
GLOW Current Development State

Davide Manzione1 davide.manzione@newcleo.com
1newcleo SrL, Via Giuseppe Galliano 27, 10129 Torino, Italy

August 30th, 2024



Index

The SALOMON Prototype1 3

The GLOW Project2 11

Conclusions3 20

2



3

The SALOMON Prototype



The SALOMON Prototype

4

• The development of surface geometries for 

lattice calculations is the result of decades of 

R&D in France.

• The initial development of surface geometries 

started in 1993-1994 saw two actors:

• SILENE – Java GUI for creating non-native 
surface geometries.

• TDT – Tool for generating trajectories (tracking) 
of a surface geometry in the APOLLO2 
environment. 

• Several other projects followed this (e.g., 

ALAMOS, SALOMON, etc.).

| R&D on Surface Geometries



The SALOMON Prototype

5

• Part of the DESCARTES project, whose aim was to implement a new assembly calculation scheme by 

means of rapid prototypes based on open-source components (SALOME, Python2, DRAGON2).

• SALOMON main features:

• tool for creating non-native surface geometries for the TDT solver (trajectories tracking);

• based on the API of the GEOM module of the SALOME platform;

• assembled by means of about 1900 Python2 lines.

| Characteristics



The SALOMON Prototype

6

• The SALOMON application proceeds in two steps:

1. Given an input XML file describing the lattice geometry in terms of cells and materials associated with each 
one, a surface representation is generated automatically using the APIs of SALOME's GEOM module.

2. Translation of the GEOM lattice representation into a file in the TDT format used by the APOLLO2 (MOC) 
or DRAGON5 (SALT module) codes.

| Workflow



The SALOMON Prototype

7

• It provides a description of the lattice layout (see <ComponentIDList>) in terms of its cells.

• Each cell (see <Cell>) type has an ID and is described by means of: 

• a list of materials (see <MaterialList>);

• an ID (see <GeomCellID>) associated to an object (see <GeomCell>) in the XML structure describing the cell 
geometry (cell width/height, radii of the cell inner circles).

| Input XML File



The SALOMON Prototype

8

• SALOMON is executed by running a specific shell script (./SALOMON.sh) with the following 

arguments:

• -o <OutputFolder>, used to specify where the output files should be produced;

• <InputXMLFile>, the file with the lattice information to process.

| Execution

• The shell script builds a temporary Python script whose objective is to run the main file of SALOMON 

by passing the command line arguments.

• This temporary Python script is passed as argument to SALOME, so to perform the surface geometry 

conversion.

• It also handles the two main SALOMON execution modes:

• GUI mode – It opens the SALOME GUI so that the lattice geometrical representation can be inspected 
directly;

• Batch mode – SALOME is run without the GUI and SALOMON is executed to produce the output files.



The SALOMON Prototype

9

• After extracting the geometry information and performing the analysis on the lattice, SALOMON 

produces two output files:

• .dat file, describing the lattice surface geometry; it can be used by DRAGON5 directly;

• .mat file, providing a correspondence between the name of the materials and the indices used in the .dat
file.

| Output Files



The SALOMON Prototype

10

| Criticalities

Based on outdated versions of open-source tools:Dependencies

• SALOME v6.6.0

• Python2

Support only to cartesian cell and lattice geometries:

• No hexagonal cases can be handled.

• No support for specific lattice symmetries of interest (S30, RA60, R120 and COMPLETE).

Geometries

• Installation of SALOME and all its pre-requisites.

• Necessity to run a shell script for setting SALOMON environment variables. 

• Necessity to include additional environment variables in the .profile file.

Usability Different configuration steps are needed:



11

The GLOW Project



The GLOW Project

12

• The GLOW (Geometry Layout for OpenCascade Workshops) generator is a tool currently being jointly 

developed by the Polytechnique of Montréal and newcleo.

• Its aim is to offer an open-source alternative to ALAMOS for defining non-native geometries for 

DRAGON5. 

• The main development requirements of GLOW are:

• The output file (.dat) providing the surface geometry representation shall be in the TDT APOLLO2 format.

• GLOW shall be based on Open Cascade, rather than on SALOME.

• The same SALOMON’s two-stage approach, as proposed by Yann Pora, shall be used.

• The first production version shall target hexagonal geometries.

| Development Requirements



The GLOW Project

13

• Four steps have been identified to drive the development:

1. Analysis of the SALOMON prototype workflow.

2. Adaptation of the SALOMON prototype to Open Cascade functions, instead of the SALOME ones (still 
considering cartesian geometries).

3. Creation of an XML syntax to describe assemblies and colorsets for hexagonal geometries.

4. Generalization of the prototype to address to all kind of hexagonal geometries (S30, RA60, R120 and 
COMPLETE) with 2D housing and/or stiffeners.

| Development Steps



The GLOW Project

14

• To get a clear understanding of the SALOMON workflow, the original version has been ported to 

comply with the latest versions of both SALOME (v9.12.0) and Python3 (v3.11).

