELOPE but has a different angular
photon distribution. The presented model is an improvement over CEPXS since it uses the
more recent data from Seltzer and Berger, uses open-source models, improves the angular
distribution of photons, and generates explicit positron data.

The bremsstrahlung cross-section describes the interaction of an incoming electron (p′ = e-)
or positron (p′ = e+) with the field of the atomic nucleus and its electrons. The incoming
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particle scatter (p = e- or p = e+), while photon are produced (p = γ). Seltzer and Berger
proposed tables to compute the differential cross-section as a function of the energy of the
produced photon, which includes both electron-nucleus and electron-electron interactions,
and for monoelemental material i, it is given by [132]

σi
s(E → Eγ) =


F ±

p,iZ
2
i σ̃s(Zi, E, Eγ)

Eγβ2 Eγ ≤ E

0 otherwise
, (3.52)

where E is incoming electron or positron energy, Eγ is the produced photon energy and
σ̃s(Zi, E, Eγ) is the total scaled bremsstrahlung energy-weighted cross-section, given in cm2,
from interpolation of the Seltzer and Berger tables [132]. These cross-sections are defined for
Zi ≤ 100 and energies between 1 keV and 10 GeV. The factor F ±

p,i is given by [106]

F +
p,i = 1− exp

{
−1.2359× 10−1ti + 6.1274× 10−2t2

i − 3.1516× 10−2t3
i + 7.7446× 10−3t4

i

−1.0595× 10−3t5
i + 7.0568× 10−5t6

i − 1.8080× 10−6t7
i

}
,

(3.53)

with
ti = ln

(
1 + 106E

Z2
i

)
(3.54)

for incoming positrons, which is based on the tabulated positron-to-electron ratios from Kim
et al. [135], and F −

p,i = 1 for incoming electrons. The double differential cross-sections are
given by [16]

σi
s(E → Ee, µ) = 1

2π
σi

s(E → Ee)δ(µ− 1) and σi
s(E → Eγ, µ) = 1

2π
σi

s(E → Eγ)Θ(E, µ) ,

(3.55)
where it is assumed, as in CEPXS [16], that the incoming electron does not deflect from
its trajectory after interaction (µe = 1). The bremsstrahlung photon angular distribution,
greatly inspired by the modified dipole distribution from Acosta et al. [133,136], is given by

Θ(E, Eγ, µ) = 3(1− C2)
4(2A + B)(1− µC)2

(A + B) + (A−B)
(

µ− C

1− µC

)2
 , (3.56)

where the parameters A = A(E, Eγ), B = B(E, Eγ) and C = C(E, Eγ), which have values
strictly between 0 and 1, are adjusted by least-square method to fit the shape function from
Poškus [137] for E ≤ 3 MeV, and are set to give the dipole distribution (A = 1, B = 0 and
C = β) for energy E > 3 MeV. This approach is similar to the one used in the PENELOPE
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code, where a 500 keV threshold is applied rather than 3 MeV [136], and where the shape
functions are extracted from Kissel et al. [134] rather than the more recent and comprehensive
work from Poškus.

3.6.1 Scattering cross-sections for deflected electron or positron

The bremsstrahlung Legendre moments of the differential scattering cross-sections for the
incoming lepton are given by

σi
s,ℓ(E → Ee) = 2π

∫ 1

−1
dµ Pℓ(µ)σi

s(E → Ee, µ) = σi
s(E → Ee) . (3.57)

The multigroup Legendre moments of the scattering cross-sections are therefore given by

Σe±→e±
s,ℓ,g′ (E) =

Ne∑
i=1
Nn,ifi

∫ min
{

E′
g−1/2,Ec(E)

}
E′

g+1/2

dEeσ
i
s,ℓ(E → Ee)Hb . (3.58)

This equation is evaluated using numerical quadrature.

3.6.2 Scattering cross-sections for produced photon

The Legendre moments of the differential scattering cross-sections for the produced bremsstrahlung
photon are given by

σi
s,ℓ(E → Eγ) = 2π

∫ 1

−1
dµ Pℓ(µ)σi

s(E → Eγ, µ) = σi
s(E → Eγ)Θℓ(E) , (3.59)

where the moment of the angular distribution,

Θℓ(E) =
∫ 1

−1
dµ Pℓ(µ)Θ(E, µ) , (3.60)

are calculated analytically based on the same reasoning than in the Sect. 3.5.1, with Legendre
expansion in power of µ. The multigroup Legendre moments of the scattering cross-sections
are therefore given by

Σe±→γ
s,ℓ,g′ (E) =

Ne∑
i=1
Nn,ifi

∫ min
{

E′
g−1/2,E

}
E′

g+1/2

dEγσi
s,ℓ(E → Eγ)Hb . (3.61)

This equation is evaluated using numerical quadrature.
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3.6.3 Catastrophic total cross-sections

The catastrophic bremsstrahlung total cross-sections are defined by

Σe±
t (E) =

Ne∑
i=1
Nn,ifi

∫ Ec(E)

0
dEeσ

i
s,0(E → Ee) (3.62)

and are evaluated using numerical quadrature.

3.6.4 Absorption cross-sections for incoming positrons

The bremsstrahlung catastrophic absorption cross-sections, for annihilation calculations, are
given by

Σbrem
a (E) =

Ne∑
i=1
Nn,ifi

∫ EG+1/2

0
dEeσ

i
s,0(E → Ee) (3.63)

and are evaluated using numerical quadrature.

3.6.5 Total stopping power

The radiative stopping powers of electron are given by

St(E) = αr2
e(E + 1)

Ne∑
i=1
Nn,ifiF

±
p,iZ

2
i ϕrad(Zi, E) , (3.64)

where ϕrad(Zi, E) are also given by the tables of Selzer and Berger [132].

3.6.6 Soft stopping powers

The soft radiative stopping powers, Se±(E), are given by removing catastrophic bremsstrahlung
stopping powers from total stopping powers. They are given by

Se±(E) = St(E)−
Ne∑
i=1
Nn,ifi

∫ Ec(E)

0
dEe(E − Ee)σi

s,0(E → Ee) , (3.65)

where the integral is evaluated with numerical quadrature.

3.7 Annihilation

The annihilation interaction consists of an incoming positron that annihilates with an atomic
electron to produce two photons, as shown in Fig. 3.4. The combined photon’s energy
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Figure 3.4 Annihilation of positrons (in orange) and production of two photons (in black).

is equivalent to the sum of kinetic and mass energies of the annihilated atomic electron
and incoming positron. As the kinetic energy of an incoming positron approaches zero,
this interaction becomes inevitable. In CEPXS, there is no explicit positron interaction.
It is, however, considered by annihilation photon production at the moment positrons are
produced by pair production, which is equivalent to annihilating the positron on the spot.
This technique neglects the other mechanisms in which the energy can be dissipated through
the medium. The model of Nelson et al. [138], used in both PENELOPE and EGSnrc, is
employed in this thesis. The presented annihilation model is an improvement over CEPXS
since it is explicitly defined as a positron cross-section.

The following cross-sections describe the annihilation of an incoming positron (p′ = e+) with
an atomic electron producing two photons (p = γ), assuming that the electrons are free and
at rest. The differential cross-sections in the energy of the lowest energy photon [105,139]

σs(E → Eγ−) = πr2
e

(γ + 1)2(γ2 − 1)

[
S(ζ) + S(1− ζ)

]
(3.66)

with
S(ζ) = −(γ + 1)2 + (γ2 + 4γ + 1)1

ζ
− 1

ζ2 , (3.67)

where E is the incoming positron energy, Eγ− is the lowest photon energy, Eγ+ = E +2−Eγ−

is the highest photon energy and ζ = Eγ−/(E + 2) is the ratio of the lowest energy photon
to the total (kinetic + mass) energy. The value of the lowest photon energy is bounded by

Emax = γ + 1
2 and Emin = γ + 1

γ + 1 +
√

γ2 − 1
. (3.68)
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The scattering angles of the lowest and highest energy photons are respectively

µ− = 1√
γ2 − 1

[
γ + 1− 1

ζ

]
and µ+ = 1√

γ2 − 1

[
γ + 1− 1

1− ζ

]
, (3.69)

and the double differential cross-sections for the lowest and highest energy photons are given
by

σs(E → Eγ− , µ) = 1
2π

σs(E → Eγ−)δ(µ− µ−) (3.70)

and
σs(E → Eγ+ , µ) = 1

2π
σs(E → Eγ+)δ(µ− µ+) . (3.71)

3.7.1 Scattering cross-sections for the lowest energy photons

The annihilation Legendre moments of the differential scattering cross-sections for the lowest
energy photons are given by

σs,ℓ(E → Eγ−) = 2π
∫ 1

−1
dµ Pℓ(µ)σs(E → Eγ− , µ) = Pℓ(µ−)σs(E → Eγ−) . (3.72)

The multigroup Legendre moments of the scattering cross-sections are therefore given by

Σe+→γ
s,ℓ,g′ (E) =

Ne∑
i=1
Nn,ifiZi

∫ min
{

Eγ
g−1/2,Emax

}
max

{
Eγ

g+1/2,Emin
} dEγ−σs,ℓ(E → Eγ−)Hb . (3.73)

This equation is evaluated using numerical quadrature.

3.7.2 Scattering cross-sections for the highest energy photons

The annihilation Legendre moments of the differential scattering cross-sections for the highest
energy photons are given by

σs,ℓ(E → Eγ+) = 2π
∫ 1

−1
dµ Pℓ(µ)σs(E → Eγ+ , µ) = Pℓ(µ+)σs(E → Eγ+) . (3.74)

The multigroup Legendre moments of the scattering cross-sections are therefore given by

Σe+→γ
s,ℓ,g′ (E) =

Ne∑
i=1
Nn,ifiZi

∫ min
{

Eγ
g−1/2,(γ+1)−Emin

}
max

{
Eγ

g+1/2,Emax
} dEγ+σs,ℓ(E → Eγ+)Hb . (3.75)

This equation is integrated using numerical quadrature.
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3.7.3 Total cross-sections

The annihilation total cross-sections are defined by

Σe+
t (E) =

Ne∑
i=1
Nn,ifiZi

∫ Emax

Emin
dEγ−σs,0(E → Eγ−) (3.76)

and are evaluated analytically.

3.7.4 Annihilation when positrons scatter under the cutoff energy

Positrons (p′ = e+) will inevitably annihilate with atomic electrons and produce two photons
(p = γ). Therefore, all positrons scattered under the cutoff energy EG+1/2 should annihilate.
The positron energy under the cutoff is small enough that the annihilation photon can be
assumed to have isotropic scattering, as done in GEANT4 [140]. It is then assumed that two
511 keV photons are produced. The positrons are scattered under the cutoff following either
an inelastic interaction or a bremsstrahlung interaction, and positrons can also be produced
under the cutoff following pair production interaction. The ℓ = 0 Legendre moments of the
scattering cross-sections are given by

Σe+→γ
s,0,g′→g = 2

[
Σinel

a,g′ + Σbrem
a,g′

]
×

1 1 ∈ [E ′
g+1/2, E ′

g−1/2]

0 otherwise
(3.77)

and

Σγ→γ
s,0,g′→g = 2Σpp

a,g′ ×

1 1 ∈ [E ′
g+1/2, E ′

g−1/2]

0 otherwise
, (3.78)

where the absorption cross-sections are given by integration of Eqs. 3.19, 3.63 and 3.111 over
group g′ and where the ℓ ≥ 1 moments are equal to zero since scattering is isotropic. While
these scattering cross-sections account for catastrophic impact ionization interactions, they
do not include positrons reaching the cutoff energy by soft impact ionization interactions.
In order to accurately estimate the production of annihilation photons following all impact
ionization interactions, the lower bounds of integrals over energy loss W (Eq. 3.19) should be
E−EG+1/2 rather than E−min

{
EG+1/2, Ec

}
, because the latter excluding soft interactions.

However, the Bhabha-based impact ionization model is inaccurate for small energy losses,
i.e. for soft interaction, and it can lead to substantial error in the solution when used to de-
scribe such interactions. Since these soft events require an improved impact ionization model
for positron, which would required enormous effort, the annihilation photons produced by
absorption of positrons at the cutoff energy are neglected. This will result in an underesti-
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mation of the production of annihilation photon, which have an impact on the accuracy of
transport calculations.

3.8 Rayleigh Scattering

Figure 3.5 Coherent scattering of photons (in black).

Rayleigh scattering, also often called coherent scattering, consists of the elastic change of
direction of an incoming photon by atomic electrons, as shown in Fig. 3.5. This interaction
is not considered in CEPXS because it is assumed to be negligible compared to the other
photon interactions [16]. The Rayleigh scattering model from PENELOPE [43], which is
based on atomic form factors [141] and anomalous scattering factors [142], is used in this
thesis. The presented Rayleigh scattering model is an improvement over CEPXS since it is
omitted in CEPXS.

The Rayleigh cross-sections, which described the elastic scattering of photons (p = p′ = γ)
are given by [141–143]

σi
s(E, µ) = πr2

e

(
1 + µ2

) [(
Fi(E, µ) + f ′

i(E)
)2

+
(

f ′′
i (E)

)2]
, (3.79)

where Fi(E, µ) is the atomic form factor for the ith-element, where the factors f ′
i(E) and

f ′′
i (E) respectively are the real and imaginary parts of the anomalous scattering factors

for the ith-element, which are all tabulated by the Japanese evaluated nuclear data library
(JENDL-5) [144], which are based on the EPDL library [145]. The double differential cross-
sections are given by

σi
s(E → E ′, µ) = σi

s(E, µ)δ(E ′ − E) . (3.80)



47

3.8.1 Scattering cross-sections of the incoming photon

The Rayleigh Legendre moments of the differential scattering cross-sections of the incoming
photon are simply given by

Σγ→γ
s,ℓ (E) =

Ne∑
i=1
Nn,ifi

∫ 1

−1
Pℓ(µ)σi

s(E, µ) , (3.81)

which are integrated using numerical quadrature.

3.8.2 Total cross-sections

The Rayleigh total cross-sections are given by

Σγ
s,ℓ(E) = Σγ→γ

s,0 (E) . (3.82)

3.9 Compton Scattering

Figure 3.6 Compton scattering by an incoming photon (in black) and production of electron
(in blue).

The Compton scattering, often called incoherent scattering, consists of the ionization of
an atomic electron by an incoming photon, which loses energy in the process, as shown in
Fig. 3.6. This interaction is dominant for intermediate energies ranging from the hundreds
of keV to a few MeV. In CEPXS, the Klein-Nishina model, which assumes interaction with
an unbounded electron at rest, is used to describe this interaction [16]. This model neglects
the binding effects and Doppler broadening because electrons are not at rest. Penelope and
EGSnrc models are based on the subshell-dependent relativistic impulse approximation from
Brusa et al. [146]. While using this model is desirable for multigroup deterministic transport,
it is challenging to implement to have fast and accurate results. The production of Legendre
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moments of these cross-sections is an outstanding challenge since two very challenging inte-
grations, in angle and energy of the scattered photon, must be performed, one following the
other, in an accurate and fast enough way. Therefore, until such multigroup cross-sections
can be developed, the proposed model uses the Waller-Hartree incoherent function, which
is applied to the Klein-Nishina cross-section, in order to encompass most electron binding
effects [146]. The presented Compton scattering model is an improvement over CEPXS since
it includes the Waller-Hartree incoherent function, which includes bindings effects.

The Compton cross-section describes the interaction of an incoming photon (p′ = γ) with
atomic electrons, resulting in a scattered photon (p = γ) and a produced electron (p = e+).
The Klein-Nishina differential cross-section in the energy of the scattered photon for a single
interaction with an assumed free atomic electron is given by [16,139]

σs(E → E ′) = πr2
e

E2

[
E

E ′ + E ′

E
− 2

( 1
E ′ −

1
E

)
+
( 1

E ′ −
1
E

)2]
, (3.83)

where E is the incoming photon energy, E ′ is the scattered photon energy and W = E −E ′

is the produced electron energy. The scattering angles for the scattered photon and the
produced electron are respectively

µγ = 1 + 1
E
− 1

E ′ and µe = 1 + E

E

[
1 + 2

W

]− 1
2

. (3.84)

The double differential cross-sections for the scattered photon and the produced electron,
with an incoherent scattering factor Si(E, µ) extracted from JENDL-5 library [144] taking
into account some binding effects [146], are given by

σi
s(E → E ′, µ) = 1

2π
Si(E, µ)σs(E → E ′)δ(µ− µγ) (3.85)

and
σi

s(E → W, µ) = 1
2π

Si(E, µ)σs(E → W )δ(µ− µe) . (3.86)

3.9.1 Scattering cross-sections of the incoming photon

The Compton Legendre moments of the differential scattering cross-sections of the incoming
photon are given by

σi
s,ℓ(E → E ′) = 2π

∫ 1

−1
dµ Pℓ(µ)σi

s(E → E ′, µ) = Pℓ(µγ)Si(E, µγ)σs(E → E ′) . (3.87)
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The multigroup Legendre moments of the scattering cross-sections are therefore given by

Σγ→γ
s,ℓ,g′(E) =

Ne∑
i=1
Nn,ifi

∫ min
{

E′
g−1/2,E

}
max

{
E′

g+1/2, E
1+2E

} dE ′σi
s,ℓ(E → E ′) , (3.88)

which are integrated by numerical quadrature.

3.9.2 Scattering cross-sections of the produced electron

The Compton Legendre moments of the differential scattering cross-sections of the produced
electron are given by

σi
s,ℓ(E → W ) = 2π

∫ 1

−1
dµ Pℓ(µ)σi

s(E → W, µ) = Pℓ(µe)Si(E, µe)σs(E → W ) . (3.89)

The multigroup Legendre moments of the scattering cross-sections are therefore given by

Σγ→e-
s,ℓ,g′ (E) =

Ne∑
i=1
Nn,ifi

∫ min
{

E′
g−1/2, 2E2

1+2E

}
E′

g+1/2

dWσi
ℓ(E → W ) , (3.90)

which are integrated by numerical quadrature.

3.9.3 Total cross-sections

The Compton total cross-sections are defined by

Σγ
t (E) =

Ne∑
i=1
Nn,ifi

∫ E

E
1+2E

dE ′Si(E, µγ)σs,0(E → E ′) , (3.91)

which are integrated by numerical quadrature.

3.10 Photoelectric Effect

The photoelectric effect consists of the emission of electrons by absorption of photons, as
shown in Fig. 3.7. In CEPXS, the total macroscopic cross-sections are computed using
energy interpolation of data from Biggs and Lighthill tables [147]. Subshell-dependant cross-
sections, for the K, L1, L2, L3, M (averaged) and N (effective) subshells, are extracted
using by approximating the photoeffect efficiencies from the cross-sections themselves [16].
The angular distribution of photoelectron is given by the Fischer distribution for low-energy
electrons and the Sauter distribution for high-energy electrons. Relaxation cascades are
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taken into account for these interactions. Penelope uses tables from the subshell-dependent
Evauated Photon Data Library (EPDL) [148], while the Sauter distribution is used regardless
of the electron energy. This is the model used in this thesis. The presented photoelectric
model is an improvement over CEPXS since it includes subshell-dependent microscopic cross-
sections, from a more recent evaluated data library. The Fischer distribution, not used for
the angular distribution model, could be of interest for low-energy electrons.

Figure 3.7 Photoelectric effect by an incoming photon (in black) and production of electron
(in blue).

The photoelectric cross-section describes the absorption of an incoming photon (p′ = γ) and
the emission of an atomic electron (p = e-). The microscopic absorption cross-sections are
given by

σi
a(E) =

Nshells∑
k=1

σi,k
a (E) , (3.92)

where σi,k
a (E) is given by linear interpolation of the data given by the absorption cross-

sections per subshells from the JENDL-5 library [144], which are available for Zi ≤ 100 and
for energies up to 100 GeV.

3.10.1 Scattering cross-sections of the produced electron

The photoelectric scattering cross-sections are given by

σi,k
s (E → E ′, µ) = σi,k

a (E)δ(E ′ − E + Ui,k)Θ(E, µ) , (3.93)

where E ′ is the energy of the photo-electron, Ui,k is the binding energy of the kth shell and
the Sauter cross-section for the K-shell, normalized over the angular domain, is given by [149]

Θ(E, µ) = Γ(E) 1− µ2

(1− βµ)4

[
1 + γ(γ − 1)(γ − 2)

2 (1− βµ)
]

, (3.94)
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where the normalization factor is

Γ(E) =
{

4
3(1− β2)2 + γ(γ − 1)(γ − 2)

2β3

[
2β

1− β2 − ln
(

1 + β

1− β

)]}−1

. (3.95)

The Legendre moments of the normalized Sauter cross-section are given by

Θℓ(E) =
∫ 1

−1
dµPℓ(µ)Θ(E, µ) , (3.96)

which are integrated analytically based on the same reasoning presented in the Sect. 3.5.1,
with Legendre expansion in power of µ. The scattering cross-sections are given by

Σγ→e-
s,ℓ,g′ (E) =

Ne∑
i=1
Nn,ifi

∫ E′
g−1/2

E′
g+1/2

dE ′
Nshells∑

k=1
σi,k

s,ℓ(E → E ′) , (3.97)

which can be rewritten as

Σγ→e-
s,ℓ,g′ (E) =

Ne∑
i=1
Nn,ifi

Nshells∑
k=1

σi,k
a (E)Θℓ(E)×

1 E − Ui,k ∈ [E ′
g+1/2, E ′

g−1/2]

0 otherwise
. (3.98)

3.10.2 Total cross-sections

The photoelectric total cross-sections are simply

Σγ
t (E) =

Ne∑
i=1
Nn,ifiσ

i
a(E) . (3.99)

3.11 Pair Production

Figure 3.8 Pair production by an incoming photon (in black) and production of an electron
(in blue) and a positron (in orange).
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An electron-positron pair is produced from the incoming photon energy in the neighbours of
the atom, as shown in Fig. 3.8. The threshold for pair production is approximately 1.022 MeV,
the required energy to constitute at least the electron and positron mass energy, the extra
energy going into their kinetic energies. This phenomenon is the dominant photon process
at high energy, about 10 MeV and more. In CEPXS, the macroscopic photon absorption
cross-sections related to pair production are given by interpolations and data from Biggs and
Lighthill [16,150], while it uses the Sommerfield angular distribution for the pair production.
Penelope uses the model of Baró et al. [151], based on the screening function of Tsai [152].
The proposed model is similar to the one of PENELOPE, but it uses tabulated data of the
EPDL [148] to match the total cross-sections. It is an improvement over CEPXS since it
proposes microscopic cross-sections based on more recent models and data.

