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RÉSUMÉ

La connaissance précise du transport des neutrons dans le cœur d’un réacteur nucléaire est
d’une importance cruciale. Celle-ci est nécessaire à la fois lors de l’exploitation industrielle
des réacteurs mais aussi lors des phases de conception de ces derniers. Cette représentation
est obtenue par le biais de simulations numériques modélisant les interactions entre la popu-
lation de neutrons dans le cœur et les matériaux le constituant. Historiquement, différentes
filières font intervenir des codes de calculs différents pour effectuer ces simulations. Par ex-
emple, la filière industrielle des recteurs à eau pressurisée (REP) du parc français s’appuye
sur les codes CEA APOLLO2/CRONOS2. En parallèle, les codes ECCO/ERANOS ont
été développés afin de traiter les problématiques associées aux simulations de Réacteurs à
Neutrons Rapides (RNR). Le développement de l’outil multi-filières APOLLO3 vient rompre
cette logique en proposant un code de calcul neutronique regroupant des outils adaptés au
traitement des Réacteurs à eau légère (REL) conventionnels du parc français, ainsi qu’aux
études menées sur les RNR. Ces derniers ayant historiquement reçu une attention particulière
en France avec Rapsodie, Phénix et Super-Phénix, et plus récemment le projet ASTRID, la
filière des RNR refroidis au sodium (RNR-Na), apparaît comme un candidat intéressant pour
le futur du parc nucléaire français, s’inscrivant dans une optique de fermeture du cycle du
combustible. Le développement et la validation de méthodes numériques robustes apparais-
sent donc nécessaires aux études concernant ces derniers. La modélisation des configurations
accidentelles est d’une importance particulière dans la phase de conception de cœurs. Un
type d’accident particulièrement complexe à traiter lors des modélisations neutroniques d’un
cœur de RNR-Na est la perte de caloporteur sodium. La prise en compte des zones vides, les
effets axiaux associés à l’effet de vidange, ainsi que l’hétérogénéité axiale du cœur introduites
dans les concepts RNR-Na, représentent un nouveau défi pour la simulation du transport
neutronique. L’étude menée dans le présent ouvrage vise à comparer les différentes méth-
odes implémentées dans APOLLO3, dans le but de définir et valider un schéma de calcul
neutronique à deux étapes. Celui-ci doit permettre la modélisation précise de conditions acci-
dentelles en RNR-Na. Les schémas de calcul étudiés se décomposent de la manière suivante,
premièrement un calcul de flux sur une géométrie d’assemblage est effectuée. Ce dernier est
réalisé sur un maillage énergétique fin. Cette première étape permet d’obtenir des sections
efficaces homogénéisées en espace et condensées en énergie, characterisant les milieux étudiés.
Ces sections efficaces peuvent ensuite être utilisées afin d’effectuer un calcul de cœur entier
sur un maillage énergétique à 33 groupes. Le cœur simulé est l’"ANTOINID", inspiré des
versions 1 et 2 du "cœur faible vidange" (CFV) du projet ASTRID. Une attention partic-
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ulière est portée à l’influence des hypothèses émises lors du calcul d’assemblage en réseau
infini. Lors des calculs d’assemblages en 2D, l’hypothèse d’homogénéisation radiale directe
à l’échelle de l’assemblage est testée et différentes combinaisons de solveurs et modèles de
fuites sont introduites. Une représentation 2D+1D est adaptée aux assemblages ANTOINID
et sa capacité de représentation des effets axiaux est évaluée. Dernièrement, les hypothèses
introduites par trois solveurs cœur, MINARET, NYMO et MINOS sont testées. Une analyse
des bias associés à la discrétisation de la variable angulaire est effectuée. Les méthodes SN et
PN étant implementées dans MINARET et NYMO rspectivement, et les approximations de
diffusion et de transport simplifié (SPN) étant disponibles dans MINOS. Les biais introduits
sur l’effet de vidange sodium ainsi que sur les taux de fission sont analysés. Ces derniers sont
obtenus par comparaison avec le code stochastique TRIPOLI-4, aussi développé au CEA, qui
servira de référence tout au long de l’étude.