• Some additional activities have been performed to support a clean and functioning version of 

SALOMON:

• Bug fixing.

• Moved project to Git local repository.

• Added Python docstrings to document the code in English.

• SALOMON.sh script restructure to include: 

o All the paths to the needed SALOME modules (setting of environment variables are no longer required).

o Proper handling of the two SALOME modes according to what required by the latest version.

• All the modifications and the updates introduced to the old SALOMON version has been tested so that 

the output geometry conversion still produces compatible results for the MOC analysis.

| 1. SALOMON Workflow Analysis



The GLOW Project

15

• Having updated and made SALOMON work with the latest dependencies, a proper analysis of its 

workflow has been realised.

• Use of UML (Unified Modelling Language) methodologies to address the task:

• It provides a standardized way for describing software in a visual format.

• Different set of diagrams are present to help software developers in documenting the elements and 
features of a software.

| 1. SALOMON Workflow Analysis Representation

• Activity diagrams have been derived for this purpose. 

They show the sequence of performed operations in 

a block format, with arrows connecting two or more 

operations logically.



The GLOW Project

16

• Different level of decomposition and 

complexity can be represented.

• The aim is to understand how the software 

operates so to: 

• identify any criticality to address to by 
restructuring the code;

• identify all the geometrical operations
performed by the GEOM module of 
SALOME to replicate them using the Open 
Cascade functionalities.

| 1. SALOMON Workflow Analysis Representation



The GLOW Project

17

• The Open CASCADE Technology (OCCT) is an object-oriented C++ class library designed for 

domain-specific CAD applications.

• It provides functionalities to address 2D/3D geometric modelling.

• It represents the base upon which the SALOME functions are built.

• To use OCCT functions within GLOW, a proper Python wrapper library is needed: the pythonocc

library has been selected.

• pythonocc provides a full access from Python to almost all the Open Cascade C++ classes. 

Classes and methods/functions share the same names, and the same signature. In addition, it comes 

with 3D visualization for the most famous Python GUI libraries.

• Having identified all the used SALOME functions, they have been substituted with the corresponding 

OCCT ones from the pythonocc library.

• N.B. A test phase is still required so to assure that the output geometry conversion produces 

compatible results for the MOC analysis.

| 2. Adaptation to Open Cascade



The GLOW Project

18

SALOME

• Pros:

• It comes with a utility that checks the correct 
installation of all prerequisites.

• Functions can be used directly from Python

• It comes with a GUI for both visualizing and 
building of 2D lattice geometries

• Presence of an online comprehensive 
documentation.

• Easiness to use within the code.

• Cons:

• Users need to handle the prerequisites installation 
by themselves

• Lack of information on type of objects from the 
code.

| 2. SALOME VS Open Cascade

Open Cascade

• Pros:

• It comes with a GUI for visualizing the built 2D 
lattice geometries

• Presence of an online comprehensive 
documentation.

• Type of objects are well documented in the Python 
wrapper code.

• Cons:

• Users need to handle the installation procedure of 
both Open Cascade and pythonocc.

• The pythonocc wrapper of OCCT functions is 
needed.

• Presence of several libraries and functions for 
building the same geometrical objects.



The GLOW Project

19

• XML file describing the lattice geometry can cover only specific cases. 

• Complex lattice geometries made of cells with different dimensions or 

built by means of Boolean operations (fuse, intersection, cut) cannot be 

handled.

• No possibility to draw the geometry and convert it directly.

• Decision about the use of SALOME or Open Cascade needs to be taken.

| Discussion Points



20

Conclusions



5. Conclusions

21

• The GLOW project aims at being an open-source alterative to ALAMOS for converting a geometry

lattice representation in the TDT format for successive analyses in DRAGON5.

• Up to now, it is based on the SALOMON prototype two-step approach, i.e. extracting data from an

XML to build the geometry elements and process them to produce a file for DRAGON5.

• The development has been subdivided into 4 steps, the first two of them being already addressed.

• Criticalities have currently emerged, and decisions need to be taken on the direction to take.

Key Takeaways



Thank you for your attention


	Default Section
	Slide 1: GLOW Current Development State
	Slide 2: Index

	The SALOMON Prototype
	Slide 3: The SALOMON Prototype
	Slide 4: The SALOMON Prototype
	Slide 5: The SALOMON Prototype
	Slide 6: The SALOMON Prototype
	Slide 7: The SALOMON Prototype
	Slide 8: The SALOMON Prototype
	Slide 9: The SALOMON Prototype
	Slide 10: The SALOMON Prototype

	The GLOW Project
	Slide 11: The GLOW Project
	Slide 12: The GLOW Project
	Slide 13: The GLOW Project
	Slide 14: The GLOW Project
	Slide 15: The GLOW Project
	Slide 16: The GLOW Project
	Slide 17: The GLOW Project
	Slide 18: The GLOW Project
	Slide 19: The GLOW Project

	5. Conclusions
	Slide 20: Conclusions
	Slide 21: 5. Conclusions
	Slide 22: Thank you for your attention