The pair production cross-section describes the absorption of a photon (p′ = γ) and the
production of an electron (p = e-) and a positron (p = e+). A variation of the semi-
empirical model of Baró [151] is used and, in a monoelemental material i, the differential
cross-section is given by

σi
s(E → E ′) =


A(Zi, E)

2
(

1
2 −

E ′ + 1
E

)2

ϕi,1(E ′) + ϕi,2(E ′)
 E > 2

0 otherwise
, (3.100)

where E is the incoming photon energy and E ′ is the outgoing electron or positron energy.
The screening function, derived from the one of Tsai [152], are given by

ϕi,1(E ′) = max {gi,1(E ′) + gi,0, 0} and ϕi,2(E ′) = max {gi,2(E ′) + gi,0, 0} , (3.101)

where

gi,1(E ′) = 7
3 − 2 ln(1 + b2

i )− 6bi arctan
( 1

bi

)
− b2

i

[
4− 4bi arctan

( 1
bi

)
− 3 ln

(
1 + 1

b2
i

)]
,

gi,2(E ′) = 11
6 − 2 ln(1 + b2

i )− 3bi arctan
( 1

bi

)
− b2

i

2

[
4− 4bi arctan

( 1
bi

)
− 3 ln

(
1 + 1

b2
i

)]
,

(3.102)

gi,0 = 4 ln(rs,i)− 4fC,i , (3.103)

with
bi = rs,i

2
E

(E ′ + 1)(E − E ′ − 1) . (3.104)

The variable rs,i corresponds to the reduced screening radius, tabulated in Baró [151] for
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Zi ≤ 92 and extended up to Zi ≤ 99 in PENELOPE [43]. The high-energy Coulomb
correction fC,i is given by [153]

fC,i = α2Z2
i

∞∑
k=1

1
k(k2 + α2Z2

i ) . (3.105)

As it is done in EGSnrc [44], a normalization factor A(Zi, E) is added to the pair production
cross-section, which is defined as the ratio between the total cross-sections obtained with
A(Zi, E) = 1 and the tabulated values from JENDL-5 for the pair production in both the
nuclear and electron field [144]

A(Zi, E) = σJENDL-5
t (Zi, E)
σt(Zi, E)|A=1

. (3.106)

Since pair production and bremsstrahlung are closely related through a substitution rule, the
same angular distribution can be used for the electron and positron emission [16, 152]. The
double differential cross-section is given by

σi
s(E → E ′, µ) = 1

2π
σi

s(E → E ′)Θ(E, µ) . (3.107)

This distribution Θ(E, µ) is defined by Eq. 3.56.

3.11.1 Scattering cross-sections for the produced electron and positron

The pair production Legendre moments of the differential scattering cross-sections for the
produced leptons are given by

σi
s,ℓ(E → E ′) = 2π

∫ 1

−1
dµ Pℓ(µ)σi

s(E → E ′, µ) = σi
s(E → E ′)Θℓ(E) , (3.108)

where the values of Θℓ(E) are given by Eq. 3.60. The multigroup Legendre moments of the
scattering cross-sections are therefore given by

Σγ→e±
s,ℓ,g′ (E) =

Ne∑
i=1
Nn,ifi

∫ min
{

E′
g−1/2,E−2

}
E′

g+1/2

dEeσ
i
s,ℓ(E → E ′)Hb , (3.109)

which are integrated by numerical quadrature.
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3.11.2 Total cross-sections

The pair production total cross-sections are defined by

Σγ
t (E) =

Ne∑
i=1
Nn,ifi

∫ E−2

0
dE ′σi

s,0(E → E ′)Hb (3.110)

and are integrated using numerical quadrature.

3.11.3 Absorption cross-sections

The pair production absorption cross-sections, which are required for annihilation calcula-
tions, are given by

Σpp
a (E) =

Ne∑
i=1
Nn,ifi

∫ min{E−2,EG+1/2}
0

dE ′σi
s,0(E → E ′)Hb (3.111)

and are integrated using numerical quadrature.

3.12 Atomic Relaxation

Figure 3.9 A step of the relaxation cascades recursive process, with production of fluorescence
(in black) or Auger electron (in blue).

The ionization of an atomic electron in shell k by an incoming particle leaves behind a vacancy
in the atom’s electronic structure i. The inner-shell vacancy in an atom is filled by an outer-
shell electron, leading to the emission of a fluorescence photon or the ejection of an Auger
electron. This process leaves additional vacancies in outer shells, triggering the production
of more photons or electrons, resulting in a recursive process. A step of the recursive process
is shown in Fig. 3.9. These intricate relaxation processes are often referred to as relaxation
cascades, for which a simplified visual diagram can be found in Lorence et al. [16] and Naceur
et al. [37]. Because such calculation can be rather intensive for high-Z atoms, only particle
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productions with a probability of occurrence following an initial ionization event greater than
0.1 % are included in this work. Finally, only the Nt specific electron cascade transitions
which result in electron or photon with energy greater than the cutoff energy EG+1/2 are kept
for the following calculations.

The differential cross-sections corresponding to the production of either fluorescence (p′ = γ)
or Auger electron (p′ = e-) following a specific electron cascade transition j, where 1 ≤ j ≤
Nt, with the produced particle energy, ∆Ei,k,j, and the probability of occurrence of the j

electron cascade, ηp′

i,k,j, is given by

σi,k,j,p→p′

s (E → E ′) = ηp′

i,k,jδ(E ′ −∆Ep′

i,k,j)σ
i,k,p
t (E) , (3.112)

where σi,k,p
t (E) is the k-shell cross-sections of either inelastic electron (p = e-), inelastic

positron (p = e+) or photoelectric interaction (p = γ) given in previous sections. The values
of ∆Ep′

i,k,j and ηp′

i,k,j are computed using the relaxation data from the JENDL-5 library [144],
based on the EADL library [93], as proposed by Hébert and Naceur [38]. The data is available
for Z ∈ {6, 100} for subshells K, L1 to L3, M1 to M5, N1 to N7, O1 to O7, P1 to P3 and
Q1. For Z ≤ 5, the produced relaxation radiation energy is very low and can be ignored in
transport calculations. The production of fluorescence photon and Auger electron is assumed
to be isotropic. Contrary to CEPXS, the relaxation is correlated with the inelastic model [16].

3.12.1 Scattering cross-sections of produced Auger electron or fluorescence pho-
ton

The relaxation ℓ = 0 Legendre moments of the differential scattering cross-sections of the
produced Auger electron or fluorescence photon are given by

σi,p→p′

s,0,g′ (E) =
Nshells∑

k=1
σi,k,p

t (E)
Nt∑
j=1

ηp′

i,k,j

∫ E′
g−1/2

E′
g+1/2

dE ′δ(E ′ −∆Ep′

i,k,j) , (3.113)

where the ℓ ≥ 1 moments are equal to zero since scattering is isotropic. The resulting
cross-section is given by

Σp→p′

s,0,g′(E) =
Ne∑
i=1
Nn,ifi

Nshells∑
k=1

σi,k,p
t (E)

Nt∑
j=1

ηp′

i,k,j ×

1 ∆Ep′

i,k,j ∈ [E ′
g+1/2, E ′

g−1/2]

0 otherwise
. (3.114)
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3.13 Consolidated Atomic Data

The total cross-sections, the Legendre moments of the scattering cross-sections, the stopping
powers and the momentum transfers for each interaction, presented in Sect. 3.4 to Sect. 3.12,
are combined.

The consolidated Legendre moments of the scattering cross-sections are given for every
particle-to-particle transition:

• Electron-to-electron: They are given by the sum of 5 contributions: 1) the scattered
electron following impact ionization, 2) the ionized atomic electron (knock-on electron)
following impact ionization, 3) the scattered electron following elastic scattering, 4) the
slowed-down electron following bremsstrahlung emission and 5) the produced Auger
electron following impact ionization, such as

Σe-→e-
s,ℓ,g′ (E) =

(
Eq. 3.15

)
︸ ︷︷ ︸

collisional
scattering

+
(

Eq. 3.17
)

︸ ︷︷ ︸
knock-on

production

1 +
(

Eq. 3.37
)

︸ ︷︷ ︸
elastic

scattering

+
(

Eq. 3.58
)

︸ ︷︷ ︸
radiative
scattering

+
(

Eq. 3.114
)

︸ ︷︷ ︸
auger electron

production

.

(3.115)

• Electron-to-photon: They are given by the sum of 2 contributions: 1) the produced
bremsstrahlung photon and 2) the produced fluorescence following impact ionization,
such as

Σe-→γ
s,ℓ,g′ (E) =

(
Eq. 3.61

)
︸ ︷︷ ︸
bremsstrahlung

production

+
(

Eq. 3.114
)

︸ ︷︷ ︸
fluorescence
production

. (3.116)

• Electron-to-positron: There is no electron interaction that produces positron and,
then,

Σe-→e+
s,ℓ,g′ (E) = 0 . (3.117)

• Photon-to-electron: They are given by the sum of 4 contributions: 1) the ionized
atomic electron following Compton interaction, 2) the produced photo-electron, 3) the
generated electron following pair production interaction and 4) the produced Auger

1Note that the elastic scattering is transport corrected and its soft component is extracted, as defined by
Sect. 3.5.3.
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electrons following photoelectric interaction, such as

Σγ→e-
s,ℓ,g′ (E) =

(
Eq. 3.90

)
︸ ︷︷ ︸

compton
production

+
(

Eq. 3.98
)

︸ ︷︷ ︸
photoelectric
production

+
(

Eq. 3.109
)

︸ ︷︷ ︸
pair

production

+
(

Eq. 3.114
)

︸ ︷︷ ︸
auger electron

production

. (3.118)

• Photon-to-photon: They are given by the sum of 4 contributions: 1) the photons
from the annihilation of positrons generated under the cutoff by pair production in-
teraction, 2) the scattered photon following elastic scattering, 3) the scattered photon
following Compton interaction and 4) the produced fluorescence following photoelectric
interaction, such as

Σγ→γ
s,ℓ,g′(E) =

(
Eq. 3.78

)
︸ ︷︷ ︸

annihilation
production

+
(

Eq. 3.81
)

︸ ︷︷ ︸
Rayleigh
scattering

+
(

Eq. 3.88
)

︸ ︷︷ ︸
Compton
scattering

+
(

Eq. 3.114
)

︸ ︷︷ ︸
fluorescence
production

. (3.119)

• Photon-to-positrons: They have only one contribution: 1) the produced positron
following pair production, such as

Σγ→e+
s,ℓ,g′ (E) =

(
Eq. 3.109

)
︸ ︷︷ ︸

pair
production

. (3.120)

• Positron-to-electron: They are given by the sum of 2 contributions: 1) the produced
knock-on electron following impact ionization and 2) the produced Auger electron fol-
lowing impact ionization, such as

Σe+→e-
s,ℓ,g′ (E) =

(
Eq. 3.17

)
︸ ︷︷ ︸

knock-on
production

+
(

Eq. 3.114
)

︸ ︷︷ ︸
auger electron

production

. (3.121)

• Positron-to-photon: They are given by the sum of 5 contributions: 1) the pro-
duced bremsstrahlung photon, 2) the highest-energy photon produced by annihilation
of positrons, 3) the lowest-energy photon produced by annihilation of positrons, 4)
the photons produced by annihilation of positrons scattering under the energy cutoff
following either impact ionization or bremsstrahlung interaction and 5) the produced
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fluorescence following impact ionization, such as

Σe+→γ
s,ℓ,g′ (E) =

(
Eq. 3.61

)
︸ ︷︷ ︸
bremsstrahlung

production

+
(

Eq. 3.73
)

+
(

Eq. 3.75
)

+
(

Eq. 3.77
)

︸ ︷︷ ︸
annihilation
interaction

+
(

Eq. 3.114
)

︸ ︷︷ ︸
fluorescence
production

.

(3.122)

• Positron-to-positrons: They are given by the sum of 3 contributions: 1) the scat-
tered positrons following impact ionization, 2) the scattered positron following elastic
scattering and 3) the slowed-down positron following bremsstrahlung production, such
as

Σe+→e+
s,ℓ,g′ (E) =

(
Eq. 3.15

)
︸ ︷︷ ︸

collisional
scattering

+
(

Eq. 3.37
)

︸ ︷︷ ︸
elastic

scattering

1 +
(

Eq. 3.58
)

︸ ︷︷ ︸
radiative
scattering

. (3.123)

The electron consolidated total cross-sections are given by the sum of 3 contributions: 1) the
impact ionization, 2) the elastic scattering and 3) the bremsstrahlung interaction, such as

Σe-
t (E) =

(
Eq. 3.18

)
︸ ︷︷ ︸

impact
ionization

+
(

Eq. 3.46
)

︸ ︷︷ ︸
elastic

scattering

1 +
(

Eq. 3.62
)

︸ ︷︷ ︸
bremsstrahlung

scattering

, (3.124)

the photon consolidated total cross-sections are given by the sum of 4 contributions: 1) the
Rayleigh scattering, 2) the Compton scattering, 3) the photoelectric effect and 4) the pair
production interaction, such as

Σγ
t (E) =

(
Eq. 3.82

)
︸ ︷︷ ︸

impact
ionization

+
(

Eq. 3.91
)

︸ ︷︷ ︸
Compton
scattering

+
(

Eq. 3.99
)

︸ ︷︷ ︸
photoelectric
interaction

+
(

Eq. 3.110
)

︸ ︷︷ ︸
pair

production

, (3.125)

and the positron consolidated total cross-sections are given by the sum of 4 contributions:
1) the impact ionization, 2) the elastic scattering and 3) the bremsstrahlung interaction and
4) the annihilation interaction, such as

Σe+
t (E) =

(
Eq. 3.18

)
︸ ︷︷ ︸

impact
ionization

+
(

Eq. 3.46
)

︸ ︷︷ ︸
elastic

scattering

1 +
(

Eq. 3.62
)

︸ ︷︷ ︸
bremsstrahlung

scattering

+
(

Eq. 3.76
)

︸ ︷︷ ︸
annihilation
interaction

. (3.126)

The electron and positron consolidated stopping powers are given by the sum of 2 contribu-
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tions: 1) the impact ionization and 2) the bremsstrahlung interaction, such as

Se±(E) =
(

Eq. 3.30
)

︸ ︷︷ ︸
impact

ionization

+
(

Eq. 3.65
)

︸ ︷︷ ︸
bremsstrahlung

scattering

, (3.127)

and there is no photon stopping powers and, then,

Sγ(E) = 0 . (3.128)

The only momentum transfer contribution, for electron and positron, comes from the soft
components of the elastic cross-sections such as

T e±(E) =
(

Eq. 3.48
)

︸ ︷︷ ︸
soft elastic
component

, (3.129)

while there is none for photon and, then,

T γ(E) = 0 . (3.130)

3.14 Results and Discussion

3.14.1 An open-source alternative to CEPXS

The construction of these multigroup cross-sections has led to the development of RADI-
ANT [154], an open-source alternative to CEPXS. The RADIANT package contains coupled
photon-electron-positron multigroup cross-sections and discrete ordinates capabilities. It is
written in 100% pure Julia, an open-source programming language providing Python-like
readability and flexibility, combined with execution times comparable to those of C++ and
FORTRAN [155]. Such a choice is unconventional since deterministic and Monte Carlo
codes are generally written in C++ or FORTRAN, but it was made for research purposes.
By proposing an open-source, easily readable and writable code, the aim is to accelerate
the implementation and the testing of new models to close the gap between Monte Carlo
and deterministic algorithms. An oriented-object framework has been implemented to make
the code user-friendly. Large atomic datasets, such as Boschini et al. parameters for elastic
cross-sections [117] or Seltzer and Berger scaled cross-sections [132], are saved in files based
on Hierarchical Data Format 5 (HDF5) [156] using JLD2.jl package 2, which allows the reg-

2JLD2.jl package: https://github.com/JuliaIO/JLD2.jl

https://github.com/JuliaIO/JLD2.jl
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istry of complex Julia data structures. All these datasets’ size is less than 100 Mo, which is
relatively small for today’s computers. Small datasets, such as atomic weights or subshells
energies, are written directly in the Julia code. All atomic datasets are publicly available in
literature or public databases such as the Evaluated Nuclear Data File (ENDF) database 3.
Comprehensive documentation of the code is still ongoing.

The RADIANT package can be found in a public GitHub repository 4. It is also registered
in the Julia programming language General registry.

3.14.2 Comparison of Boltzmann Fokker-Planck solver with a reference Monte-
Carlo solver

Numerical results

In order to test the aforementioned models, the energy spectrum per particle and the energy
deposition profile calculated with RADIANT will be compared to the ones in the Monte Carlo
calculations. Such results offer a comprehensive overview of its algorithms’ performance and
limitations. We are considering normally incident electron and photon beams on water (H2O),
aluminum (Al) and gold (Au). The incident beam has energies of 1 MeV, 10 MeV and 100
MeV, which correspond respectively to Fig. 3.10, Fig. 3.11 and Fig. 3.12.

The spatial domain, along the principal axis, is two times the range of electrons in the
material at the incident beam energy, while the transverse size is assumed to be infinite.
This assumption greatly simplifies the BFP transport equation [37, 157]. Nonetheless, it
reduces the source of error related to multidimensional transport with discrete ordinates
solver, notably the ray effect. The spatial domain is divided into 80 equal-size voxels. The
energy domain is divided into 80 logarithmically spaced energy groups, where the mean energy
E1 of the most energetic group is the incident beam energy, and the cutoff energy is given by
EG+1/2 = 1 keV, which is the lowest energy bound available by the developed models. To deal
with the derivative in space and energy, a 2nd-order accurate adaptive coupled space-energy
scheme, developed in Chap. 5 and presented at M&C 2023 conference [158], is employed. It
produces mainly positive and monotone solutions and, therefore, more physical solutions. For
angular discretization, the discrete ordinates’ method with Galerkin quadrature methodology,
as developed by Morel [17], is used, while the angular Fokker-Planck term, which deals with
the momentum transfer, is treated using a finite-difference approach which ensures 2nd order
accurate, positive and monotone treatment of forward scattering [128, 159]. Since the beam
under consideration is normally incident, the choice was made to utilize a 16-point Gauss-

3ENDF database: https://www-nds.iaea.org/exfor/endf.htm
4Radiant.jl package: https://github.com/CBienvenue/Radiant.jl

https://www-nds.iaea.org/exfor/endf.htm
https://github.com/CBienvenue/Radiant.jl
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Figure 3.10 Dose and energy spectrum per particle for normally incident 1 MeV electron and
photon beams on water, aluminum and gold. Dotted black curves are from GEANT4, while
coloured curves are from our deterministic Boltzmann Fokker-Planck algorithms. The length
of the slab is indicated on the right, as well as the depth at which each energy spectrum
curves are extracted. Relative differences in dose deposition are given in red.
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Figure 3.11 Dose and energy spectrum per particle for normally incident 10 MeV electron
and photon beams on water, aluminum and gold. The curve defintion are given in Fig. 3.10.
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Figure 3.12 Dose and energy spectrum per particle for normally incident 100 MeV electron
and photon beams on water, aluminum and gold. The curve defintion are given in Fig. 3.10.
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Lobatto quadrature, as it incorporates an integration point along µ = 0. Galerkin quadrature
has a restriction concerning the Legendre order, which has to be L = 15. This methodology
is presented in further detail in Chap. 4.

The reference Monte Carlo solutions are obtained from GEANT4 package [42, 160], using
the G4EmPenelope constructor [43], based on PENELOPE physics models, which are widely
recognized as a state-of-the-art for electron, positron and photon transport. In order to
extract the energy spectrum in GEANT4, the occurrence of a type of particle in an energy
group and a voxel is counted and saved in a matrix M of size 3 × 80 × 80. At each step
of particle interaction and transport, the particle’s kinetic energy and its pre- and post-step
positions are measured. Then, for each voxel j the particle crosses, for the particle i with
kinetic energy in energy group k, the particle travel length during the step, divided by the
total number of voxels crossed by the particle, is added to the counting matrix Mi,j,k. For
calculations, 100 million incident particles are simulated for 1 MeV and 10 MeV beams and
10 million for 100 MeV ones. Scoring cells of the same size as the discretized space and energy
domains of RADIANT deterministic algorithms and the same 1 keV cutoff are used. While
the transverse width cannot be set to infinity in GEANT4, setting 100 meters width, which
is exceedingly more than the electron range, practically gives the same results.

Discussion

Beforehand, a Monte Carlo solution’s numerical limitation must be emphasized. For electrons
or positrons, in their energy spectrum curves at a specific energy, the Monte Carlo curves
exhibit a sudden drop, while RADIANT curves remain smooth and regular. This discrepancy
is evident in the electron spectrum depicted in Fig. 3.10F around 50 keV or Fig. 3.11F around
100 keV. The reason behind this difference lies in the modelling choices of the PENELOPE
algorithm, as implemented in GEANT4, which opts not to generate knock-on electrons below
a specific threshold [140]. This method is typical of mixed, or class II, Monte Carlo algorithms
[43,161], which distinguishes between soft and catastrophic scattering events. In contrast, the
knock-on energy cutoff in RADIANT is set at the cutoff energy EG+1/2 and the methodology
outlined by Karakow [122] is adopted to ensure compatibility between the elastic model and
this choice of cutoff to avoid double counting issues. Consequently, RADIANT transports
low-energy knock-on electrons and the particles they produce upon interaction with matter,
potentially resulting in differences in particle distribution at low energies. Otherwise, the
Monte Carlo energy spectrum curves should accurately represent the particles’ distribution
in the medium.