Cette dernière révèle que l’hypothèse d’homogénéisation radiale directe des sous-assemblages
testée n’est valide que dans le contexte d’un calcul en réseau infini, sans modèle de fuites.
De plus, il apparaît que l’utilisation d’un modèle de fuite B1 homogène ne permet pas de
capturer l’intégralité des effets axiaux en configuration vidangée. Ceci est révélé par l’étude
des schémas "SCRAP" et "MOC2DHom" dont les limitations vis-à-vis du calcul de l’éffet de
vidange sont mises en évidence dans le Chapitre 3. Parallèlement, il semble que l’utilisation
d’un modèle de fuites hétérogènes en tandem avec une condensation des sections efficaces
par les moments angulaires du flux soit à privilégier. En effet, les résultats obtenus grâce au
schéma "MOC2DHet" indiquent une nette amélioration lors du calcul de l’effet de vidange
sodium, ces résultats sont présentés au Chapitre 4. Ce dernier point apparaît aussi dans
le cadre du modèle "2D1D Hybride" également présenté au Chapitre 4. Malheureusement,
les résultats obtenus par l’intermédiaire du schéma réseau "2D1D complet" ne sont pas satis-
faisants et une analyse fine du code est en cours pour en determiner l’origine. La comparaison
est ensuite portée aux solveurs coeur entiers. Les résultats obtenus grâce à MINARET et
NYMO sont très similaires, revelant ainsi l’efficacité de la méthode PN de NYMO perme-
ttant une réduction du temps de calcul et de l’occupation mémoire. Les méthodes SP3 et
de diffusion de MINOS montrent aussi des résultats impressionant, allant même jusqu’à être
plus précises que les méthodes SN et PN pour l’évaluation de l’effet de vidange sodium.
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ABSTRACT

Reliable neutron transport calculations are of crucial importance for various branches of
nuclear engineering. Although design and accidental transient studies require different types
of performances in terms of time and precision, the quantifying of biases associated with
numerical simulations remains a key aspect of a neutronics code validation study. Historically,
different codes were developed at CEA to treat the various reactor designs. For example,
the APOLLO2/CRONOS2 codes are used for industrial applications to the french park of
Pressurized Water Reactors (PWR). On the other hands, codes such as ECCO/ERANOS
were developed at CEA with the aim of treating difficulties associated with the simulation of
Sodium Fast Reactors (SFRs). The development of the multi-purpose code APOLLO3 aims
at combining methods and solvers involved in simulating both traditional water reactors and
so called "Generation 4" designs. With SFR designs benefiting from a particularly dense
experimental feedback in France, with the likes of Rapsodie, Phénix or Super-Phénix, they
appear as interesting candidates for the future of the french nuclear industry. Maintaining,
developing and validating robust methods in APOLLO3 to simulate such cores appears as a
necessity for the future development of SFRs. With respect to numerical simulations, some of
the most challenging situations occur in the event of accidental conditions, specifically in the
presence of voided coolant channels. It goes without saying that the accurate representation
of a loss of coolant accident (LOCA) is of prime importance for safety studies on advanced
designs. The effect of a LOCA, along with axial heterogeneity of fuel assemblies such as
ASTRID CFV’s, represent a challenge for neutron transport simulation. This study’s aim
is to compare various methods implemented in the APOLLO3 framework, in order to define
and validate a neutronic calculation scheme suited for the study of accidental conditions in
SFRs. The core used as reference is the "ANTOINID", a simplified and adapted version of
ASTRID CFV versions 1 and 2. In order to guarantee more flexibility, the scheme must
follow a two steps architecture. The first step is the lattice calculation performed at the
assembly level on a fine energy mesh and with a precise spatial representation. This step
assumes the fuel assemblies to be in an infinite lattice of self-repeating geometries. The second
step is a full core calculation, performed on a coarse 33 groups energy mesh with assemblies
homogenized in space. Analysis of full core calculation results allow for the testing of various
hypotheses made at the lattice step. For two dimensional lattice calculations, the spatial
homogeneity of fuel assemblies is tested and different neutron leakage models are tested. A
2D+1D approach is implemented to represent axial heterogeneity in the assemblies. This
representation’s capabilities at predicting axial streaming effects is assessed. For each lattice
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scheme, hypotheses introduced by three full core solvers available in APOLLO3 are tested.
MINARET and NYMO solvers are used for exact transport calculations, using SN and PN

angular representations respectively. MINOS solver’s performances are also tested, both
in diffusion and simplified transport (SPN) treatments. Biases introduced by the lattice
scheme and core solver choice are analyzed through comparison with reference Monte-Carlo
TRIPOLI-4 results. Particular attention is paid to the biases on reactivity induced by sodium
voiding, as well as those associated with fission rates in fuel assemblies.

Results show that the fuel assemblies’ radial homogeneity hypothesis is valid in an infinite
lattice, when neutron leakage is not considered. However, this description does not give sat-
isfying results at the full core step, as the homogeneous flux calculation only allows for the
use of a B1 homogeneous leakage model. Indeed, the homogeneous leakage model appears
unsuited to represent important axial effects associated with the voided configurations. This
is highlighted by results presented in Chapter 3 which show the limitations of the "SCRAP"
and "MOC2DHom" lattice schemes. It appears that a B-heterogeneous leakage model com-
bined with assembly homogenization and energy condensation by the flux’s angular moments
would be more suited to describe the anisotropic leakage through voided channels. This can
be concluded from the analysis of results obtained from the "MOC2DHet" scheme presented
in Chapter 4. The hybrid version of the 2D+1D model, also presented in Chapter 4, confirms
this observation and shows the benefits of the 2D1D formalism when representing axial reflec-
tors. However, the Full 2D1D scheme does not show satisfying results at the full core step, as
it fails to predict the sodium void effect on reactivity. Additional work would be required to
understand the biases introduced by the full 2D1D representation. full core solvers are also
compared. The exact transport solvers MINARET and NYMO display highly similar results
in terms of effects on reactivity and fission rates. This shows the efficiency of the PN method
implemented in NYMO as it greatly reduces memory requirements and computational time
for the same full core problem. Additionally, MINOS diffusion and SP3 results give surpris-
ingly good results when it comes to estimating the sodium void effect on reactivity, even
outperforming MINARET and NYMO in terms of precision.
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CHAPTER 1 INTRODUCTION