That said, the results, presented in Fig. 3.10 to Fig. 3.12, underline the potential of dis-
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crete ordinates solver for general-purpose coupled photon-electron-positron transport. Our
algorithms’ energy deposition profiles remain close to the Monte Carlo ones, with a typical
relative difference of a few percent, except in a few parts of the spatial domain, usually where
the energy deposition is low. These differences will be analyzed in the following paragraphs.
A brief examination of the energy spectrum per particle at different depths is sufficient to
recognize that RADIANT estimations of the energy distribution of every particle species in
any depth in the material are comparable with the Monte Carlo ones. Analyzing the energy
spectrum is a valuable tool to assess the quality of the cross-sections.

For energy deposition, the most obvious deviation from reference is the relative difference
peak between the maximum of the dose curve and the bremsstrahlung tail for electrons beams
(Fig. 3.10 to Fig. 3.12, A to C), which is more dominant at low Z and low energy. This
error is solely caused by the coupled space-energy discretization of the BFP equation, which
struggles with the highly varying solution in space and energy that occurs with charged
particle transport, and not by the cross-sections models and discretization [47, 158]. For
example, while the employed adaptive schemes overestimate the dose in that region, the linear
discontinuous scheme underestimates the energy deposition and even produces a negative dip
in that same region [48]. The impact of different choices of coupled energy-space schemes is
analyzed in Sect. 5.5.2, showing that the difficulty of converging the high variations of the
solution in the coupled space-energy grid is the issue. It could be significantly reduced either
by increasing the number of voxels and of energy groups or by using higher-order coupled
space-energy schemes [48, 157, 162], while full mitigation of the error in that regions will
require innovative work.

For 1 MeV electron beam (Fig. 3.10, A to C), substantive relative differences are observable
in the curve’s tail, which reaches 5% in water and aluminum. Moreover, the photon spectrum
is shifted to the left-bottom compared to the Monte Carlo ones. These disparities are related
to the interaction that results in energy deposition that far in the medium, mainly by the
electron produced by bremsstrahlung photons. The photon spectrum shows that RADIANT
curves do not match the reference ones, and while this difference could be attributed to the
photon interaction, they seem to perform well in incoming photon benchmark (Fig. 3.10, D
to F), besides the oscillatory behaviour which will be explained shortly. The origin of the
discrepancies is likely related to the production of bremsstrahlung photons, but we failed to
isolate the root cause. Both PENELOPE and EGSnrc documentations recommend using and
use, an interpolation table with increased granularity compared to the one of the Seltzer and
Berger [44, 132, 136] and interpolation methods that differ from the one used through this
work, namely the monotone cubic Hermite spline method [90]. In the GEANT4 implemen-
tation of PENELOPE [163], the angular distribution of the bremsstrahlung photon is, like
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RADIANT, based on the tables of Poškus [137] rather than the more scarce tables of Kissel
et al. [134]. Further investigations will be required to assess the quality of the bremsstrahlung
emission modelization of both RADIANT and GEANT4.

For 1 MeV photon beam (Fig. 3.10 D to F), the photon spectrum shows nonphysical oscillation
and even negativities. It is known that the integration of Klein-Nishina Legendre moments
is a challenging task due to catastrophic cancellations [164] and, while suitable Legendre
moments are enforced by setting higher moments upper bounds, further work will be required
to get rid of these artifacts. Nonetheless, while adding a Waller-Hartree incoherent scattering
factor to the Klein-Nishina helps consider bindings effects, it omits Doppler broadening and
its consequences on angular deviation and energy loss. Brusa et al. proposed a relativistic
impulse approximation description of Compton scattering, which formulation is subshell-
based like the photoelectric or inelastic model, and such model is implemented in state-of-the-
art Monte Carlo code such as PENELOPE and EGSnrc [146]. The production of Legendre
moments of these cross-sections is not easy since two layers of integrations have to be done,
which is difficult to do analytically but would be too slow to evaluate numerically. Given
that such a model is implemented, relaxation could be directly correlated with Compton
ionization in the same way as presented in this work. It would be great if such subshell-based
Compton cross-sections could be added to the Evaluated Photon Data Library (EPDL), the
source of most of the photon cross-sections in this work. Another improvement to Compton
scattering could be to divide scattering interactions into soft and catastrophic components,
like the impact ionization and Bremsstrahlung cross-sections.

The pair production models could also be greatly improved if provided with tables similar to
the one of Bremsstrahlung rather than the proposed approximate analytic model normalized
by tabulated total cross-sections [165]. Moreover, explicit triplet production cross-sections
would be preferable to the current approach, since such a phenomenon results in an electron
ionization event and relaxation cascades. As for both photoelectric and coherent cross-
sections, which data is given by the Evaluated Photon Data Library, seems pretty efficient.

In the energy spectrum, the location of the fluorescence and Auger electron production peaks
and the annihilation peaks at 511 keV correspond to the Monte Carlo reference ones. Note
that the relaxation peaks, especially the annihilation peak, overestimate the particle produc-
tion compared to Monte Carlo. This overshooting should be expected because the high Monte
Carlo knock-on electron cutoff decreases the low-energy electron contribution to relaxation
processes. The use of the Evaluated Atomic Data Library comprehensive dataset of atomic
transitions, correlated with ionizing interactions such as photoelectric effect and inelastic
interactions, can be very efficient in deterministic calculations. For the annihilation peak,
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there is a blind spot. The rate of positrons that scatter under the cutoff energy is estimated
using the catastrophic impact ionization and bremsstrahlung cross-sections. However, it ne-
glects that an important source of annihilation photon comes from positrons continuously
slowing down to the cutoff energy. For impact ionization, which produces the vast majority
of such positrons, a major improvement would be to develop an accurate soft absorption
cross-section for positrons in the same way soft stopping powers are produced independently
from the catastrophic models that are unprecise for small energy losses. Until then, the an-
nihilation photon production is underestimated, resulting in a local deposition of energy and
charge, rather than transporting that energy and charge further via annihilation photons.

Elastic cross-sections at low energies should be investigated more. GEANT4, using the
G4EmPenelope constructor, uses Urban’s model of multiple scattering under 100 MeV and
a mixed scattering model over 100 MeV, which was shown to be less accurate than both
EGSnrc and PENELOPE approach [120]. Since the deterministic model is based on the
EGSnrc approach, the GEANT4 reference may be less accurate. Nonetheless, the Riley
model in CEPXS is likely more accurate than the Mott model with Seltzer correction, but
it does not contain the Kawrakow correction to avoid double counting issues with knock-
on electrons. Evaluating the exactness of the elastic model and its compatibility with the
knock-on electron model is not as easy of a task as it seems, but it should be done.

As for the impact ionization model, while the stopping power should be very accurate for
energies down to 1 keV, the catastrophic models could be improved further. These models,
while taking into account binding energies, are based on Møller and Bhabha cross-sections
which are theoretical models for impact ionization with free electrons, neglecting any screen-
ing effect due to the electronic structure of the atom. These become increasingly inaccurate
to represent inner-shells ionization, notably in high-Z atoms like gold. Bote et al. have pro-
posed interpolation formula and data, based on the mixed uses of the relativistic plane-wave
and distorted-wave Born approximation, for inner-shells ionization [166, 167]. The imple-
mentation of such a model should be considered to improve impact ionization cross-sections,
but also to provide a soft absorption cross-section for positrons to estimate accurately the
production of annihilation photons.

3.14.3 Comparison with experimental energy and charge deposition benchmarks

Numerical results

To further establish the performance of the proposed physics models, energy and charge
deposition profiles from incident electron beams for different materials and energies are com-
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Figure 3.13 Energy deposition for normally incident electron beams on beryllium, carbon,
aluminum, iron, copper, molybdenum, tantalum and uranium. The experimental data comes
from Lockwood et al. [168].

pared with experimental data. For the following comparison, the spatial domain, along the
principal axis, is 1.2 times the depth of the last experimental data, while the transverse size
is assumed to be infinite. The spatial domain is divided into 80 equal-size voxels. The energy
domain is divided into 80 logarithmically spaced energy groups, where the mean energy E1

of the most energetic group is the incident beam energy, and the cutoff energy is given by
EG+1/2 = 1 keV, which is the lowest energy bound available in the developed models. To
deal with the derivative in space and energy, a 3rd-order accurate discontinuous Galerkin
coupled space-energy scheme is employed. For angular discretization, the discrete ordinates
method with Galerkin quadrature methodology is used. Since the beam under consideration
is normally incident, the choice was made to utilize a 14-point Gauss-Lobatto quadrature, as
it incorporates an integration point along µ = 0.
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Figure 3.14 Energy deposition for 1 MeV normally incident electron beams on multilayer
assembly. The experimental data comes from Lockwood et al. [168].

Figure 3.15 Charge deposition for normally incident electron beams on beryllium, aluminum,
copper, silver and gold. The experimental data comes from Tabata et al. papers [169–171].
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Lockwood et al. [168] has produced an extensive set of experimental energy deposition mea-
surements. That work gives such measurements in beryllium, carbon, aluminum, iron,
copper, molybdenum, tantalum and uranium for electron beams of 58 keV to 1.033 MeV.
Nonetheless, it also provides measurement in a multilayer medium, exhibiting high-Z/low-Z
interfaces, which is very useful to attest to the quality of the scattering modelization. The
layer interstices are located at 0.0854 cm and 0.1396 cm (Al-Au-Al), 0.21031 cm and 0.26619
cm (Be-Au-Be), 0.184197 cm and 0.24093 cm (C-Au-C), 0.169475 cm and 0.272868 cm (C-
Cu-C), 0.14674 cm and 0.2 cm (C-Ta-C), 0.15 cm and 0.2086 cm (C-U-C). These values, not
provided in Lockwood’s work, are obtained by estimating these boundaries’ location directly
in the graph and should be close enough to the actual value. The energy deposition results
for monoelemental material are shown in Fig. 3.13, while they are shown in Fig. 3.14 for
multilayer medium.

Tabata et al. [170] gives experimental measurements of charge deposition in beryllium, alu-
minum, copper, silver and gold for electron beams of 4.09 MeV, 7.79 MeV, 11.5 MeV, 14.9
MeV and 23.5 MeV. However, these values are given as the net charge deposited to the to-
tal charge of the absorbed electrons, not as the net charge deposited to the total charge
of the incident electrons. The following equation can be used to convert between the two
definitions [170]

Dincident electrons
c (Z, x, E) =

(
1− η(Z, E)

)
Dabsorbed electrons

c (Z, x, E) , (3.131)

where Z is the atomic number, x is the depth, E is the kinetic energy of the incident electron
and η(Z, E) is the backscattering coefficient. Tabata et al. [171] proposed an empirical
equation to compute backscattering coefficients for Z ≥ 6. This equation is used for all
materials but beryllium (Z = 4), for which backscattering coefficients are extracted from
tables in [169,170]. The charge deposition results are shown in Fig. 3.15.

Discussion

Overall, these results show that the proposed physics models and the coupled photon-electron-
positron discrete ordinates solver can reproduce experimental energy and charge deposition
profiles rather accurately. While the quality of the results in some materials is excellent,
such as in aluminum or uranium, the difference between experimental measurement and
simulation can be exacerbated in iron or copper for example. Such deviation seems to be
due to limits in the physics models rather than in the discretization methods since similar
deviations are observed when these same Lockwood’s benchmarks are compared with Monte-
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Carlo results from TIGER [168] or MCNP6 [172]. GEANT4 models also have been compared
to this experimental data [173] and, while they perform better on iron and copper than
RADIANT, they are worse in molybdenum and uranium. Such results underline the limit of
comparing Monte-Carlo and determinist solvers between themselves, which is widely done in
the literature. While such an approach is great at first to develop a cross-section library such
as the one presented in this section, it can be misleading when attempting to improve the
models. However, experimental energy and charge deposition in a semi-infinite medium are
rather scarce in the literature, restricted to a few atoms over a limited range of energies. It
would be very useful to have such tabulated experimental data for electron or photon beams,
systematically for every atom and some compounds (e.g. water), for energies ranging from
a few keV to a few GeV. This could have a major impact on the development of combined
cross-section models for both Monte-Carlo and deterministic solvers.

3.15 Conclusion and Perspectives

In this chapter, coupled photon-electron-positron multigroup cross-sections were developed
for the BFP equation. The models and their multigroup representation were developed for
nine kinds of interactions: impact ionization, elastic scattering of leptons, bremsstrahlung
production, annihilation, Rayleigh scattering, Compton scattering, photoelectric effect, pair
production and relaxation cascades. Comparative analysis is presented, confronting the dis-
crete ordinates BFP equation, fed with the coupled cross-sections, with reference Monte Carlo
code GEANT4. The benchmark consists of three materials (water, aluminum and gold), two
kinds of incoming beams (photon and electron), and three energies (1 MeV, 10 MeV and
100 MeV). The results compare energy deposition and energy spectrum profiles. It shows
that the determinist and the Monte Carlo calculations give similar results, with a typical
discrepancy of a few percent for dose deposition profiles but in a few isolated parts of the
domain. The main discrepancy between the deterministic and Monte Carlo solutions is then
discussed, and improvements are proposed. Nonetheless, the deterministic calculations are
compared with experimental data for energy and charge deposition. Comparisons show that
RADIANT can predict accurately the deposition of charge and energy in the medium.

St-Aubin et al. [23, 24] and Pautz et al. [34] have developed capacities to treat external
magnetic and electric fields, which can be useful in medical applications such as MRI-guided
radiotherapy or for radiation effect on electronic devices. In its work, based on CEPXS,
St-Aubin et al. have assumed that positrons can be treated as electrons. This approximation
can be acceptable if the population of positrons is small compared with the electron ones.
However, as shown in Fig. 3.11 and Fig. 3.12, the population of electrons is not an order
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of magnitude greater than the population of positrons in many cases, notably with photon
beams greater than pair production threshold and high-Z materials. Since electrons and
positrons deflect in different directions due to the application of external magnetic or electric
fields, it is important to explicitly transport positrons.

These developments have resulted in the foundation of RADIANT, an open-source alternative
to CEPXS for generating coupled photon-electron-positron cross-sections. It enables the
development and testing of newer, faster, and more accurate models using the methodology
presented in this chapter without much constraint. The aim is for this tool to close the
gap between deterministic and Monte Carlo methods, seriously undermining the perceived
preeminence of Monte Carlo methods in RTP.
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CHAPTER 4 ANGULAR DISCRETIZATION OF THE BOLTZMANN
FOKKER-PLANCK EQUATION

4.1 Foreword

The motivation behind the following methods was to provide fast, robust and flexible angular
discretization of the transport equation in the presence of highly anisotropic scattering, such
as that encountered with charged particle transport. Monotone and moment-preserving
schemes for the AFP operator are developed, compatible with nonorthogonal quadrature on
the unit sphere, permitting the use of optimal quadrature, which minimizes the number of
sweeping through the spatial domain to achieve a specific accuracy. For transport calculations
based on the BFP equation, numerical results show that spurious oscillations in flux solution
related to anisotropic scattering can be eliminated with such discretization.

My original contribution to the angular discretization of the transport equation involves
the utilization of the AFP operator to address the positivity and monotonicity challenges
associated with the Boltzmann operator in the presence of anisotropic scattering. To this end,
I have developed a novel monotone and moment-preserving finite-difference scheme, which is
based on the Voronoi tessellation of the unit sphere and is compatible with nonorthogonal
quadrature. The work presented here has been submitted to Nuclear Science and Engineering
on August 13th, 2024 [174].

In Sect. 4.2, discrete ordinates limitations and improvement, such as the Galerkin quadrature
method, are discussed. In Sect. 4.3, discretization for the angular Fokker-Planck are proposed,
notably finite-difference ones. The performance of the new discretization techniques are then
presented in Sect. 4.4.

4.2 Methods for Discrete Ordinates Solvers

4.2.1 Matrix formalism

The discrete ordinates method, described in Sect. 2.4.1, can be expressed in matrix form. The
Nd discrete angular fluxes in Ψp

g =
(
Ψp

g,1, Ψp
g,2, ..., Ψp

g,Nd

)
have to be converted in Nq spherical

harmonics flux moments in Φp′
g =

(
Φp′

g,1, Φp′

g,2, ..., Φp′

g,Nq

)
and vice-versa. These conversion

operations can be expressed in matrix form using both the discrete-to-moment (D) and the



74

moment-to-discrete (M) matrices, i.e.

Φp
g = DΨp′

g and Ψp
g = MΦp′

g . (4.1)

Their components are given by

Dq,n = wnR
mq

ℓq
(Ωn) and Mn,q = 2ℓq + 1

4π
R

mq

ℓq
(Ωn) , (4.2)

for n = 1, Nd and q = 1, Nq, where both indices ℓq and mq are function of their index q. In
1D Cartesian geometry, these components reduce to

Dq,n = wnPℓq(µn) and Mn,q = 2ℓq + 1
2 Pℓq(µn) , (4.3)

where Pℓq(µn) are Legendre polynomials and ℓq = q−1. The quadrature on the unit sphere re-
duces to a quadrature over the director cosine µ domain, which spans from -1 to 1. With these
matrices, the vector containing the Nd Boltzmann sources, QB

p,g =
(
QB

p,g,1, QB
p,g,2, ..., QB

p,g,Nd

)
,

is given by

QB
p,g =

∑
p′∈P

Ng,p∑
g′=1

MΣg′→g,p′→pDΨg′ , (4.4)

where Σg′→g,p′→p is a Nq×Nq diagonal matrix with each component associated with ℓq-order
Legendre moments of the scattering cross-section (Σg′→g,p′→p

q,q = Σ,p′→p
s,ℓp,g′→g). The definition of

indexes ℓq and mq depending on index q can seem messy, but it is a compact and versatile
notation that enables any choice of a subset of spherical harmonics. For instance, based
on Reed’s S2 suitable interpolation basis for level-symmetric quadrature in 2D Cartesian
geometry [175], composed of R0

0, R0
1, R1

1 and R1
2, the corresponding indexes are given by

ℓℓℓ = (0, 1, 1, 2) and m = (0, 0, 1, 1), and the diagonal of the Σg′→g,p′→p matrix is given by
(Σp′→p

s,0,g′→g, Σp′→p
s,1,g′→g, Σp′→p

s,1,g′→g, Σp′→p
s,2,g′→g).

4.2.2 Quadrature over the unit sphere

The efficiency of a quadrature defined over the unit sphere with Nd nodes that integrate a
subspace of spherical harmonics of maximum degree N is given by [176]

η = (N + 1)2

3Nd

. (4.5)

A quadrature set is optimal if η ≈ 1, while it is suboptimal if η < 1. For discrete ordinates
transport, using an optimal quadrature is desirable since the multiplication of nodes increases
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Figure 4.1 Voronoi tessellation of the product quadrature (Gauss-Legendre quadrature along
µ and Chebychev quadrature along ϕ), the level-symmetric quadrature (Carlson ESN quadra-
ture) and Lebedev quadrature.

the number of required sweepings over the spatial domain per iteration to achieve a specific
accuracy. The most straightforward quadrature set over the sphere is a product quadrature,
which consists of the product of two quadrature sets, over line segment, defined along the
µ and ϕ coordinates. This quadrature with Nd = 2N2 nodes divides the angular domain
in orthogonal meshes, but accurate calculations with such quadrature set are exceedingly
expensive since the quadrature efficiency is a constraint between η = 1/6 (N → ∞) and
η = 3/8 (N = 2). The node distribution over the sphere is far from uniform with dense
pileups of nodes near µ = ±1 while it also lacks 4-fold (C4) rotational symmetry, as it can
be seen in Fig. 4.1. In order to deal with these issues, so-called level-symmetric quadrature
was developed. For example, Carlson’s ESN quadrature [177], which present a more uniform
nodes distribution and C4 rotational symmetry. It has Nd = N(N + 2) nodes, and the
resulting efficiency of this type of quadrature still is a constraint between η = 1/3 (N →∞)
and η = 3/8 (N = 2). Fortunately, optimal, or sightly optimal, quadrature do exist, such as
the ones of Lebedev [178–180], Ahrens [181], Heo and Xu [182] or Bellet et al. [183]. Lebedev
quadrature possesses octahedral rotation and inversion symmetry and has, as the Gauss-
Lobatto in 1D, nodes along the Cartesian reference system axis. While these nodes along
the axis help treat normally incident beams, they lead to an asymmetric subset of spherical
harmonics for the Galerkin quadrature methods, which is not ideal [184].
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Figure 4.2 Quadrature efficiency of the product quadrature (Gauss-Legendre quadrature
along µ and Chebychev quadrature along ϕ), the level-symmetric quadrature (Carlson ESN

quadrature) and Lebedev quadrature.

4.2.3 Galerkin quadrature

It is well known that there is an equivalence in 1D Cartesian or spherical geometry between
the discrete ordinates solution, using N -order Gauss-Legendre quadrature with Legendre
expansion of degree N − 1, and the (N − 1)-order spherical harmonics (or PN) solution using
Mark boundary conditions [50, 54]. In such case, the conversion matrices D and M are the
inverse of each other, which is desirable for multiple reasons. This property ensures, assuming
that scattering is described by a Dirac delta function,

Σp→p
s,g→g(µ) = δ(µ− 1) , (4.6)

that discretized Boltzmann operator gives the exact analytic result [17]. That scattering
leaves the angular flux unchanged QB,el

p,g (µ) = Ψp
g(µ). The moments of this scattering cross-

section are given by
Σp→p

s,ℓ,g→g =
∫ 1

−1
dµPℓ(µ)Σp→p

s,g→g(µ) = 1 (4.7)

since Pℓ(1) = 1 for any ℓ. Then, the matrix Σg→g,p→p is equal to the identity matrix I. Since
M = D−1, then Eq. 4.4 reduces to

QB,el
p,g = Ψp

g (4.8)

which is equivalent to write
QB,el

p,g (µn) = Ψp
g(µn) (4.9)
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for n = 1, Nd, which is the exact solution. Such property ensures that the Boltzmann oper-
ator will accurately treat anisotropic scattering regardless of its strength. It is essential for
charged particle transport, which deals with highly forward-peaked scattering. Nonetheless,
the fact that M = D−1 also ensures that the transport correction leaves the SN solution
invariant. This correction reduces the Legendre moments of the cross-sections for charged
particle transport by many orders of magnitude, significantly accelerating the source iteration
process. Unfortunately, in multidimensional geometries, there is no known quadrature set on
the unit sphere and choice of polynomial expansion such as M = D−1. Therefore, the SN

method can lead to inaccurate and non-physical solutions, particularly with anisotropic scat-
tering. Moreover, as shown by Pautz and Adams [45], the source iteration process can even
diverge, especially in a scattering-dominated medium where the scattering ratio is already
close to one. Defining the in-group scattering ratio matrix as

Cp,g = 1
Σp

t,g

DMΣg→g,p→p , (4.10)

which is a diagonal matrix whose components are scattering ratios. If M = D−1, then the
scattering ratio will be given by

Cp,g
q,q =

Σp→p
s,ℓq ,g→g

Σp
t,g

=
Σp→p

s,ℓq ,g→g

Σp→p
s,0,g→g + Σp

a,g
≤

Σp→p
s,0,g→g

Σp→p
s,0,g→g + Σp

a,g
≤ 1 . (4.11)

Otherwise, the scattering ratio will differ from these values and can potentially exceed one.
This has significant consequences, as it introduces a non-physical multiplicative factor in
the medium. This can lead to the divergence of the iterative process and the generation
of unusable non-physical solutions, highlighting the potential concerns associated with the
classical SN method.

The Galerkin quadrature method, developed by Morel, solves the most critical issues of
classical SN method [17]. It ensures the exact integration of a Dirac scattering and, corollary
that the transport correction leaves the solution of the transport equation invariant [47]. It
ensures that the scattering ratio remains under one and, therefore, proper convergence of
the source iteration process [45]. The Galerkin method, however, does not offer a solution
to artifacts related to scattering positivity [17] and no Galerkin quadrature method with
positive weights have been found [47]. A Galerkin quadrature is obtained by inverting either
the discrete-to-moment or the moment-to-discrete matrix, which is evaluated using Eqs. 4.3
or 4.2, i.e.

D = M−1 or M = D−1 (4.12)
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This requires that D and M are square and invertible matrices. If we can compute M
with these two properties, it can be inverted to find D, or vice-versa, to obtain a Galerkin
quadrature [17,185]. For these matrices to be square, the number of directions Nd (nodes of
the quadrature) has to be strictly equal to the number of basis functions used in the angular
flux expansion. The matrix columns must be linearly independent for them to be invertible,
which is not the case for any choice of basis functions.

For 1D Cartesian geometries, the Legendre polynomial can be used as a basis function. For
a quadrature with Nd nodes, the Legendre polynomial up to order Nd − 1 should be chosen
as the basis function of the angular flux expansion. Then, the discrete-to-moment matrix
(D) could be computed using Eqs. 4.3 and inverted to obtain the moment-to-discrete matrix
(M), or vice-versa, without any additional difficulties since the previously stated choice of
Legendre polynomial yield square and invertible matrices. The Galerkin quadrature method
permits the use of Gauss-Lobatto quadrature, which is very useful when dealing with normally
incident particle sources because of its two nodes aligned with the Cartesian reference system
axis (µ = −1 and µ = 1) [47].

For multidimensional geometries, the real spherical harmonics are used as basis functions.
For a quadrature with Nd nodes, a subset of spherical harmonics must be chosen, knowing
that no subset leads to an invertible discrete-to-moment matrix (or vice-versa). While rules
for a suitable subset of spherical harmonics exist with product or level-symmetric quadrature
(see [17,184]), a Gram-Schmidt procedure is proposed by Drumm et al. to choose a subset of
spherical harmonics such as the columns of D (or M) are linearly independent, irrespective of
the choice of quadrature [32, 186]. This procedure, for either the discrete-to-moment matrix
(D) or the moment-to-discrete matrix (M) to be invertible, is shown at Alg. 1. It should be
noted that quadrature on the unit sphere and real spherical harmonics basis functions can
also be used in 1D geometry.

4.3 Discretization Schemes for the Angular Fokker-Planck Operator

The Nd AFP sources are given by

QAFP
p,g,n = T p

gMΨp,g,n , (4.13)

where T p
g is the momentum transfer and the square Nd×Nd mapping matrixM define the FP

scattering between Nd angular flux. Leaving the forward-peaked part of the elastic scattering
in the cross-sections to be dealt with the Boltzmann operator is equivalent to extracting the
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Algorithm 1 Gram-Schmidt procedure to choose a suitable subset of spherical harmonics for
the discrete-to-moment matrix (D) or the moment-to-discrete matrix (M) to be invertible.

1: (ℓℓℓ[1], m[1])← (0, 0)
2: for ℓ ∈ [1, Nd] do
3: D[1, n]← ωnR0

0(Ωn) or M[n, 1]← 1
4π

R0
0(Ωn)

4: v1[n]← R0
0(Ωn)

5: u1[n]← v1[n]/ ∥v1∥
6: end for
7: i← 1
8: for ℓ ∈ [1,∞] do
9: if Ndim = 2 then mmin = 0 else if Ndim = 3 then mmin = −ℓ end if

10: for m ∈ [mmin, ℓ] do
11: for ℓ ∈ [1, Nd] do
12: vi+1[n]← Rm

ℓ (Ωn)
13: end for
14: vi+1 ← vi+1 −

∑i
n=1 ⟨un, vi+1⟩un

15: if ∥vi+1∥ > ϵ then
16: (ℓℓℓ[i + 1], m[i + 1])← (ℓ, m)
17: for ℓ ∈ [1, Nd] do
18: D[i + 1, n] = ωnRm

ℓ (Ωn) or M[n, i + 1]← 2ℓ+1
4π

Rm
ℓ (Ωn)

19: ui+1[n] = vi+1[n]/ ∥vi+1∥
20: end for
21: i← i + 1
22: end if
23: if i = Nd then return (D or M, ℓℓℓ and m) end if
24: end for
25: end for

momentum transfer T p
g from cross-sections and using the following mapping matrix [128,187]

M = MΣAFPD , with ΣAFP
n,q =

−ℓq(ℓq + 1) if n = q

0 otherwise
. (4.14)

With the Galerkin method, M = D−1, and this will be referred to as the Galerkin scheme. It
preserves the moments of the AFP operator with the selected subset of spherical harmonics
[47], but it does not yield a monotone mapping matrix M as the following finite-difference
schemes, which is characterized by positive components along the diagonal and negative ones
elsewhere [188].
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4.3.1 1D finite-difference schemes

Morel has developed a finite-difference scheme for the 1D AFP operator that preserves both
the zeroth and first angular moments of the analytical AFP operator [128, 159]. The in-
tegration of the AFP operator can be either described as the sum over the Nd interval
corresponding to each µn, between µn−1/2 and µn+1/2, or the numerical quadrature over µ

domain, such as

∫ 1

−1
dµQAFP

p,g (µ) =
Nd∑

n=1

∫ µn+1/2

µn−1/2

dµQAFP
p,g (µ) =

Nd∑
n=1

ωnQAFP
p,g,n , (4.15)

where QAFP
p,g,n is the discretized AFP operator which, by association, can be expressed as

QAFP
p,g,n = 1

ωn

∫ µn+1/2

µn−1/2

dµQAFP
p,g (µ) . (4.16)

Integrating this expression and applying a centred finite-difference scheme to describe deriva-
tive at region boundaries becomes

QAFP
p,g,n =

T p
g

ωn

[
γn+1/2

(
Ψn+1 −Ψn

µn+1 − µn

)
− γn−1/2

(
Ψn −Ψn−1

µn − µn−1

)]
, (4.17)

where γn+1/2 = (1 − µ2
n+1/2) and γn−1/2 = (1 − µ2

n−1/2). Since Legendre polynomials are
eigenfunctions of the Legendre differential equation [128], i.e.

∂

∂µ

[
(1− µ2) ∂

∂µ

]
Pℓ(µ) = −ℓ(ℓ + 1)Pℓ(µ) , (4.18)

the preservation of the Legendre moments of the AFP operator requires the enforcement of
∫ 1

−1
dµPℓ(µ)QAFP

p,g (µ) = −T p
g ℓ(ℓ + 1)

∫ 1

−1
dµPℓ(µ)Ψ(µ) . (4.19)

The zeroth and the first moments of the AFP operator are therefore given by
∫ 1

−1
dµQAFP

p,g (µ) = 0 and
∫ 1

−1
dµµQAFP

p,g (µ) = −2T p
g

∫ 1

−1
dµµΨ(µ) (4.20)

and should be preserved by the discretized AFP operator, such as,

Nd∑
n=1

ωnQAFP
p,g,n = 0 and

Nd∑
n=1

ωnµnQAFP
p,g,n = −2T p

g

Nd∑
n=1

µnΨn . (4.21)
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Eq. 4.17 do not enforce the preservation of the first moment of the analytic AFP operator.
However, setting the γn+1/2 and γn−1/2 as free parameters, Morel has found values for them,
such as the zeroth and first moments of the discretized AFP are the same as the analytic
operator [159]. The resulting mapping matrix is a tridiagonal matrix in which components
are given by

Mn,m =



−Cn if n = m

C−
n if n = m + 1

C+
n if n = m− 1

0 otherwise

, (4.22)

where the terms are defined by

C−
n = Cn−1/2

wn(µn − µn−1)
, C+

n = Cn+1/2

wn(µn+1 − µn) and Cn = C−
n + C+

n , (4.23)

with the recursion formula

Cn+1/2 = Cn−1/2 − 2µnwn and C1/2 = 0 . (4.24)

The matrix M is negative semidefinite (real eigenvalues less or equal to zero), monotone
(negative diagonal and positive off-diagonal elements) and diagonally dominant (sum of ab-
solute value of non-diagonal row components is equal to the absolute value of the diagonal
component). This discretization scheme can be described as positive since it will yield pos-
itive AFP sources given positive angular flux [47, 159]. This scheme is compatible with any
1D quadrature set.

4.3.2 2D and 3D finite-difference schemes for orthogonal quadrature

Morel et al. have extended the 1D finite-difference AFP scheme to multidimensional ge-
ometries [47, 188]. However, the proposed scheme is constrained to product quadrature, in
which angular mesh boundaries are aligned with director cosine µ and azimuthal angle ϕ,
greatly simplifying the construction of finite-difference methods. It allows computing free
parameters independently along µ and ϕ, which would not be possible with a nonorthogonal
grid on the unit sphere. The discretized AFP operator using the finite-difference method is



82

given by [188]

QAFP
p,g,n = T p

g

[
γi+1/2

ωi

(
Ψi+1,j −Ψi,j

µi+1 − µi

)
−

γi−1/2

ωi

(
Ψi,j −Ψi−1,j

µi − µi−1

)]

+ 1
1− µ2

i

[
γi,j+1/2

wj

(
Ψi,j+1 −Ψi,j

ϕj+1 − ϕj

)
−

γi,j−1/2

wj

(
Ψi,j −Ψi,j−1

ϕj − ϕj−1

)] , (4.25)

where ωi and wj are respectively the weights of the quadrature along µ and ϕ, while index
i and j correspond to the position along each axis µ and ϕ and then are function of n. The
flux Ψi,j correspond to the flux at direction Ωn, which corresponds to the pair (i, j). The
parameters γi+1/2, γi−1/2, γi,j+1/2 and γi,j−1/2 are used as free parameters to find moment-
preserving scheme. Their values are found using method like the 1D techniques of the previous
section along each axis µ and ϕ. For the 2D AFP operator, the mapping matrix M is given
by

Mx,y =



−Cn −Dn,i if n = m and i = j

C−
n if n = m + 1 and i = j

C+
n if n = m− 1 and i = j

D−
n,i if n = m and i = j + 1

D+
n,i if n = m and i = j − 1

0 otherwise

, (4.26)

with x = i + N(n− 1) and y = j + N(m− 1), where the C-term are defined by Eq. 4.23 and
the D-terms are defined by

D−
n,i = γn

w (ωi − ωi−1) (1− µ2
n) , (4.27)

D+
n,i = γn

w (ωi+1 − ωi) (1− µ2
n) (4.28)

and
Dn,i = D−

n,i + D+
n,i (4.29)

The weights of the Chebychev quadrature are given by

w = π

N
and ωi = (2i− 1)π

2N
, (4.30)
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while the coefficients γn are given by

γn = π2

2N
(
1− cos

(
π
N

))
2(1− µ2

n) +

√
1− µ2

n

ωn

(
Cn+1/2dn+1/2 − Cn−1/2dn−1/2

) , (4.31)

with

dn+1/2 =

√
1− µ2

n+1 −
√

1− µ2
n

µn+1 − µn

. (4.32)

For the 3D AFP operator, the mapping matrix M is given by

Mx,y =



−Cn − En,i if n = m and i = j

C−
n if n = m + 1 and i = j

C+
n if n = m− 1 and i = j

E−
n,i if n = m and {i = j + 1 or (i = 1 and j = 2N)}

E+
n,i if n = m and {i = j − 1 or (i = 2N and j = 1)}

0 otherwise

, (4.33)

with x = i + 2N(n− 1) and y = j + 2N(m− 1), where the C-term are defined by Eq. 4.23
and where the E-terms are defined by

E−
n,i =


γn

w (ωi − ωi−1) (1− µ2
n) if i ̸= 1

γn

w (2π + ω1 − ω2N) (1− µ2
n) otherwise

, (4.34)

E+
n,i =


γn

w (ωi+1 − ωi) (1− µ2
n) if i ̸= 2N

γn

w (2π + ω1 − ω2N) (1− µ2
n) otherwise

(4.35)

and
En,i = E−

n,i + E+
n,i . (4.36)

As in the 1D case, these mapping matrices are negative semidefinite and monotone and yield
positive sources. When the product quadrature is constructed with the Chebychev azimuthal
quadrature, it enforces the preservation of the zeroth and the three first angular moments
of the AFP operator. In comparison, it preserves only two out of three first angular mo-
ments with other azimuthal quadrature choices. Unfortunately, as underlined in the previous
section, product quadrature sets are far from optimal quadrature; their nodes are unevenly
distributed on the sphere, and they lack C4 rotational symmetry. Using such quadrature in



84

transport calculations is hugely inefficient due to the enormous number of nodes Ωn required
to achieve a specific accuracy level, which involves sweeping over the spatial domain for each
of these directions. The approach has been extended to address nonorthogonal quadrature
on the unit sphere in order to tackle these limitations.

4.3.3 Voronoi grid on the unit sphere

The following discretization is based on the Voronoi tessellation of the unit sphere by a finite
set of points on the sphere. With the resulting grid, a random point Ωk on the unit sphere
is contained in the mesh formed around the point Ωn such as the distance between the two
coordinates over the unit sphere,

dn,k = arccos (Ωn ·Ωk) , (4.37)

is lower than the distance of point Ωk with any other point of the set. A vertex, which is
a mesh corner, is shared by at least 3 points Ωn, Ωm and Ωk. The vertex coordinates are
given by the intersection of two bisector planes and the unit sphere, given by


x2 + y2 + z2 = 1

(µn − µm)x + (ηn − ηm)y + (ξn − ξm)z = µ2
n − µ2

m + η2
n − η2

m + ξ2
n − ξ2

m

(µn − µk)x + (ηn − ηk)y + (ξn − ξk)z = µ2
n − µ2

k + η2
n − η2

k + ξ2
n − ξ2

k

. (4.38)

These equations are solved using Newton’s root-finding algorithm. The vertices forming the
smaller mesh around each point Ωn are isolated. For the AFP discretization, the Voronoi
grid serves only one purpose, that is to establish the neighbors of the mesh generated around
point Ωn, that is all the point Ωm which mesh share an edge with Ωn mesh.

4.3.4 2D and 3D finite-difference schemes for nonorthogonal quadrature

The AFP operator can be expressed as [29,189]

QAFP
p,g (Ω) = T p

g∇2Ψ(Ω) = T p
g∇t · ∇tΨ(Ω) , (4.39)

where ∇2 is the Laplace operator and ∇t is the tangential gradient on the unit sphere S2

given by
∇tΨ(Ω) = ∇Ψ(Ω)− [∇Ψ(Ω) · n(Ω)] n(Ω) , (4.40)
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where ∇ is the usual gradient in R3 and n(Ω) is the unit normal vector on S2 at Ω. The
integration of the AFP operator over the unit sphere can be described either as the sum of
the integral over Nd non-overlapping regions Ωn covering the totality of S2 or by numerical
quadrature on S2, such as

∫
S2

d2ΩQAFP
p,g (Ω) =

Nd∑
n=1

∫
Ωn

d2ΩQAFP
p,g (Ω) =

Nd∑
n=1

ωnQAFP
p,g,n , (4.41)

where ωn are the quadrature weigths and QAFP
p,g,n the discretized AFP operator. This discretized

operator can be deduced by association from the previous equation, and integral over region
Ωn can be simplified using divergence theorem over the spherical domain [29,190]

QAFP
p,g,n = 1

ωn

∫
Ωn

d2ΩQAFP
p,g (Ω) =

T p
g

ωn

∮
δΩn

dℓ∇tΨ(Ω) · nℓ , (4.42)

where δΩn is the boundary of the region Ωn and nℓ is the normal vector at region boundary
on S2. Assuming that the region Ωn is a polygon with Jn sides, then the integral can be
rewritten as the sum of the Jn integrals over the edges of the nth region

QAFP
p,g,n =

T p
g

ωn

Jn∑
j=1

∫
δΩn,j

dℓ∇tΨ(Ω) · nℓ . (4.43)

The central finite-difference is used to approximate the previous expression, and the following
form is obtained

QAFP
g,n =

T p
g

ωn

Jn∑
j=1

ℓn,j

[
Ψg,mn,j

−Ψg,n

∆xn,j

]
, (4.44)

where ℓn,j is the length of the jth edge, which is an arc on the unit sphere, Ψg,n = Ψg(Ωn) is
the angular flux along node n, Ψg,mn,j

is the angular flux of the node mn,j that share the edge
j with the node n and ∆xn,j is the length of the arc between the two nodes n and m. Let
introduce a general parameter γn,mn,j

, which includes both ℓn,j and ∆xn,j, that is associated
with the shared edge between the nodes n. The property γn,m = γm,n is enforced, such as
each edge is associated with a unique coefficient γn,m with n < m. The discretized AFP
operator takes the form

QAFP
g,n = Tg

ωn

Jn∑
j=1

γn,mn,j

[
Ψg,mn,j

−Ψg,n

]
. (4.45)

Fig. 4.3 shows how these relations are defined between adjacent regions on the unit sphere. To
define which regions share which edge, a Voronoi tessellation, based on the set of quadrature
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nodes, is constructed over the unit sphere such as an arbitrary point on S2 belongs to the
closest node Ωn, based on the distance defined over S2. Voronoi grids for product, level-
quadrature and Lebedev quadrature are shown in Fig. 4.1.

Figure 4.3 Voronoi tessellation of the S8 Carlson’s level-symmetric quadrature nodes on the
positive octant of the unit sphere. The red point corresponds to the node n = 6, and the
green ones correspond to the nodes that share one of the J1 = 6 edges of the region formed
by the 6th node.

The values of the γn,m coefficients will be fixed to enforce the preservation of the zeroth and
first moments of the flux. Regardless of the value of γn,m, the discretized AFP operator
preserves the null space, meaning that any isotropic angular flux leads to zero. Following
that, the spherical harmonics are eigenfunctions of the Laplace operator [188],

∇2Rm
ℓ (Ω) = −ℓ(ℓ + 1)Rm

ℓ (Ω) , (4.46)

the preservation of the spherical harmonics moments of the AFP operator requires the en-
forcement of ∫

S2
d2ΩRm

ℓ (Ω)QAFP
p,g (µ) = −T p

g ℓ(ℓ + 1)
∫
S2

d2ΩRm
ℓ (Ω)Ψ(Ω) . (4.47)
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The zeroth and the three first moments of the AFP operator are, therefore, given by
∫
S2

d2ΩQAFP
p,g (µ) = 0 and

∫
S2

d2ΩΩQAFP
p,g (µ) = −2T p

g

∫
S2

d2ΩΩΨ(Ω) (4.48)

and should be preserved by the discretized AFP operator, such as

Nd∑
n=1

ωnQAFP
p,g,n = 0 and

Nd∑
n=1

ωnΩnQAFP
p,g,n = −2T p

g

Nd∑
n=1

ωnΩnΨn , (4.49)

with Ωn = (µn, ηn, ξn). The finite-difference scheme is given by Eq. 4.45 to preserve the
zeroth moment of the AFP operator for any value of γn,m. The methodology proposed by
Morel et al. [188] is used to find the parameters γn,m that preserve the three discretized
first moments of the flux. Explicit equations for γn,m are obtained by defining the following
complete basis

Ψg,k = (δ1,k, δ2,k, ..., δNd,k) , (4.50)

where δn,k is the Kronecker delta. Substituting it and Eq. 4.45 in the rightmost expression
in Eqs. 4.49 for each k = 1, Nd, one obtain Nd equations of the form

Jk∑
j=1

γk,mk,j

[
Ωmk,j

−Ωk

]
= −4ωkΩk , (4.51)

where Ωmk,j
is the coordinates of the node that share the edge j with node k, for a total of

3Nd equations. Regardless of the choice of quadrature, it leads to an overdetermined linear
system of equations since the number of unknown parameters γn,m with n < m, which is
equal to the total number of edges between nodes Nedges, is smaller than the total number
of equations, 3Nd. From Euler’s polyhedron formula, which states that the sum of vertices
Nvertices, edges Nedges and faces Nd in a convex polyhedron, which the quadrature nodes are
forming, is given by Euler characteristic χ = 2 and from the fact that there are at least three
edges connecting at each vertex such as 2Nedges ≥ 3Nvertices [191], it follows that

Nedges = Nd + Nvertices − 2 ≤ 3Nd − 6 ≤ 3Nd . (4.52)

Fortunately, with any quadrature set we have tested, ranging from product, level-symmetric,
and Lebedev quadrature, the resulting system contains redundant equations, likely due to
symmetry in these quadrature sets. Solving this system using the Moore-Penrose inverse,
also called pseudoinverse, gives an exact solution for γn,m such that all the 3Nd equations are
simultaneously satisfied. The solution is unique since the system’s matrix has full column
rank. It is observed that all values of γn,m are positive and respect the quadrature set
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symmetries. These observations will require further investigations to assert the properties
of quadrature (e.g. required symmetries) compatible with our approach, i.e. leading to an
exact solution rather than an inexact least squares solution, which is usually expected with
the pseudoinverse.

Using the calculated zeroth and first moment-preserving coefficients γn,m, the resulting map-
ping matrix is given by

Mn,m =



− 1
ωn

Jn∑
j=1

γn,mn,j
if n = m

γn,m

ωn

if m ∈ {mn,j : j = 1, Jn}

0 otherwise

. (4.53)

The produced matrix is negative semidefinite and monotone. The presented methodology, ap-
plied to product quadrature with Chebychev azimuthal quadrature, reproduces the mapping
matrix of the scheme from Morel et al. [188].

4.4 Results and Discussion

This results section has no graph comparison of solutions between the Galerkin quadrature
and classical SN methods. For example, in 1D geometry, with Gauss-Lobatto quadrature and
external sources, the classical SN method for electron or positron transport was observed to
be either highly inaccurate or unable to converge. While the Gauss-Legendre quadrature nat-
urally generates a Galerkin quadrature, multidimensional transport has no such quadrature.
The same problems with 1D Gauss-Lobatto quadrature were observed with multidimensional
quadrature, notably with product, level-symmetric and Lebedev quadrature. As discussed in
the previous sections, the Galerkin quadrature is not a mere improvement; it should be the
foundation of any SN solver, nothing less.

The benchmarks are based on pure electron transport in a water slab exposed by an infinitely
wide, normally incident 10 MeV electron beam, unless noted otherwise. Elastic, collisional
inelastic and Bremsstrahlung interactions, as described in Chap. 3 are considered. Based on
Mott cross-sections, the elastic model becomes highly forward-peaked as the particle energy
increases, providing an interesting study case for the presented angular discretization models.
The energy domain is divided logarithmically into 40 energy groups, where the midpoint of
the highest energy group is 10 MeV, and the cutoff energy is 1 keV. Linear discontinuous
schemes are used to deal with both space and energy derivatives. Convergence criterion of
10−5 is used. Void boundary conditions are applied to the geometry boundaries.
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4.4.1 Comparison of Galerkin quadrature methods

Figure 4.4 Comparison of two Galerkin quadrature methods for different quadrature order
for benchmark with isotropic source (top) or normally incident source (bottom).

In a conference paper [185], Morel et al. compared two Galerkin quadratures methods for a
product quadrature defined over the unit sphere, which consist of inverting either the discrete-
to-moment (D) and the moment-to-discrete (M). Their results show that these methods
give similar flux solutions, for a benchmark in which an isotropic boundary source is defined.
However, it was observed that one method is superior in some cases with quadrature defined
over the unit sphere.

The 1D Cartesian geometry is used with the Lebedev quadrature. The geometry domain,
an infinitely wide 5 cm slab, is divided into 40 voxels. The Galerkin scheme is used for
the AFP operator. The first comparison consists of a benchmark with a 10 MeV isotropic
source defined between 2 and 3 cm, while the second one uses a normally incident 10 MeV
beam. As shown in Fig. 4.4, for isotropic sources, both methods give similar results for any
quadrature order. This is coherent with the result in Morel et al. [185]. However, for the
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normally incident boundary source, the D = M−1 energy deposition results are less accurate
than the M = D−1 ones at any quadrature order. Notably, the S9 solution presents a huge
overestimation of the deposited energy between 0 and 1 cm depth. Even at high quadrature
order (S23), while seemingly converging toward the M = D−1 solution, the D = M−1 solution
still exhibits significant spurious oscillations. The M = D−1 Galerkin quadrature method is
therefore used for the following results.

4.4.2 Comparison of Galerkin and finite-difference schemes in 1D geometry

The first benchmark compares Galerkin and the monotone finite-difference discretization of
the AFP term in 1D Cartesian geometry using Gauss-Lobatto quadrature. The geometry do-
main, an infinitely wide 5 cm slab, is divided into 40 voxels. The Galerkin and finite-difference
mapping matrix of the S6 case, provided to highlight their properties, are respectively given
by

MG
6 =



0.0 20.2828 −8.07237 4.48937 −2.69983 1.0
3.57273 5.0 8.22289 −2.67431 1.35425 −0.475562
−0.969902 5.60893 5.0 6.64575 −1.82418 0.539401
0.539401 −1.82418 6.64575 5.0 5.60893 −0.969902
−0.475562 1.35425 −2.67431 8.22289 5.0 3.57273

1.0 −2.69983 4.48937 −8.07237 20.2828 0.0


(4.54)

and

MFD
6 =



−8.51264 8.51264 0.0 0.0 0.0 0.0
1.49946 −5.42257 3.92311 0.0 0.0 0.0

0.0 2.676 −5.92681 3.25081 0.0 0.0
0.0 0.0 3.25081 −5.92681 2.676 0.0
0.0 0.0 0.0 3.92311 −5.42257 1.49946
0.0 0.0 0.0 0.0 8.51264 −8.51264


. (4.55)

The finite-difference matrix is clearly monotone, since the row’s off-diagonal components
are positive and the diagonal components are negative, and it is diagonally dominant, since
the sum of the row’s off-diagonal components is equal to the absolute value of the diagonal
components. These properties are not shared by the Galerkin matrix. Along each line n,
the main scattering events are n → n − 1 (for n ̸= 1) and n → n + 1 (for n ̸= Nd), as
in the finite-difference case, but farther away from the diagonal, the values sign oscillates.
The negative sign for a non-diagonal element m ̸= n is not desirable since it implies that
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Figure 4.5 Comparison of energy deposition profiles using either Galerkin (in red) and finite-
difference (in blue) schemes for the AFP operator based on a Gauss-Lobatto quadrature in 1D
Cartesian geometry. The given reference (in black) is the solution using S26 finite-difference
scheme.

the flux Ψn along the direction µn scatter such as there is a reduction along the direction
µm, which does not make any physical sense. On the contrary, the finite-difference matrix is
more physically robust, since the flux Ψn along the direction µn scatter such as the flux lost
at m = n is redistributed along the directions m ̸= n.

The energy deposition solutions for quadrature order varying from 4 to 12 are shown in Fig.
4.5. The reference solution is obtained with the S26 finite-difference scheme. The solution
using Galerkin scheme present significant non-physical oscillations, due to the discussed lack
of monotonicity of the mapping matrix M. These oscillations can be damped by increasing
the quadrature order, but some artifacts can be persistent, as shown by the S12 case near
x = 0 cm. This scheme, used jointly with the Galerkin quadrature method, preserved
Nd moments of the AFP operator [47]. It makes the Galerkin scheme a more accurate
moment representation of the AFP operator than the finite-difference scheme that preserve
only the zeroth and first moments. This explains the better agreement of low-order Galerkin
scheme near x = 3 cm between the reference solution. The finite-different is more robust
for any quadrature order, since it eliminates the spurious oscillations in the solution. As the
quadrature order increases, both the Galerkin and finite-difference schemes tend toward the
same solution.

The second benchmark compares Galerkin and the multidimensional finite-difference dis-
cretization of the AFP term in 1D Cartesian geometry using Lebedev quadrature. The
geometry domain, an infinitely wide 5 cm slab, is divided into 40 voxels. The energy de-
position solutions for quadrature order varying from 5 to 13 are shown in Fig. 4.6. The
solution using the Galerkin scheme exhibits oscillations, similar to the one with the Gauss-
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Figure 4.6 Comparison of energy deposition profiles using Galerkin (in red) and finite-
difference (in blue) schemes for the Fokker-Planck operator based on the Lebedev quadrature
in 1D Cartesian geometry. The reference solution (in black) is obtained using the S23 finite-
difference scheme.

Lobatto, but at different locations. It shows that such behavior is difficult to predict for a
given quadrature choice. As the 1D AFP finite-difference scheme, the multidimensional AFP
one provide a solution free of such oscillations, at the cost of the enforcement of high-order
spherical harmonics moments of the AFP operator.

4.4.3 Comparison of Galerkin and finite-difference schemes in 3D geometry

The third benchmark compares the Galerkin and the finite-difference discretization of the
AFP term in 3D Cartesian geometry using the Lebedev quadrature. The Cartesian geometry
domain, whose size is 5 × 5 × 1.5 cm along each axis, is divided into 20, 20 and 6 voxels. The
Galerkin and finite-difference mapping matrix have respectively the same properties than in
the 1D case. The energy deposition solution for quadrature order varying from 5 to 13 is
shown in Fig. 4.7. The solution using Galerkin scheme present, as expected, non-physical
oscillation along both x and y spatial axis. As in the 1D case, increasing the quadrature
order improve the overall monotonicity, but do not restore it. The finite-difference method,
which preserve the zeroth and the three first moments of the AFP operator, eliminate any
spurious oscillations of the Galerkin scheme at the cost of higher-order enforcement.

The newly developed method permits monotonicity-enforcing AFP operator treatment with
optimal quadrature. This is very useful for particle transport, since it diminishes greatly
the number of direction required to achieve a specific angular accuracy and then improving
running times. For example, the speedup of Lebedev quadrature, for S5, S9 and S17, com-
pared to product quadrature, for S4, S8 and S16 are respectively 2.3, 3.5 and 4.7. Lebedev
quadrature also offer a better distribution of nodes and desirable symmetries. It should be



93

Figure 4.7 Comparison of energy deposition profiles along A) y = 2.5 cm, B) x = 1.25 cm
and C) x = 2.5 cm using either Galerkin (in red) and finite-difference (in blue) schemes for
the AFP operator based on a Lebedev quadrature in 3D Cartesian geometry. The given
reference (in black) is the solution using S19 finite-difference scheme.

noted that this method does not address the issues related to ray effect, another sources of
angular spurious oscillations that occur with localized isotropic sources or in case particle
scattering is low.

4.5 Conclusion and Perspectives

In this chapter, a methodology was proposed to developed finite-difference schemes for the
AFP operator in discrete ordinates calculations, in particular for nonorthogonal quadrature
in multidimensional geometries. The proposed finite-difference schemes are monotone, and
preserve the zeroth and first moments of the AFP operator. This discretization scheme
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is very useful to deal with monotonicity issues related to forward-peaked scattering in the
transport equation. Results for 1D and 3D geometries calculations shows that such scheme
eliminates spurious oscillation related to forward-peaked scattering. Further investigations
will be required to assess the properties of the quadrature set compatible with the proposed
approach. It is conjectured is that the quadrature should respect at least C4 rotational sym-
metry around an axis and C2 rotational symmetry around the two others, which correspond
to the product quadrature symmetries.
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CHAPTER 5 LINEAR ADAPTIVE ENERGY-SPACE SCHEMES

5.1 Foreword

The work in this chapter aims to address positivity and monotonicity issues related to coupled
energy-space discretization. Charged particle transport solutions vary immensely from one
spatial or energy mesh to the next. Even with high-order schemes proposed in the literature,
negativities remain present in the dose deposition profile, and oscillations are predominant
in the energy spectrum. Linear adaptive schemes are developed to tackle these issues while
enforcing 2nd-order accuracy.

My original contribution in this section consists in the development of a new weighted linear
schemes in 2D mesh, the adaptive choice of weights for 1D and 2D meshes and its application
to the coupled discretization of the spatial and energy derivatives in the BFP equation. It
follows from initial invstigations of high-order schemes, such as the High-Order Diamond
Difference (HODD) schemes, to tackle the highly varying energy-space solution in charged
particle transport. This section work have been partially presented in form of peer-reviewed
papers and presentation at the International Conference on Physics of Reactors (PHYSOR
2022) [192] and at the International Conference on Mathematics and Computational Methods
Applied to Nuclear Science and Engineering (M&C 2023) [158], and published in the peer-
reviewed journal Annals of Nuclear Energy [157].

First, the discretization of both space and energy domain using the Galerkin Method of
Weighted Residuals is described in Sect. 5.2. Then, in Sect. 5.3, widely used closure relations
are reviewed and weighted second-order linear schemes are developed. In Sect. 5.4, adaptive
choices of weighting parameters are proposed to improve positivity and monotonicity. The
newly developed adaptive schemes are then tested against Monte-Carlo reference for energy
deposition and energy spectrum benchmarks in Sect 5.5 and these results are discussed.
Conclusive remarks and perspectives are shared in Sect. 5.6.

5.2 Discretization by the Galerkin Method of Weighted Residuals

A discretization of the energy and space domain can be obtained using the Galerkin method of
weighted residuals, applied to every local finite element in which the angular flux is expanded
as a linear combination of basis function [193]. This method is versatile and powerful; it
permits reaching high-order accuracy and modularity by confining the discretization in each
finite element. The following section depicts the application of this method to the transport
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equation for approximation of any order.

5.2.1 Transport equation in a space-energy mesh

The discrete ordinates transport equation along each direction, which index are omitted for
simplicity, can be expressed as

K∑
k=1

∂

∂xk

[
fk(x)Ψ(x)

]
+ Σ(x)Ψ(x) = Q(x) , (5.1)

where the vector x contains spatial and/or energy variables, such as xk ∈ {E, x, y, z}. The
source Q(s) includes the Boltzmann, the AFP and fixed external sources. The derivative term
can represent the streaming term, with xk = x and fk(x) = µ in 1D Cartesian geometry, or
the CSD term, with xk = E and fk(x) = −S(x). For every xk coordinates in x, the domain
along axis xk is divided into Nxk

meshes, with the mesh-edge values in the ith
k -cell denoted

xk,ik±1/2. The following change of variable is applied in the ith
k -cell

uxk
= 2xk − xk,ik+1/2 − xk,ik−1/2

2∆xk,ik

, (5.2)

where ∆xk,ik
= xk,ik+1/2 − xk,ik−1/2 is the mesh size. This new variable is defined over the

support uxik
∈ [−1/2, 1/2]. This leads to the SN equation in the K-dimensional mesh defined

by indexes i = (i1, i2, ..., iK), i.e.

K∑
k=1

skhk,i
∂Ψi

∂uxk

(u) + Ψi(u) = Q̃i(u) , (5.3)

where u = (ux1 , ux2 , ..., uxK
),

Q̃i = Qi

Σi
and hk,i = fk,ik

∆xk,ik
Σi

. (5.4)

For the streaming, the terms fk,ik
as a function of the axis k are given by

fx,ix = |µ| , fy,iy = |η| , fz,iz = |ξ| and fE,iE
=

S+
iE

+ S−
iE

2 (5.5)

and
sx = sign(µ) , sy = sign(η) , sz = sign(ξ) and sE = −1 . (5.6)

For the following development, it is assumed that fE,iE
and Σi are constant in the cell. The

implication of this choice is discussed in Sect. 5.6.
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5.2.2 Definition of the flux moments

The in-cell flux, defined over uxk
∈] − 1/2, 1/2[, is expanded using normalized Legendre

polynomials along each axis k and up to order Mk such as

Ψi(u) =
∑
M

{
K∏

k=1
P̃mk

(uxk
)
}

Ψ(m)
i , (5.7)

where m = (m1, m2, ..., mK) with mk ∈ {0, 1, ..., Mk}. The moments of the in-cell flux are
given by

Ψ(m)
i =

∫
D

dD
{

K∏
k=1

P̃mk
(uxk

)
}

Ψi(u) . (5.8)

The summation and integral notation indicate nested summation and integral, i.e.

∑
M
≡

M1∑
m1=0

M2∑
m2=0

...
MK∑

mK=0
(5.9)

and ∫
D

dD ≡
∫ 1/2

−1/2
dux1

∫ 1/2

−1/2
dux2 ...

∫ 1/2

−1/2
duxK

. (5.10)

This expansion enforces coupling of high-order (mk ≥ 1) moments between axes, which is
not always maintained. Indeed, whereas this expansion generate moments of the form Ψ(n,m)

with n ≥ 1 for any m, for example, one could choose to ignore Ψ(n,m) with n ≥ 1 for m ̸= 0.
This can reduce the size of the resulting system of equations, but at the cost of some accuracy.

The source term is similarly expanded, such as

Q̃i(u) =
∑
M

{
K∏

k=1
P̃mk

(uxk
)
}

Q̃
(m)
i , (5.11)

where m = (m1, m2, ..., mK) with mk ∈ {0, 1, ..., Mk}. The moment of the in-cell flux are
given by

Q̃
(m)
i =

∫
D

dD
{

K∏
k=1

P̃mk
(uxk

)
}

Q̃i(u) . (5.12)

The flux at mesh boundaries along k, defined at uxk
= ±1/2, is expanded along each axis

but k′ such as

Ψi(u±
k′) =

∑
Mk′


K∏

k=1
k ̸=k′

P̃mk
(uxk

)

Ψ±(mk′ )
i,x′

k
, (5.13)
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where the Ψ±(mk)
k are the boundary flux moments along k given by

Ψ±(mk′ )
i,x′

k
=
∫

Dk′
dDk′


K∏

k=1
k ̸=k′

P̃mk
(uxk

)

Ψi(u±
k′) . (5.14)

The vector corresponding to the boundary positions along k is given by

u±
k′ = u

∣∣∣
uk′ =±1/2

= (ux1 , ..., uxk′−1 ,±1/2, uxk′+1 , ..., uxK
) , (5.15)

while the vector of indexes of the boundary moment is given by the vector m to which the
k component is removed, such as

mk′ = (m1, ..., mk′−1, mk′+1, ..., mK) . (5.16)

The nested sum over Mk′ is the same as Eq. 5.9, but without the summation over mk′

variable, and the nested integral over Dk′ is the same as Eq. 5.10, but without the integral
over uxk′ .

Finally, the moments of the flux derivative along axis k ∈ {1, 2, ..., K} is given by

Ψ̇(m)
i,xk

=
∫

D
dD

{
K∏

k′=1
P̃mk′ (uxk′ )

}
∂Ψi(u)
∂uxk

. (5.17)

The flux derivative moments can be rewritten as

Ψ̇(m)
i,xk

=
∫ 1/2

−1/2
duxk

P̃mk
(uxk

)∂Ψ(mk)
i (uxk

)
∂uxk

, (5.18)

where

Ψ(mk)
i (uxk

) =
∫

Dk

dDk


K∏

k′=1
k′ ̸=k

P̃mk′ (uxk′ )

Ψi(u) . (5.19)

A change of variable can be applied to the integral to transform the normalized Legendre
polynomials to the usual Legendre polynomials, such as

Ψ̇(m)
i,xk

=
√

2mk + 1
∫ 1

−1
dνPmk

(ν)∂Ψ(mk)
i (ν)
∂ν

. (5.20)
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Using integration per parts, this expression can take the form

Ψ̇(m)
i,xk

=
√

2mk + 1
{

Pmk
(1)Ψ(mk)

i (1)− Pmk
(−1)Ψ(mk)

i (−1)

−
∫ 1

−1
dν

∂Pmk
(ν)

∂ν
Ψ(mk)

i (ν)
}

.
(5.21)

This can be further simplified using Legendre polynomial properties, namely (from [194],
Eq. 15.9)

Pn(1) = 1 , Pn(−1) = (−1)n (5.22)

and (from [194], combining Eq. 15.23 and Eq. 15.24)

∂Pn(x)
∂x

=
n−1∑
k=0

2k + 1
2 Pk(x)

[
1 + (−1)n−k−1

]
(5.23)

for any n. The flux derivative moments, using definition of the in-cell and boundary flux
moments given by Eqs. 5.8 and 5.14, is

Ψ̇(m)
i,xk

=
√

2mk + 1

Ψ+(mk)
i − (−1)mkΨ−(mk)

i −
mk−1∑
j=0

√
2j + 1

[
1− (−1)mk−j

]
Ψ(mk,j)

i

 ,

(5.24)
where the vector of indexes mk,j is given by the vector m for which the k component is equal
to index j, i.e.

mk,j = m|mk=j = (m1, ..., mk−1, j, mk+1, ..., mK) . (5.25)

5.2.3 Coupled space-energy moment equations

The Bubnov-Galerkin method is employed, where the trial functions are the basis functions
used to expand the flux solution [193]. The moment’s equations are given by multiplying the
transport equation Eq. 5.3 by the trial function, the normalized Legendre polynomials, and
integrating over the mesh domain, i.e.

∫
D

dD
{

K∏
k=1

P̃nk
(uk)

}(
K∑

k=1
skhk,ik

∂Ψi

∂uxk

(u) + Ψi(u)− Q̃i(u)
)

= 0 (5.26)
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for all 0 ≤ nk ≤ mk. Using the definition of in-cell moments Eq. 5.8 and of flux derivative
moments Eq. 5.24, this equation takes the following form

K∑
k=1

√
2nk + 1skhk,ik

Ψ+(nk)
i − (−1)nkΨ−(nk)

i −
nk−1∑
j=0

√
2j + 1

[
1− (−1)nk−j

]
Ψ(nk,j)

i


+ Ψ(n)

i − Q̃
(n)
i = 0 ,

(5.27)

where n = (n1, ..., nK). In each cell, this equation will be solved by sweeping through
the domain using the incoming boundary flux moments collected from calculations from the
previous cells or by geometry boundary conditions, such as boundary sources (see Sect 2.4.2).
Let sk = ±1 define the sweeping direction, where sk = 1 corresponds to sweeping from
smaller to higher value along k, while sk = −1 is the inverse. For spatial domain, it is given
by sx = sign(µ), sy = sign(η) and sz = sign(ξ), while for energy domain, by sE = −1. Let
ϕ−(nk)

xk
and ϕ+(nk)

xk
be, respectively, the incoming and outgoing boundary flux moments such

as

ϕ−(nk)
xk

=

Ψ−(nk)
xk

sk = 1

Ψ+(nk)
xk

sk = −1
and ϕ+(nk)

xk
=

Ψ+(nk)
xk

sk = 1

Ψ−(nk)
xk

sk = −1
. (5.28)

The equation can be rewritten to take into account the sweeping direction

K∑
k=1

√
2nk + 1skhk,ik

snk−1
k ϕ

+(nk)
i − (−1)nksnk−1

k ϕ
−(nk)
i −

nk−1∑
j=0

√
2j + 1

[
1− (−1)nk−j

]
Ψ(nk,j)

i


+ Ψ(n)

i − Q̃
(n)
i = 0 .

(5.29)

To solve this equation in mesh i, a closure relation has to be established between the outgoing
boundary flux moments, and the in-cell flux and/or the incoming boundary flux moments.

5.3 Closure Relations

The Galerkin method of weighted residuals results in an undetermined linear equation system
and must be closed by a closure relation. The outgoing flux can be expressed as a linear
combination of the incoming flux and of the flux moments, i.e.

ϕ
+(nk)
i = ω−

k ϕ
−(nk)
i +

Mk∑
m=0

√
2m + 1sm

k ω
(m)
k Ψ(nk,m)

i , (5.30)
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where ω−
k and ω

(m)
k are weighting factors. These factors are computed to enforce moment-

preservation or geometric constraints, for example. The choice of these weighting factors is
the core of this chapter. The substitution of this closure relation in Eq. 5.29 gives an equation
system of the form

SΨ = Q ⇒ Ψ = S−1Q , (5.31)

where Ψ contains the in-cell flux moments. The sweeping process evaluates these in-cell flux
moments Ψ, using them to compute the outgoing flux moments with Eq. 5.30 and repeat
the process on the following adjacent meshes.

5.3.1 Review of closure relations

Many closure relations have been developed to solve Eq. 5.29. The 1st-order accurate step
(DG0) and the 2nd-order accurate diamond difference (DD0) schemes are obtained assuming
a constant flux in the mesh and discontinuity at boundaries. This scheme results in the
most straightforward equation system since S and Q reduce to single values, the lowest
memory requirements and the fastest execution per mesh. The DG0 is strictly positive
and monotone, but its lack of accuracy makes it very inefficient when the solution varies
significantly from one mesh to the next, even when many meshes are employed. This method
does not have a thick diffusion limit, so it will not likely yield good results for diffusive
problems [195]. The DD0 scheme 2nd-order accuracy produces a more helpful solution with
fewer meshes, but it is known to have a propensity to produce negative flux and generous
spurious oscillations [47, 157]. In order to enforce positivity, many resorts to the set-to-zero
fix-up, which consists of setting, if negative, the outgoing flux to zero and recomputing the
in-cell flux moment [51]. However, such methods come with accuracy degradation; they
perform poorly with acceleration methods and converge slowly in diffusive problems [196].
A more robust method was introduced by Carlson for the 1D meshes, using a weighted
diamond difference scheme (AWD0) [177]. It uses weights varying from the DD0 to the DG0

that vary based on the estimation of the flux gradient in the cell to enforce positivity. It
was later expanded to multidimensional geometries by Voloschenko and Alcouffe [197, 198].
While the AWD0 scheme strictly enforces positivity, it fails to deliver 2nd-order accuracy
and non-physical oscillations remain unavoidable (see Sect. 5.3.2 for detailed explanation).
Hence, since the diamond difference scheme possesses the maximum accuracy achievable with
constant flux representation [199], it is not possible to address positivity while mitigating
monotonicity issues and enforcing 2nd-order accuracy.

Higher-order polynomial flux representation can be used to overcome these limitations. The
3rd-order accurate linear discontinuous Galerkin (DG1) scheme introduced by Reed and Hill
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[200] is nowadays among the most used scheme for robust SN calculations [47]. It is based
on a linear flux representation in the mesh and discontinuity at boundaries. It does not
inherit the intense oscillatory behaviour of the diamond difference schemes. Its increased
accuracy over the DD0 generally reduces its propensity to generate negative fluxes for a
given discretization grid. However, in many cases, such as with sharply increasing solution
in the sweeping direction, it can produce negative flux, whereas the DG0 scheme enforces
positivity [48] while also being monotone. It is possible to reach 4th-order accuracy with the
linear diamond difference (DD1) [201–203], but it suffers, although attenuated, from the same
oscillatory issues than the DD0 scheme [158]. There is another scheme that can be obtained
with a linear flux representation in the cell, the step moment (SM1) scheme [204]. This 2rd-
order accurate scheme performs better than the DG1 scheme, with improved positivity and
monotonicity when flux sharply decreases in the sweeping direction [199]. As with constant
flux expansion, set-to-zero fix-up was proposed for these linear methods to enforce positivity,
with similar setbacks [199, 205]. Higher-order polynomial flux representations have been
developed for both DD [202,203] and DG schemes [162]. The closure relations for any order’s
DD, DG and SM schemes are given in Sect. 5.3.2.

In an attempt to extend the adaptive scheme of Carlson to linear flux representation, Ger-
mogenova et al. proposed a linear adaptive scheme in 1D Cartesian geometries, but it fails to
enforce 2nd-order accuracy [204]. Voloschenko later greatly improved the adaptive weighted
scheme based on a composite constant-linear flux representation in the 1D mesh that strictly
enforces 2nd-order accuracy [199]. This weighting scheme used in this chapter, based on a
normalized Legendre polynomials expansion, is given by

ϕ+
x = Pxϕ−

x + (1− Px)Ψ(0)
x +

√
3sx(Px + Qx)Ψ(1)

x (5.32)

and varies between the DD1 [(Px, Qx) = (1, 1)], DG1 [(Px, Qx) = (0, 1)], SM1 [(Px, Qx) =
(0, 1/3)] and DD0 [(Px, Qx) = (0,∞)] in order to counterbalance the defect of each of these
schemes. While providing a great improvement, the proposed weighting factors formulas
do not ensure strict positivity or monotonicity. The work of Germogenova, Voloschenko et
al. yet contains the clearest formulation of positivity with the linear scheme, including an
important one that established a relation between the first and the zeroth moment of the flux,
closely related to the monotonicity. Voloschenko has extended this adaptive weighted scheme
to 2D Cartesian geometries based again on linear-constant flux representation. However, this
scheme has many issues. The most important one is the fact that the presented 2D weighted
scheme is unstable for some choice of weighting factors (Qx or Qy ≥ 4/3), meaning it is
unusable in this part of the domain. The method is not analytic, and a 2D Newton root-
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finding method has to be applied to each mesh. It was observed that there are multiple
close roots, and converging to the good one requires keeping a large matrix of initial values
in memory. This method lacks compatibility with spatial parallelization, such as the KBA
algorithm, since this matrix should be distributed to each voxel, which would be inefficient.
Maginot et al. have developed 1D and 2D linear schemes based on constant-linear flux
representation [196]. These schemes enforce positivity of the zeroth moment of the flux and
of the outgoing flux, but the positivity constraint on high-order flux moments of Germogenova
et al. is not considered, which would result in oscillation in the solution when flux strongly
increases or decreases. The proposed solution for multidimensional geometry also depends
on Newton’s root-finding method, which can be expensive to compute in each mesh. The 1D
and 2D adaptive schemes from Voloschenko et al. are revisited and improved in the following
section.

5.3.2 Generalized static closure relations

The generalized diamond difference scheme is obtained assuming that the Mk +1 flux deriva-
tive moments, given by Eq. 5.24, is equal to zero [202] such as

ϕ
+(nk)
i = (−1)Mk+1ϕ

−(nk)
i +

Mk∑
m=0

√
2m + 1sm

k

[
1− (−1)Mk+1−m

]
Ψ(nk,m)

i . (5.33)

Compared with the general expression from Eq. 5.30, it gives the following weighting factors

ω−
k = (−1)Mk+1 and ω

(m)
k =

[
1− (−1)Mk+1−m

]
. (5.34)

These generalized diamond difference schemes are (2Mk + 2)th-order accurate [157]. With
Mk = 0, the scheme reduces to the classical diamond difference (DD0) scheme. The general-
ized discontinuous Galerkin scheme is obtained assuming continuity between the in-cell flux
evaluated at outgoing boundary and outgoing flux moments, i.e.

ϕ
+(nk)
i = Ψi(u)|uk=sx/2 =

Mk∑
m=0

√
2m + 1sm

k Ψ(nk,m)
i , (5.35)

which gives the following weighting factors

ω−
k = 0 and ω

(m)
k = 1 . (5.36)

These generalized discontinuous Galerkin schemes are (2Mk + 1)th-order accurate [162]. With
Mk = 0, the scheme reduces to the step scheme (DG0), while Mk = 1 gives the linear dis-
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Figure 5.1 Padé approximant, a(hx), of e−1/hx .

continuous scheme (DG1). The following weighting factors give the generalized step moment
schemes

ω−
k = 0 , ω

(m)
k =


1 m < Mk

Mk

2Mk + 1 m = Mk

. (5.37)

These generalized discontinuous Galerkin schemes are (2Mk)th-order accurate, for Mk ≥ 1.
With Mk = 1, the scheme reduces to the step moment scheme (SM1) from Germogenova et
al. [204].

The properties of the aforementioned schemes can be depicted in a simple case for which the
analytical solution is known. In a 1D mesh and assuming that there are no volume sources,
i.e. Q̃(m)

x = 0 for m ≥ 0, then the ratio of outgoing on incoming flux is given by

a(hx) = ϕ+
x

ϕ−
x

= e−1/hx . (5.38)

Solving the transport equation in the 1D mesh using the previously presented closure relations
leads to Padé approximant, a(hx), of this exponential function [162, 204]. A Padé approxi-
mant (p, q) gives the best approximation of a given function for the ratio of polynomials of
degree p and degree q. The generalized DDp−1 scheme, also known as HODD schemes [202],
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Figure 5.2 Approximation of a(hx) for different schemes. The analytic exponential solution
correspond to the black curve.

corresponds to the diagonal (p, p) Padé approximant of the exponential function as shown
in Fig. 5.1. The diagonal (p, p) Padé approximant gives the solution of maximum accuracy
achievable with polynomials of order p; this means the generalized DD is the best accuracy
that can be reached for a polynomial expansion of a specific order, as noted by Voloschenko
who referred to this scheme as "linear best" [199]. These DD scheme are A-acceptable,
i.e. a(hx) ≤ 1, but they have a false asymptotic as hx → 0 with a(0) = (−1)p, as shown in
Fig. 5.2 [206,207]. This is likely the root cause of the oscillation produced by the DD scheme.
For spatial discretization, because hx = |µ| / (Σ∆x), the issue at hx → 0 does not fade away
as the mesh shrinks in size [208]. The generalized DGp−1 scheme correspond to the first
subdiagonal (p, p − 1) Padé approximant, while the generalized SMp−1 scheme correspond
to the second subdiagonal (p, p − 2) Padé approximant. These two approximations have
the correct asymptotic behaviour as hx → 0 as shown in Fig. 5.2. Such approximations are
considered L-acceptable, and these two sub-diagonal Padé approximants are likely the only
L-acceptable approximations [207]. This is coherent with the reduced DG and SM propen-
sity to generate spurious oscillations in the flux solution. In Fig. 5.2, it can be seen that
increasing the scheme’s accuracy order shifts the fork’s location, where the exact solution
and the approximate one secede. It also shows that, for a given polynomial order, the SM
scheme stays closer to the exact solution, at its maximum deviation, than the DG scheme,
which suggests improved stability over variation of hx.

5.3.3 1D linear weighted schemes

The 1D linear weighted scheme is similar to the one developed by Voloschenko [199] but uses
the normalized Legendre polynomials as the basis function. The flux in the 1D finite element
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Figure 5.3 The 2 cases of linear-constant flux representation within a 1D Cartesian finite-
element with sx = 1. The red lines denote the positions of the L domain centroid. Figure
reproduced from [158].

is expended using a linear expansion along the x-axis. The in-cell linear flux expansion is
given by

Ψ(ux) = Ψ(0) + 2
√

3uxΨ(1) , (5.39)

where the in-cell flux moments are defined by

Ψ(n) =
∫ 1/2

−1/2
duxP̃n(ux)Ψ(ux) . (5.40)

The flux in the 1D Cartesian finite element is defined as a composite linear-constant function
of the form

Ψ(ux) =

ϕ0 + 2
√

3uxϕ1 ∀ ux ∈ L

ϕc ∀ ux ∈ C
, (5.41)

where ϕ0, ϕ1 and ϕc are constant values. L and C represent, respectively, the linear and
constant domains of the finite element. As shown in Fig. 5.3, there are two cases of linear-
constant representation of the flux in the cell identified as A+ and A−. Continuity is assumed
between L and C parts, which happen at

u×
x =

−1/2 + δ1 if A+

1/2− δ1 if A−
, (5.42)

where δ1 is the length of the C parts of the domain. Continuity is also assumed between
the outgoing flux moments, ϕ+

x , and the in-cell flux moments evaluated at the outgoing cell
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boundary, Ψ(1/2). With these assumptions and enforcing in-cell flux moments, the outgoing
flux can be expressed as

ϕ+
x = Ψ(0) +

√
3sxQxΨ(1) , (5.43)

where Qx ∈ [1/3,∞[ is a weighting factor. The value of Qx can be given as a function of δ1

given that the subdomain (A+ or A−) is specified. The value of Qx are entirely and uniquely
defined by the L part centroid position, ucm

x , which lifts the need to specify the subdomain.
Indeed, if ucm

x ≥ 0, then the subdomain A+ is implied, and if ucm
x < 0, then the subdomain

A− is implied. For a given value of ucm
x , the value of Qx is given following these steps:

1. The first step is to identify the subdomain corresponding to the center of mass ucm
x ,

which is given by A+ if 0 ≤ ucm
x ≤ 1

2

A- otherwise
. (5.44)

2. Then, the value of the geometric parameter δ1 is calculated using the center of mass as
prescribe in Tab. 5.1, with the following definition:

δa(ucm
x ) = 2ucm

x . (5.45)

3. Finally, the value of Qx can be calculated using δ1 as prescribe in Tab. 5.2, with the
following definition:

Q+
a(δ1) = 1 + δ1

(1− δ1) (1 + 2δ1)
and Q-

a(δ1) = 1
1 + 2δ1

. (5.46)

Substituting this scheme in the moment equations, the zeroth and first moments of the in-cell

Table 5.1 Values of δ1 as a function of parameter ucm
x .

Subdomain of
ucm

x

δ1

A+ δa(ucm
x )

A- δa(−ucm
x )
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Table 5.2 Values of Qx as a function of parameter δ1.

Subdomain of
ucm

x

Qx

A+ Q+
a(δ1)

A- Q-
a(δ1)

flux are given by
Ψ(0)

Ψ(1)


︸ ︷︷ ︸

Ψ

=
 hx + 1

√
3Qxsxhx

−
√

3sxhx 3Qxhx + 1

−1

︸ ︷︷ ︸
S−1

Q̃(0) + hxΨ−
x

Q̃(1) −
√

3 hxsxΨ−
x


︸ ︷︷ ︸

Q

. (5.47)

For any value of ucm
x ∈ [−1/2, 1/2], this scheme enforces at least 2nd-order accuracy. When

ucm
x = 0 (or Qx = 1), the scheme reduces to the DG1 scheme, when ucm

x = −1/2 (or Qx = 1/3),
it reduces to the SM1 scheme, and when ucm

x = 1/2 (or Qx → ∞), it reduces to the DD0

scheme, in a sense that it produces the same zeroth and first moments of the flux as the DD0.
The properties of the scheme as a function of the choice of ucm

x are discussed in Sect. 5.4.1.

5.3.4 2D linear weighted schemes

The flux in the 2D finite element is expanded using a linear expansion along the x- and
y-axis. The in-cell linear flux expansion is given by

Ψ(ux, uy) = Ψ(0,0) + 2
√

3uxΨ(1,0) + 2
√

3uyΨ(0,1) + 12uxuyΨ(1,1) , (5.48)

where the in-cell flux moments are defined by

Ψ(n,m) =
∫ 1/2

−1/2
dux

∫ 1/2

−1/2
duyP̃n(ux)P̃m(uy)Ψ(ux, uy) . (5.49)

Other than the use of normalized Legendre polynomials, this flux expansion still differs from
the one of Voloschenko in which the term containing Ψ(1,1) is absent [199]. The flux in the
2D Cartesian finite element is defined as a linear-constant piecewise function of the form

Ψ(ux, uy) =

ϕ0,0 + uxϕ1,0 + uyϕ0,1 + uxuyϕ1,1 ∀ (ux, uy) ∈ L

ϕc ∀ (ux, uy) ∈ C
, (5.50)
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Figure 5.4 The 12 cases of flux representation within a 2D Cartesian finite-element with
sx = 1 and sy = 1. The red lines denote the positions of the L domain centroid.

where ϕ0,0, ϕ1,0, ϕ0,1, ϕ1,1 and ϕc are constant values. L and C represent, respectively, the
linear and constant domains of the finite element. As shown in Fig. 5.4, there are 12 cases of
linear-constant representation of the flux in the cell. Continuity is assumed between L and
C parts intersecting along a line crossing the finite element. These lines are defined by the
geometric parameters δ1 and δ2 for a specified subdomain, as shown in Fig. 5.4. Continuity
between the outgoing flux moments, ϕ+(m)

x and ϕ+(n)
y , and the in-cell flux moments evaluated

at the corresponding cell boundary, i.e.

ϕ+(m)
x =

∫ 1/2

−1/2
duyP̃m(uy)Ψ(1/2, uy) and ϕ+(n)

y =
∫ 1/2

−1/2
duxP̃n(ux)Ψ(ux, 1/2) , (5.51)
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With these assumptions and enforcing in-cell flux moments, the outgoing flux can be ex-
pressed as ϕ+(0)

x = Ψ(0,0) +
√

3sxQxΨ(1,0)

ϕ+(1)
x = Ψ(0,1) +

√
3sxQxΨ(1,1) + sxsyTxΨ(1,0)

(5.52)

and ϕ+(0)
y = Ψ(0,0) +

√
3syQyΨ(0,1)

ϕ+(1)
y = Ψ(1,0) +

√
3syQyΨ(1,1) + sxsyTyΨ(0,1)

, (5.53)

where Qx, Qy, Tx and Ty are weighting factor, with Qx, Qy ∈ [1/3,∞[, |Tx| < 0.53 Qx and
|Ty| < 0.53 Qy. The values of Qx, Qy, Tx and Ty are entirely and uniquely defined by the
linear part centroid (ucm

x , ucm
y ). As it can be deduced from Fig. 5.4, the position of the centroid

is associated with a unique subdomain. For given values of centroid coordinates, the value
of Qx, Qy, Tx and Ty are given following these steps:

1. The first step is to define the subdomain corresponding to the centroid (ucm
x , ucm

y ). The
Fig. 5.5 define the 12 subdomains as a function of the centroid coordinates. The red
curve is defined by

ured
y (ux) = 3ux(1− 2ux)

6ux + 1 (5.54)

and the blue curves are simply the symmetric curve with respect to the ux- and uy-axis,
and with the ux = uy line.

2. Then, the value of the geometric parameters of δ1 and δ2 are calculated using centroid
coordinates as prescribe in Tab. 5.3, with the following definition:

δA(x, y) = − 1
3a

(
b + ζ + ∆0

ζ

)
,

δB(x, y) = 12y2 + (6− 12x) y + 2x

12y2 + 1 ,

δC(x) = 3x− 1
2 ,

(5.55)

where

ζ = −
(

1 + i
√

3
2

)
3

√√√√∆2
1 +

√
∆2

1 − 4∆3
0

2 , (5.56)
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Figure 5.5 Subdomains.

Table 5.3 Values of (δ1, δ2) as a function of parameter (ucm
x , ucm

y ).

Subdomain of
(ucm

x , ucm
y ) δ1 δ2

A++ δA(ucm
x , ucm

y ) δA(ucm
y , ucm

x )
A+- δA(ucm

x ,−ucm
y ) δA(−ucm

y , ucm
x )

A-+ δA(−ucm
x , ucm

y ) δA(ucm
y ,−ucm

x )
A–- δA(−ucm

x ,−ucm
y ) δA(−ucm

y ,−ucm
x )

B+
x δB(ucm

x , ucm
y ) δB(ucm

x ,−ucm
y )

B-
x δB(−ucm

x , ucm
y ) δB(−ucm

x ,−ucm
y )

B+
y δB(ucm

y , ucm
x ) δB(ucm

y ,−ucm
x )

B-
y δB(−ucm

y , ucm
x ) δB(−ucm

y ,−ucm
x )

C++ δC(ucm
x ) δC(ucm

y )
C+- δC(ucm

x ) δC(−ucm
y )

C-+ δC(−ucm
x ) δC(ucm

y )
C–- δC(−ucm

x ) δC(−ucm
y )

and 

a = 2y

x

b = −6y

x
− 6y + 3

c = 9y

2x
− 9x + 9y − 9

2
d = 12x

,

∆0 = b2 − 3ac

∆1 = 2b3 − 9abc + 27a2d
. (5.57)
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Table 5.4 Values of (Qx, Qy, Tx, Ty) as a function of parameter (δ1, δ2).

Subdomain of
(ucm

x , ucm
y ) Qx Qy Tx Ty

A++ Q+
a(δ1, δ2) Q+

a(δ2, δ1) T +
a (δ1, δ2) T +

a (δ2, δ1)
A+- Q+

a(δ1, δ2) Q-
a(δ2, δ1) −T +

a (δ1, δ2) −T -
a (δ2, δ1)

A-+ Q-
a(δ1, δ2) Q+

a(δ2, δ1) −T -
a (δ1, δ2) −T +

a (δ2, δ1)
A–- Q-

a(δ1, δ2) Q-
a(δ2, δ1) T -

a (δ1, δ2) T -
a (δ2, δ1)

B+
x Q+

b(δ1, δ2) Q±
b(δ1, δ2) T +

b (δ1, δ2) T ±
b (δ1, δ2)

B-
x Q-

b(δ1, δ2) Q±
b(δ1, δ2) T -

b (δ1, δ2) −T ±
b (δ1, δ2)

B+
y Q±

b(δ1, δ2) Q+
b(δ1, δ2) T ±

b (δ1, δ2) T +
b (δ1, δ2)

B-
y Q±

b(δ1, δ2) Q-
b(δ1, δ2) −T ±

b (δ1, δ2) T -
b (δ1, δ2)

C++ Q+
c(δ1) Q+

c(δ2) T +
c (δ1, δ2) T +

c (δ2, δ1)
C+- Q+

c(δ1) Q-
c(δ2) −T +

c (δ1, δ2) −T -
c (δ2, δ1)

C-+ Q-
c(δ1) Q+

c(δ2) −T -
c (δ1, δ2) −T +

c (δ2, δ1)
C–- Q-

c(δ1) Q-
c(δ2) T -

c (δ1, δ2) T -
c (δ2, δ1)

3. Finally, the value of (Qx, Qy) and (Tx, Ty) can be calculated using (δ1, δ2) as prescribe
in Tab. 5.4, with the following definition:

Q+
a(δi, δj) =

(2
3

) 3− δ2
i δj

δ3
i δj + 2(1− δ2

i δj)
, (5.58)

Q-
a(δi, δj) =

(2
3

) 3(1− δiδj) + δ2
i δj

δ3
i δj + 2(1− δ2

i δj)
, (5.59)

Q+
b(δi, δj) =

(2
3

) 3− (δ2
i + δiδj + δ2

j )
(δ3

i + δ2
i δj + δiδ2

j + δ3
j ) + 2(1− δ2

i − δiδj − δ2
j ) , (5.60)

Q-
b(δi, δj) =

(2
3

) 3(1− δi − δj) + (δ2
i + δiδj + δ2

j )
(δ3

i + δ2
i δj + δiδ2

j + δ3
j ) + 2(1− δ2

i − δiδj − δ2
j ) , (5.61)

Q±
b(δi, δj) =

(2
3

)
δi + 2δj − 3
δi + δj − 2 , (5.62)

Q+
c(δi) =

(2
3

) 2 + δi

1− δ2
i

, (5.63)

Q-
c(δi) =

(2
3

) 1
1 + δi

, (5.64)

and
T +

a (δi, δj) = −δ2
i δj

δ3
i δ2

j + 12δiδj − 30δi − 20δj + 40
5(δ3

i δj + 2(1− δ2
i δj))2 , (5.65)
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T -
a (δi, δj) = −δiδj

δ4
i δ2

j − 8δ3
i δ2

j + 10δ2
i δ2

j − 12δ2
i δj + 30δ2

i + 40δiδj − 80δi − 40δj + 60
5(δ3

i δj + 2(1− δ2
i δj))2 ,

(5.66)

T +
b (δi, δj) = − (δi − δj)

5((δ3
i + δ2

i δj + δiδ2
j + δ3

j ) + 2(1− δ2
i − δiδj − δ2

j ))2

×
[
(δ4

i + 4δ3
i δj + 10δ2

i δ2
j + 4δiδ

3
j + δ4

j )− 6(3δ2
i + 4δiδj + 3δ2

j ) + 20(δi + δj)
]

,

(5.67)

T -
b (δi, δj) = (δi − δj)

5((δ3
i + δ2

i δj + δiδ2
j + δ3

j ) + 2(1− δ2
i − δiδj − δ2

j ))2

×
[
(δ4

i + 4δ3
i δj + 10δ2

i δ2
j + 4δiδ

3
j + δ4

j )− 8(δ3
i + 4δ2

i δj + 4δiδ
2
j + δ3

j )

+4(7δ2
i + 16δiδj + 7δ2

j )− 40(δi + δj) + 20
]

,

(5.68)

T ±
b (δi, δj) = −(δi − δj)

δ2
i + 6δiδj + 3δ2

j − 8δi − 12δj + 10
5(δi + δj − 2)2 , (5.69)

T +
c (δi, δj) = −(δj − 1)(δ2

i + 6δi + 3)
5(δi − 1)(1 + δi)2 , (5.70)

T -
c (δi, δj) = −(δi − 1)(δj − 1)

5(1 + δi)2 . (5.71)

The weighting factors’ values in the centroid coordinates’ function are shown in Fig. 5.6.
It should be noted that the expression for Qx and Qy as a function of δ1 and δ2 are the
same as the one of Voloschenko, but it is not the case for Tx and Ty. This difference,
resulting from the inclusion of the term Ψ(1,1) in the flux expansion, solves the stability
issues underlined by Voloschenko when Qx, Qy ≥ 4/3 (ucm

x , ucm
y ≥ 1/6) [199]. Nonethe-

less, the scheme is analytically defined as a function of two variables, the centroid
coordinates.

Substituting this scheme in the moment equations, the zeroth and first moments of the in-cell
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Figure 5.6 Values of Qx, Qy, Tx and Ty as a function of the centroid coordinates.

flux are given by

Ψ(0,0)

Ψ(1,0)

Ψ(0,1)

Ψ(1,1)


︸ ︷︷ ︸

Ψ

=


hx + hy + 1

√
3Qxsxhx

√
3Qysyhy 0

−
√

3sxhx 3Qxhx + hy + 1 sxsyTyhy

√
3Qysyhy

−
√

3syhy sxsyTxhx 3Qyhy + hx + 1
√

3Qxsxhx

0 −
√

3sy (hy − hxTx) −
√

3sx (hx − hyTy) 3Qxhx + 3Qyhy + 1



−1

︸ ︷︷ ︸
S−1

×


Q̃(0,0) + hxΨ−(0)

x + hyΨ−(0)
y

Q̃(1,0) −
√

3 hxsxΨ−(0)
x + hyΨ−(1)

y

Q̃(0,1) + hxΨ−(1)
x −

√
3 hysyΨ−(0)

y

Q̃(1,1) −
√

3 hxsxΨ−(1)
x −

√
3 hysyΨ−(1)

y


︸ ︷︷ ︸

Q

.

(5.72)
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For any value of ucm
x , ucm

y ∈ [−1/2, 1/2], this scheme enforces at least 2nd-order accuracy.
When ucm

x , ucm
y = (0, 0), the scheme reduced to the 3rd-order accurate DG1 scheme applied

along both axis. When ucm
x = −1/2, it is equivalent to applying the SM1 scheme along the

axis ux, and when ucm
x = 1/2, it is equivalent to applying the DD0 scheme along that axis.

The properties of the scheme as a function of the choice of ucm
x are discussed in Sect. 5.4.2.

5.4 Adaptive Choice of Weights

The main interest of the weighted scheme presented in the previous section is constructing
adaptive schemes that enforce 2nd-order accuracy. The constant adaptive scheme from Carl-
son chose weights that maximize the accuracy (closer to DD0 than DG0) while enforcing
positivity [177]. With the proposed linear adaptive schemes, the idea remains essentially the
same and can be expressed as an optimization problem as

min
ucm

xk
∈[− 1

2 , 1
2 ]

K∑
k=1

(
ucm

xk

)2
(5.73)

subject to some positivity and monotonicity constraints. If ucm
xk

= 0 fulfill every one of these
constraints for every value k = 1, K, then the scheme reduces to the 3rd-order accurate DG1

scheme, which is the maximum accuracy achievable with the weighted scheme.

5.4.1 1D linear weighted schemes

The flux solution to the transport equation should be strictly positive since a negative particle
density makes no physical sense. Negativities are solely produced by the numerical methods
employed, generating oscillations in the solution. The 1D optimization problem

min
ucm

x ∈[− 1
2 , 1

2 ]
(ucm

x )2
, (5.74)

is subject to the following positivity constraints. Positivity is achieved if [199]

1. the mean in-cell source is positive, i.e.

Q(0) ≥ 0 , (5.75)

2. the mean flux at each incoming boundary is positive, i.e.

Ψ−(0)
x ≥ 0 , (5.76)
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3. the second moment(s) of the in-cell source is bounded, such as
∣∣∣Q(1)

∣∣∣ ≤ √3Q(0) , (5.77)

then

1. the mean in-cell flux is positive, i.e.

Ψ(0) ≥ 0 , (5.78)

2. the mean flux at each outgoing boundary is positive, i.e.

Ψ+(0)
x ≥ 0 , (5.79)

3. the second moment(s) of the in-cell flux is bounded, such as
∣∣∣Ψ(1)

∣∣∣ ≤ √3Ψ(0) . (5.80)

The first and second positivity constraints are rather trivial, while the third one is de-
rived from the upper bound on high-order Legendre flux moments of a positive function,
see Eq. A.11 in Annex A. Omitting this constraint, as in the work of Maginot et al. [196],
results in non-physical oscillations of the flux solution.

To solve the 1D optimization problem, let’s first define the parameter

Q̇x =
√

3sx
Q(1)

Q(0) =
√

3sx

[
Q̃(1) −

√
3hxsxΨ−

x

Q̃(0) + hxΨ−
x

]
. (5.81)

Based on the positivity of the sources, such as Q̃(0), Q̃(1) and Ψ−
x fulfill Eqs. 5.75 to 5.77, it

can easily be deduced that the inequality
∣∣∣Q̇x

∣∣∣ ≤ 3 (5.82)

is strictly enforced. Solving the equation system given by Eq. 5.47, the zeroth moment of
the flux is given by

Ψ(0) = hxQx(3− Q̇x) + 1
6Qxh2

x + (3Qx + 1)hx + 1Q(0) (5.83)
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Figure 5.7 Centroid coordinates that enforce positivity as a function of parameter Q̇x and hx.
The continuous curves are given by Eq. 5.92, while the dots consists of the optimal solution
with random Q̃(0), Q̃(1) and Ψ−

x parameters using numerical optimization techniques. The
black curve corresponds to the solution that depends solely on Q̇x.

and the ratio of the first to the zeroth moment of the flux is given by

Ψ(1)

Ψ(0) = sx√
3

[
hx(3 + Q̇x) + Q̇x

hxQx(3− Q̇x) + 1

]
. (5.84)

Following Ineq. 5.82, the condition Ψ(0) ≥ 0 is fulfilled for any value of Qx ≥ 1/3. The
fulfillment of the two other positivity conditions is analyzed based on the sign of Q̇x:

• For Q̇x ≥ 0 : The inequality

Ψ+

Ψ(0) = 1 +
√

3sxQx
Ψ(1)

Ψ(0) ≥ 0 , (5.85)

which is equivalent to Ineq. 5.79, is always fulfilled. The only constraint left is∣∣∣Ψ(1)
∣∣∣

Ψ(0) ≤
√

3 . (5.86)
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Substituting Eq. 5.84 in that expression, the following inequality is obtained

Qx ≥
hx(3 + Q̇x)− (3− Q̇x)

3hx(3− Q̇x)
. (5.87)

The intersection of this formula with Qx = 1 is given by

Q̇min
x = 6hx + 3

4hx + 1 (5.88)

and consists of the lower threshold of the region where correction should be applied.

• For Q̇x < 0 : The Ineq. 5.85 can be rewritten as∣∣∣Ψ(1)
∣∣∣

Ψ(0) ≤
1√
3Qx

≤
√

3 , (5.89)

such as it encompass both Ineqs. 5.79 and 5.80. After some manipulation, the inequality
can be expressed as

Qx ≤
−1

6hx + Q̇x

. (5.90)

The intersection of this formula with Qx = 1 is given by

Q̇max
x = − (6hx + 1) (5.91)

and consists of the upper threshold of the region where correction should be applied.

Consolidating these positivity-enforcing inequalities and establishing the suitable value that
minimize the cost function, the value of Qx that is a solution to the optimization problem is
given by

Qx =



hx(3 + Q̇x)− (3− Q̇x)
3hx(3− Q̇x)

Q̇x >
6hx + 3
4hx + 1

− 1
6hx + Q̇x

Q̇x < −(6hx + 1)

1 otherwise

(5.92)

or equivalently, using Eqs. 5.45 and 5.46,

ucm
x =



2hx(2Q̇x − 3) + (Q̇x − 3) +
√

∆x

8(Q̇x + 3)hx + 8(Q̇x − 3)
Q̇x >

6hx + 3
4hx + 1

6hx + (Q̇x + 1)
4 Q̇x < −(6hx + 1)

0 otherwise

, (5.93)
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with ∆x = 12(4Q̇2
x − 9)h2

x + 12(4Q̇2
x − 15Q̇x + 9)hx + 9(Q̇x − 3)2. A general expression,

independent of hx, can be found by taking the limit case such as hx → ∞ if Q̇x > 0 and
hx = 0 if Q̇x < 0, which results in

Qx =



(3 + Q̇x)
3(3− Q̇x)

Q̇x >
3
2

− 1
Q̇x

Q̇x < −1

1 otherwise

, (5.94)

or equivalently,

ucm
x =



2Q̇x − 3 +
√

12Q̇2
x − 27

4(3 + Q̇x)
Q̇x >

3
2

Q̇x + 1
4 Q̇x < −1

0 otherwise

. (5.95)

These solutions are shown in Fig. 5.7 for different value of hx. Solution of numerical opti-
mization techniques, using random Q̃(0), Q̃(1) and Ψ−

x parameters and used to verify that the
solution is indeed the optimal solution, is also shown. The optimization package Optimiza-
tion.jl [209] is used to solve the minimization problem. The solution given by Eq. 5.92 is
an improvement of the scheme by Voloschenko [199] since it strictly enforces positivity and
2nd-order accuracy. Contrary to his adaptive scheme, the 4th-order accurate linear diamond
difference scheme is not employed in the presented scheme.

5.4.2 2D linear weighted schemes

The 2D optimization problem

min
ucm

x ,ucm
y ∈[− 1

2 , 1
2 ]

(
ucm

x

)2
+
(
ucm

y

)2
, (5.96)

subject to the positivity constraints such as

1. the mean in-cell source is positive, i.e.

Q(0,0) ≥ 0 , (5.97)

2. the mean flux at each incoming boundary is positive, i.e.

Ψ−(0)
x ≥ 0 and Ψ−(0)

y ≥ 0 , (5.98)
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3. the second moment(s) of the in-cell source is bounded such as
∣∣∣Q(1,0)

∣∣∣ ≤ √3Q(0,0) ,
∣∣∣Q(0,1)

∣∣∣ ≤ √3Q(0,0) , (5.99)

and ∣∣∣Q(1,1)
∣∣∣ ≤ √3 min

{√
3Q(0,0),

∣∣∣Q(1,0)
∣∣∣ , ∣∣∣Q(0,1)

∣∣∣} , (5.100)

4. the second moment(s) of the incoming flux is bounded such as
∣∣∣Ψ−(1)

x

∣∣∣ ≤ √3Ψ−(0)
x and

∣∣∣Ψ−(1)
y

∣∣∣ ≤ √3Ψ−(0)
y , (5.101)

then

1. the mean in-cell source is positive, i.e.

Ψ(0,0) ≥ 0 , (5.102)

2. the mean flux at each incoming boundary is positive, i.e.

Ψ+(0)
x ≥ 0 and Ψ+(0)

y ≥ 0 , (5.103)

3. the second moment(s) of the in-cell source is bounded such as
∣∣∣Ψ(1,0)

∣∣∣ ≤ √3Ψ(0,0) ,
∣∣∣Ψ(0,1)

∣∣∣ ≤ √3Ψ(0,0) , (5.104)

and ∣∣∣Ψ(1,1)
∣∣∣ ≤ √3 min

{√
3Ψ(0,0),

∣∣∣Ψ(1,0)
∣∣∣ , ∣∣∣Ψ(0,1)

∣∣∣} , (5.105)

4. the second moment(s) of the incoming flux is bounded such as
∣∣∣Ψ+(1)

x

∣∣∣ ≤ √3Ψ+(0)
x and

∣∣∣Ψ+(1)
y

∣∣∣ ≤ √3Ψ+(0)
y . (5.106)

These constraints are more numerous that in the 1D case and establishing an expression for
the weighting factors to enforce positivity is way harder. The flux moments are given by the
solution of the 4 × 4 matrix system, explicited in Eq. 5.72, and the complicated relations
between (Qx, Qy) and (Tx, Ty) makes it really hard to obtain positivity-enforcing inequal-
ities. Investigations to find centroid coordinates (ucm

x ,ucm
y ) that strictly enforces positivity

have, unfortunately, failed. Yet, expressions were found to improve greatly positivity and
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monotonicity, and finding weights that stricly enforce positivity remains an open question.

The parameters

Q̇x =
√

3sx
Q(1,0)

Q(0,0) =
√

3sx

Q̃(1,0) −
√

3hxsxΨ−(0)
x + hyΨ−(1)

y

Q̃(0,0) + hxΨ−(0)
x + hyΨ−(0)

y

 (5.107)

and

Q̇y =
√

3sy
Q(0,1)

Q(0,0) =
√

3sy

Q̃(0,1) + hxΨ−(1)
x −

√
3syhyΨ−(0)

y

Q̃(0,0) + hxΨ−(0)
x + hyΨ−(0)

y

 (5.108)

can be interpreted as the derivative of the source terms. It is assumed that the determination
of centroid coordinate ucm

k can be chosen from Q̇k, and only that value, for k ∈ {x, y}. It
is also presumed that the required weights are given by the same rules as in the 1D case,
such that Q̇k > 0 requires ucm

k > 0 and vice-versa, based on Eq. 5.95. The value of the
centroid coordinates are inflated by translating the positive and negative correction threshold
in Eq. 5.95 to Q̇k = 0, to compensate the lack of a strictly positive method, such as

ucm
k =



−1
2 Q̇k < −2

Q̇k

4 −2 < Q̇k < 0

Q̇k +
√

3Q̇k(Q̇k + 3)
2Q̇k + 9

0 < Q̇k <
3
2

1
2

3
2 < Q̇k

. (5.109)

This method is used for the results in Sect. 5.5.2, but also the ones in Sect. 3.14. An
alternative expression to evaluate weights is used for the results in Sect. 5.5.1, but it relies
on similar hypothesis and can be found in Bienvenue et al. [158].

5.5 Results and Discussion

5.5.1 Energy spectrum of electrons

Reproducing the energy spectra of charged particles in matter poses a significant challenge in
deterministic transport, even with high-order energy discretization [47]. Lazo et Morel have
applied the DG1 scheme to the discretization of the CSD operator [48]. While improvement is
observed where the classical DD0 scheme produces oscillation, this scheme produces a negative
flux dip at a high-energy part of the spectrum. This is, therefore, a valuable benchmark to
evaluate the performance of the 2D adaptive scheme. These results were presented at M&C
2023 conference [158].
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Figure 5.8 Electron energy spectra at various depths: comparison of different closure relations
with 40 energy groups and 40 voxels. Reference curves, shown in black, correspond to the
Monte Carlo solutions, while colored spectra denote results from the BFP solver. Figure
reproduced from [158].

The benchmark comprises a 10 MeV electron beam incident normally on water in a 1D slab
geometry. Therefore, the 1D Boltzmann transport equation generates a 1D finite element,
while the 1D BFP equation generates a 2D finite element. The electron cross-sections and
stopping powers are obtained from CEPXS-BFP [16, 210]. A P15 Legendre order and a 1
keV cutoff energy are employed. In the geometry, the water slab has a length of 8 cm. An
S16 Gauss-Legendre quadrature and a convergence criterion of 10−7 are used for the discrete
ordinates computational scheme. The constant and linear DD, DG and AWD schemes are
compared in coarse (40 energy groups and 40 voxels) and fine (300 energy groups and 160
voxels) discretization at different depths. The energy and spatial domains are discretized in
meshes of the same size. They are presented in Fig. 5.8 and Fig. 5.9. The reference curves
are obtained using GEANT4 [42] Monte Carlo calculations, simulating 1 million incident
particles, using 80 and 400 scoring cells in space and energy, respectively. The PENELOPE
physics model is used [211]. The AWD0 is the scheme of Carlson [177] with the monotonicity
parameters from Voloschenko et Germogenova [197], chosen to be b = 3. The higher this
parameter is, the lower the accuracy, but the higher the monotonicity.

While enforcing monotonicity and positivity, the step scheme (DG0) cannot replicate the
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Figure 5.9 Electron energy spectra at various depths: comparison of different closure relations
with 300 energy groups and 160 voxels. Reference curves, shown in black, correspond to the
Monte Carlo solutions, while colored spectra denote results from the BFP solver. Figure
reproduced from [158].

energy spectra, even with very fine meshes. The constant and linear DD schemes are better
at reproducing the spectra peaks, which is expected for the best accuracy scheme for their
respective order [157,204], but they suffer from spurious oscillations. The DD1 scheme oscil-
lations are, as expected, less predominant than the one of the DD0. Unexpectedly, they are
not lessened by a finer discretization but rather the opposite. This non-intuitive behaviour is
noted by Petrović et Haghighat [208] that proved that these oscillations, for the DD0 scheme,
remain important for any mesh refinement, even as hx → 0. It can be expected that the
high-order DD schemes share this property with the DD0 scheme. The DG1 and DD2 exhibit
less oscillation than the DD schemes, but they generate a negative flux dip at the higher-
energies part of the spectrum. As seen in the following section, this can have consequences
when this solution is used to estimate energy or charge deposition. The DG scheme is also
prone to oscillation when the flux strongly decreases. The AWD0 strictly enforces positivity,
but it lacks accuracy, which makes it unable to converge the energy spectra, even using very
thin meshes. Still, it is a valuable alternative to the DD and DG schemes if one can afford
the computational burden of increasing the flux polynomial expansion order in space and
energy. The AWD1 scheme produces a positive and monotone solution on this challenging
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benchmark, even if the proposed scheme is neither positive nor monotone. It can be seen that
the scheme keeps most of the DG1 scheme while correcting the negative dip at the right of
the energy spectra peak. The AWD1 scheme was also used to produce the energy spectrum
in Figs. 3.10 to 3.12. It can be seen that the blue curve on the electron energy spectra in
Fig. 3.12-C exhibits a non-physical oscillation around 100 MeV, which shows that there are a
few cases where the scheme does not lead to a strictly positive and monotone solution. The
AWD1 scheme remains very useful for energy spectrum comparison with Monte Carlo since
it eliminates non-physical artifacts.

5.5.2 Energy deposition

The choice of scheme also has a significant impact on energy deposition calculations. The
proposed benchmark comprises a 10 MeV electron beam incident normally on water in a 1D
slab geometry. The electron cross-sections and stopping powers are obtained from the cross-
sections developed in Chap. 3. A P15 Legendre order and a 1 keV cutoff energy are employed.
In the geometry, the water slab has a length of 9.95 cm. An S16 Gauss-Legendre quadrature
and a convergence criterion of 10−7 are used for the discrete ordinates computational scheme.
The energy domain is divided into 20 or 100 logarithmically spaced energy groups, while the
spatial domain is divided into 20 or 100 linearly spaced voxels. The reference curves are
obtained using GEANT4 Monte Carlo calculations and the PENELOPE physics model. The
energy deposition solutions, based on the DD, DG, SM and AWD schemes up to linear order,
are shown in Fig. 5.10.

The positive and monotone DG0 scheme is, as expected, highly inaccurate in all cases. The
energy deposition profile is better characterized by constant DD1 scheme, but its solution is
contaminated by intense spurious oscillations. Predicting the oscillatory behavior of the DD0

solution for a given discretization is not an easy task and, therefore, this method should be
used very carefully. The AWD0 scheme, the compromise between the DG0 and DD0 schemes,
damped most of the DD0 oscillations while retaining most of its accuracy. However, as shown
in the case 100g-20x, it can still lead to inaccurate results because it does not enforce 2nd-order
accuracy. The linear SM1 offer such accuracy while being free of the inherent DD oscillations,
but it exhibits intense negative flux dip near x = 6 cm. The linear DG1 scheme gives similar
results, but the negative flux dip is lower and accuracy is better. The linear DD1 scheme
improve accuracy even more, but spurious oscillations, typical of DD schemes, are observable
(rightmost graph for case 20g-100x and middle one for case 100g-20x). The proposed AWD1

scheme is positive and monotone for every benchmark. It is the only 2nd-order accurate
scheme to avoid the negative flux dip near x = 6 cm.
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Figure 5.10 Comparison of discretization refinements and closure relations for energy deposi-
tion in water by 10 MeV incident electron beam. The black line is the Monte Carlo reference.
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5.6 Conclusion and Perspectives

In this part of the thesis, the Boltzmann and the BFP transport equations are discretized
using the Galerkin method of weighted residuals for any polynomial order expansion of the
flux in space and energy. Linear 2nd-order accurately weighted schemes are developed based
on constant-linear flux representation in 1D and 2D meshes. An adaptive choice of weights is
proposed, leveraging the properties of these schemes. In the 1D case, the maximum accuracy
positivity-enforcing weighting factors are found. In the 2D case, the relation between sources
and flux moments is way more intricate than in 1D, and positivity-enforcing weighting factors
are still to be discovered. Nevertheless, improved positivity and monotonicity can be obtained
by extrapolating the conclusion of the 1D case to the 2D case. The resulting scheme is neither
strictly positive nor monotone, but it significantly improves the non-adaptive scheme while
enforcing strict 2nd-order accuracy.

Finding a positive and monotone 2nd-order accurate scheme for the transport equation is
a long-standing problem [47, 162]. The proposed 2D weighted scheme seems to have the
potential to address this challenge, as shown by its uses throughout this thesis. Proving that
positivity can or cannot be enforced strictly by this 2D weighted scheme remains an open
question. The methodology to develop this 1D and 2D weighted scheme, using linear-constant
flux expansion, could be used to develop similar schemes on 3D meshes (for 3D Boltzmann,
along x, y and z axis, and 2D BFP equation, along x, y and E axis) and in 4D meshes (for 3D
BFP equation, along x, y, z and E axis). It is unclear if the resulting scheme can be written
analytically as for the 1D and 2D schemes. Likewise, developing mixed schemes, linear along
some axes and constant along others, and adaptive schemes for them could be interesting.
For example, based on very fine 3D voxels such as the one expected from CT or MRI images,
it could be sufficient to use a constant expansion for the flux in space while using a linear
expansion in energy. Finally, while high-order expansion of the flux in energy was considered
in this section, higher-order expansion of the stopping powers and total cross-sections in each
energy cell could be considered, which would further increase the accuracy with coarse energy
meshes. However, it should be noted that while the weighted scheme is fully compatible with
the general polynomial expansion of these stopping powers and total cross-sections in each
energy cell, the adaptive choice of weights proposed in this section depends on it. This would
deserve further investigation if one wants the adaptive schemes to be compatible with the
generalized multigroup approach.
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CHAPTER 6 CONCLUSION

6.1 Summary of Works

In this dissertation, algorithms for the BFP equation were developed to address identified
shortcomings in producing coupled photon-electron-positron multigroup cross-sections in the
angular discretization and the choice of closure relation. The main goal was to propose a
tool to make determinist transport more reliable for RTP applications.

The production of accurate coupled photon-electron multigroup cross-sections was, until
then, monopolized by the CEPXS code. Since 1989, most innovative research has come from
the transport solver, but improvement in the produced cross-sections has yet to be made,
whereas Monte-Carlo physics models have significantly evolved. Nonetheless, multiple issues
within its multigroup methodology were identified, and its proprietary nature hinders the
implementation of newer models and methods. A novel coupled photon-electron-positron
multigroup cross-sections code for the BFP equation, RADIANT, was developed. It includes
improved physics models for impact ionization, elastic scattering of electrons and positrons,
bremsstrahlung, annihilation, Rayleigh scattering, Compton scattering, photoelectric effect,
pair production and relaxation cascades. Explicit atomic data for positrons is defined. A
novel definition for the soft and catastrophic domains was proposed to give an unambiguous
definition of soft-stopping powers at boundaries. An updated and more accurate energy de-
position formula is proposed. These methods were then used for BFP transport calculations,
and their solutions, which consisted of energy deposition profiles and energy spectrum at
various depths per particle species, have shown, compared to Monte-Carlo calculations, the
capabilities of these cross-sections to replicate the distribution of particle and of energy in
the medium.

Discretizing the angular domain of the transport equation, notably in multidimensional ge-
ometry, can be very challenging for classical discrete methods such as the one used in RTP.
Electrons and positrons have highly forward-peaked scattering, and such scattering can lead
to inaccurate results or even divergence of the SI process. The Galerkin quadrature method,
which solves the leading issues with the SN method, has been implemented and is compatible
with any quadrature choice. Nonetheless, it was also observed that such scattering leads to
significant monotonicity issues that can contaminate the energy deposition solution. To solve
that issue, a monotone and moment-preserving finite-difference scheme has been developed
for the AFP operator, based on a Voronoi tessellation of the unit sphere and compatible
with nonorthogonal quadrature, to treat the forward-peaked component of the scattering.
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These methods were shown to be very successful in tackling issues related to forward peaked
scattering while enabling the use of efficient optimal quadrature.

The distribution of particles in space and energy varies enormously over small distances or en-
ergy changes in electron and positron transport problems. This is numerically troublesome,
even using high-order DG-FEM, leading to negative energy deposition values and the in-
ability to replicate energy spectra. Adaptive second-order accurate linear schemes have been
developed and defined over 1D and 2D meshes, addressing non-adaptive schemes’ monotonic-
ity and positivity issues. Compared to calculations with non-adaptive schemes and Monte
Carlo references their results show that adaptive schemes can give positive and monotone
solutions, whereas second-order non-adaptive schemes fail.

In summary, this work proposed improved atomic data for particles of interest in RTP,
a robust and efficient angular discretization for multidimensional transport, and accurate
adaptive schemes for space and energy to mitigate parasite oscillations and negativities in
solution.

6.2 Future Research

This work is not a dead end; on the contrary, it is a springboard toward developing new
capabilities. While providing key advancements, the presented work is not without flaws,
nor could it be directly applied for usage in clinical RTP systems.

For cross-section production, there are many limitations to the presented work. The leading
one is the treatment of annihilation when positrons scatter under the cutoff. The absence
of annihilation photons for soft positrons absorption with positron beams, could lead to
substantial errors. Tackling this problem will require further investigations into developing
better impact ionization models for small energy losses or some under-the-cutoff transport
capabilities. The RADIANT package provides an open-source environment that will facilitate
the development of improved physics models. More realistic cross-sections can be obtained
for Compton scattering based on the subshell-dependant relativistic impulse models of Brusa
et al. [146], with the related relaxation cascades. Its decomposition in soft and catastrophic
components could also be investigated to see if it improves the calculations of high-order
moments. The quality of the elastic cross-section should be further explored and compared
to Monte Carlo calculations relying on state-of-the-art models. It could also be interesting to
extend the RADIANT solver to generalized multigroup cross-sections, including high-order
moments of the cross-sections in energy since high-order expansion in energy would require
only minor changes in the development presented in Chap. 5. Finally, the development of
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cross-sections for low-energy (< 1 keV) applications or very-high energies (> 200 MeV) and
for other particles like protons, neutrons, and pions would extend the range of application of
deterministic methods. The development of a coupled cross-section library including protons
could be beneficial for proton therapy, which is likely to become more common in the years
to come.

For the transport solver, many challenges remain toward an efficient general-purpose tool for
RTP. The proposed adaptive schemes are beneficial for testing cross-section models, but 3D
and 4D extensions would be necessary, which is not straightforward. An adaptive mixed lin-
ear (energy) and constant (in 3D space) scheme could, however, be of interest for RTP since
3D images are already composed of small voxels, and developing a strictly positivity-enforcing
scheme should not cause too many difficulties. Ray effect remains an outstanding challenge
with the discrete ordinates, and new ideas will be required to offer a satisfying solution to that
problem. Until then, it still can be mitigated using conservative First Collision Source (FCS)
methods. Another critical problem not addressed in this thesis is inner-iteration accelera-
tion with highly-forward-peaked scattering. Improving the convergence of such methods in
multidimensional geometries could help to make calculations faster. For clinical usage, par-
allelization over multiple CPUs or GPUs could be necessary to accelerate the calculations,
and the development of such capabilities should be further investigated. Another crucial
development would be a tool to estimate the error of the deterministic calculations, which is
currently lacking. Some applications, such as MRI-guided radiotherapy, can require the in-
clusion of external magnetic and electric fields. St-Aubin et al. [23], and Pautz et al. [34] have
proposed additional terms to add to the transport equation. Developing moment-preserving
schemes, as the one for the AFP, is also a fascinating subject of study.
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APPENDIX A POLYNOMIALS

Legendre polynomials

The Legendre polynomials, noted Pℓ(x) for ℓ ≥ 0, are a complete and orthogonal system
defined over x ∈ [−1, 1] such as

∫ 1

−1
dxPℓ(x)Pℓ′(x) = 2

2ℓ + 1δℓ,ℓ′ (A.1)

where δℓ,ℓ′ is the Kronecker delta. They also can be defined as the eigenfunctions of the
Legendre’s differential equation

d

dx

[
(1− x2) d

dx

]
Pℓ(x) = −ℓ(ℓ + 1)Pℓ(x) (A.2)

The Legendre polynomials can be calculated using the Bonnet’s recursion formula with

Pℓ(x) =



1 ℓ = 0

x ℓ = 1[
2ℓ− 1

ℓ

]
xPℓ−1(x)−

[
ℓ− 1

ℓ

]
Pℓ−2(x) ℓ ≥ 2

(A.3)

It can be shown that the Legendre polynomials are bounded by [212]

|Pℓ(x)| ≤ 1 (A.4)

The ℓ-order Legendre moments of a function f(x) can be defined as

fℓ =
∫ 1

−1
dxPℓ(x)f(x) (A.5)

and, if the function f(x) is positive, triangle inequality applied to integral and using the
Legendre polynomial upper bound, we can show the following inequality for ℓ ≥ 1 Legendre
moments

|fℓ|
f0

=

∣∣∣∣∫ 1

−1
dxPℓ(x)f(x)

∣∣∣∣
f0

≤

∫ 1

−1
dx |Pℓ(x)| f(x)

f0
≤ 1 (A.6)
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Normalized Legendre polynomials

The normalized Legendre polynomials, noted P̃ℓ(x) for ℓ ≥ 0, are a complete and orthogonal
system defined over x ∈ [−1/2, 1/2] such as

∫ 1/2

−1/2
dxP̃ℓ(x)P̃ℓ′(x) = δℓ,ℓ′ (A.7)

They can be calculated using the following recursion formula [157]

P̃ℓ(x) =



1 ℓ = 0

2
√

3x ℓ = 1

2
√

2ℓ + 1
2ℓ− 1

[
2ℓ− 1

ℓ

]
xP̃ℓ−1(x)−

√
2ℓ + 1
2ℓ− 3

[
ℓ− 1

ℓ

]
P̃ℓ−2(x) ℓ ≥ 2

(A.8)

An upper bound for the size of the normalized Legendre polynomial can be derived from the
one of the classical Legendre polynomial and is given by

∣∣∣P̃ℓ(x)
∣∣∣ ≤ √2ℓ + 1 (A.9)

The ℓ-order normalized Legendre moments of a function f(x) can be defined as

fℓ =
∫ 1

−1
dxP̃ℓ(x)f(x) (A.10)

and, if the function f(x) is positive, triangle inequality applied to integral and using the
normalized Legendre polynomial upper bound, we can show the following inequality for
ℓ ≥ 1 Legendre moments

|fℓ|
f0

=

∣∣∣∣∣
∫ 1/2

−1/2
dxP̃ℓ(x)f(x)

∣∣∣∣∣
f0

≤

∫ 1/2

−1/2
dx
∣∣∣P̃ℓ(x)

∣∣∣ f(x)

f0
≤
√

2ℓ + 1 (A.11)

Associated Legendre polynomials (Ferrer definition)

The associated Legendre polynomials, using the Ferrer definition in which the factor (−1)m

is absent, is given by

P m
ℓ (x) = (1− x2)m/2 dm

dxm
Pℓ(x), 0 ≤ m ≤ ℓ (A.12)
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To compute this term numerically, one can initially use the following identity (from [194],
Eq. 15.93)

P m
m (x) = (1− x2)m/2(2m− 1)!! = (1− x2)m/2

m∏
k=1

(2k + 1) (A.13)

If ℓ = m, then computation is over, otherwise, one should use this second identity (from [194],
Eq. 15.94)

P m
m+1(x) = (2m + 1)xP m

m (x) (A.14)

If ℓ = m + 1, then computation is over, otherwise, this third identity (from [194], Eq. 15.88)
iteratively can, since m ≤ ℓ, be use for all other case

P m
ℓ (x) = (2ℓ− 1)xP m

ℓ−1(x)− (ℓ + m− 1)P m
ℓ−2(x)

ℓ−m
(A.15)

Real spherical harmonics

The real spherical harmonics, noted Rm
ℓ (µ, ϕ) for ℓ ≥ 0 and |m| < ℓ, are a complete and

orthogonal system defined over µ ∈ [−1, 1] and ϕ ∈ [0, 2π] such as
∫

4π
d2ΩRm

ℓ (Ω)Rm′

ℓ′ (Ω) = 4π

2ℓ + 1δℓ,ℓ′δm,m′ (A.16)

They also can be defined as the eigenfunctions of the Laplace equation given by[
∂

∂µ

[
(1− µ2) ∂

∂µ

]
+ 1

1− µ2
∂2

∂ϕ2

]
Rm

ℓ = −ℓ(ℓ + 1)Rm
ℓ (A.17)

The real spherical harmonics are given by [50]

Rm
ℓ (Ω) =

√√√√(2− δm,0)
(ℓ− |m|)!
(ℓ + |m|)!P

|m|
ℓ (µ)Tm(ϕ) (A.18)

with

Tm(ϕ) =

cos mϕ, m ≥ 0

sin |m|ϕ, m < 0
(A.19)
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APPENDIX B QUADRATURES

Gauss-Legendre quadrature

The N -order Gauss-Legendre quadrature is defined over x ∈ [−1, 1]. It gives exact result
for polynomial of degree 2N − 1 or less. The i-th node xi correspond to the i-th root of
the Legendre polynomial PN(x). It can be found using Newton iteration method, if a good
choice of initial node is done. Such a choice is proposed by Tricomi [213,214]:

x0
i =

[
1− N − 1

8N3 −
1

384N4

(
39− 28

sin2(ϕi)

)]
cos(ϕi) (B.1)

with
ϕi = π

2

( 4i− 1
2N + 1

)
(B.2)

The derivative of Legendre polynomial, needed for the Newton method, is given by

P ′
N(x) = N (PN−1(x)− xPN(x))

1− x2 (B.3)

Finally, the weights are given by

ωi = 2
(1− x2

i ) (P ′
N(xi))2 (B.4)

Gauss-Lobatto quadrature

The N -order Gauss-Lobatto quadrature is defined over x ∈ [−1, 1]. It gives accurate result
for polynomial of degree 2N − 3 or less. The i-th node xi correspond to the (i − 1)-th root
of the Legendre polynomial derivative P ′

N−1(x). The first and last node are respectively
x1 = −1 and xN = 1. It can be found using Newton iteration method, if a good choice of
initial node is done. A good choice of initial value is

xi = cos
(

(i− 1) π

N − 1

)
(B.5)

The second derivative of Legendre polynomial, needed for the Newton method, is given by

P ′′
N(x) = 2xP ′

N(x)−N(N + 1)PN(x)
1− x2 (B.6)
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Finally, the weights are given by

ωi =


2

n(n− 1) (PN−1(xi))2 xi ̸= ±1
2

n(n− 1) otherwise
(B.7)

Product quadrature with Chebychev azimuthal quadrature

The N -order product quadrature with Chebychev azimuthal quadrature is defined over the
unit sphere. This method is symmetric over 8 octants and has no evaluation point along the
reference frame axis. The points distribution over the sphere is uneven. The quadrature has
N level containing 2N points each. The total number of directions is

Nd = 2N2 (B.8)

For a level n ∈ 1, .., N and the point m ∈ 1, .., 2N on that level, corresponding to an index
i = 2N(n− 1) + m, with µn and wn being the nodes and weights of the N -order quadrature
over a line segment (e.g. Gauss-Legendre), the direction cosines are given by

µi = µn

ηi =
√

1− µ2
n cos(ϕm)

ξi =
√

1− µ2
n sin(ϕm)

(B.9)

where
ϕm = (2m− 1)π

2N
(B.10)

and the corresponding weight is given by

wi = wn
π

N
(B.11)

Carlson quadrature

The Carlson quadrature [177] is defined over the unit sphere and require less evaluation point
than product quadrature. This method is symmetric over 8 octants and has no evaluation
point along the reference frame axis. In the octant with positive cosines, with N -order
Carlson quadrature, the weight are given by

ωm = 4(N − 2n + 2)
N(N + 2) (B.12)
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with m ∈ {1, N/2}. The main director cosine is given by

µm = µ̄m + fµm−1/2 (B.13)

with
µ̄m = 1− (N − 2n + 2)2

N(N + 2) (B.14)

and
µm−1/2 = 1− (N − 2n + 2)(N − 2n + 4)

N(N + 2) (B.15)

The factor f is determined by finding the root of the following equation

N/2∑
m=1

ωmµ2
m = 1/3 (B.16)

using the Newton-bisection presented in Section C. The two other director cosines are given

ηm,k =
√

1− µ2
m sin θm,k and ξm,k =

√
1− µ2

m cos θm,k (B.17)

where
θm,k = π

2

[ 2m− 1
N − 2k + 2An + 1− An

2

]
(B.18)

with k ∈ {1, N/2−m + 1}. The An factors are determined by finding the root of the
following equation

ω0

N/2∑
m=1

N/2−m+1∑
m=1

ηm,k =
N/2∑
m=1

ωmµm (B.19)

using the Newton-bisection presented in Section C.
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APPENDIX C NEWTON-BISECTION METHOD

The Newton’s method is a root-finding algorithm with quadratic convergence, meaning it
is fast, but it is not guaranteed to converge without adequate estimate of the root. The
bisection method is simple and robust, but convergence is slow. It is possible to combine
Newton and bisection methods in order to retain most of the quadratic convergence while
gaining the robustness of the bisection method.

First, we need to establish an interval containing the root of the function f(x), i.e. an interval
[a, b] such that f(a) · f(b) < 0. The estimated root, r0, is given by

r0 =

a, |f(a)| < |f(b)|

b, otherwise
(C.1)

Then, we try to perform a Newton iteration and compute

r = r0 −
f(r0)
f ′(r0)

(C.2)

and, if r /∈ [a, b], then we rather applied the bisection method and recompute r with

r = a + b

2 (C.3)

Finally, we update our bounds substituting either a or b by the value of r such as f(a) · f(b)
stay lower than zero. We repeat the process until |f(r)| < ϵ, where ϵ is a tolerance criterion.
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