1.1 Context of the present research

This work has been sponsored by CEA®, Cadarache. It was performed during a six months
internship at LEPh (Laboratory of Physical Studies), under Jean-François Vidal’s supervi-
sion. All results stemming from APOLLO3® and TRIPOLI-4® codes remain the property
of CEA®.

1.1.1 Foreword about CEA®

CEA® is a french research organization specialized in energy engineering. Historically, CEA®
has been particularly invested in research backing up the french nuclear energy industry. The
work presented in this dissertation has been done in the Département d’Etudes des Réacteurs
(DER), in the Service de Physique des Réacteurs et du Cycle (SPRC) at the Laboratoire
d’Etudes de Physique (LEPh) at CEA Cadarache.

1.1.2 Elements of context : reactor physics

Reactor physics is the branch of nuclear engineering that focuses on developing the neces-
sary mathematical and numerical methods needed to perform nuclear reactor simulations. A
panel of tools are at the engineer’s disposal in order to provide precise and reliable simula-
tions, relevant to contexts ranging from reactors’ conceptual design, to analysis of accidental
transients [1]. As it often goes, the benefits of a more precise calculation comes with the
drawback of longer computation times. Indeed, the time constraints associated with oper-
ating an industrial reactor are not compatible with stochastic codes and rely on the ability
of deterministic ones to perform simulations at a required precision, within a specific time
constraint. In both cases, the complexity lies in the numerical simulation of neutron trans-
port in a nuclear reactor. The stochastic approach relies on the Monte Carlo integration
method. Each neutron’s history is simulated and probabilities of events are drawn from
randomly generated numbers. The deterministic way focuses on discretizing and solving the
Boltzmann Transport Equation for neutrons. Reactor physicists therefore rely on the pro-
cess of numerical verification and validation (V&V) through the comparison of deterministic
solutions with a reference stochastic solution. Optimization of deterministic computational
schemes for specific reactor designs thus appears to be a crucial part in the process of simu-
lating advanced reactor concepts. This work focuses on the open Sodium-cooled Fast Reactor
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(SFR) "ANTOINID" design and more particularly in the simulation of its accidental condi-
tions. Three of the main hypotheses associated with deterministic calculations are tested in
a static, uncoupled approximation.

This approach is driven by the development of a new generation deterministic code at CEA,
APOLLO3® (AP3). Its aim is to regroup the collection of numerical methods and solvers
required to simulate both "traditional" water moderated reactors, as well as new generation
reactors [2]. AP3 capabilities and performances will there be investigated in a V&V approach
with Monte Carlo (MC) code TRIPOLI-4® (T4) [3] as a reference.

1.1.3 GEN IV: Sodium Fast Reactors

The concept of SFRs has been explored throughout the second half of the XX th century
with various experimental reactors built, as well as reactors that saw industrial success, such
as the french Phénix and Super-Phénix. As opposed to water-moderated thermal reactors
which control neutron balance by slowing them down, through collision in water, the so called
fast reactors precisely aim at limiting the neutron slowing down effect. This constrains the
choices of possible coolants since it needs to be a good thermal conductor but also have
limited probabilities of interacting with neutrons. These constraints have historically lead to
considering Liquid Metal Fast reactors as good candidates. Indeed, SFRs have been selected
as one of the six technologies envisioned for the future generation of nuclear fission reactors
by the Generation IV International Forum [4]. The use of sodium as a moderator is justified
by its excellent thermal conductivity [5], its relatively high critical temperature [6] as well as
its low neutron absorbing properties.

International interest for SFRs lies in the fact that they open the possibilities to operate
in breeder or burner mode, depending on the fuel optimization strategy. Indeed, a reactor
operator could choose to favor the reaction of transmutation of Uranium 238 into Plutonium
239 by placing fertile fuel around an active fissile core. This could have the effect of generating
more Pu than what the reactor uses, hence the breeder denomination. On the other hand,
if no fertile fuel is involved, a SFR could be operated in burner mode, in which more fissile
isotopes are burnt than produced [7]. This is a direct consequence of the choice of a fast
neutron spectrum, since Uranium as well as Plutonium isotopes’ have a higher probability of
fission when interacting with high energy neutrons than capturing them. This can be seen
by directly comparing fission and absorption cross sections of heavy isotopes such as U238,
Pu239 or Pu240 for neutron energies greater than 1 MeV.
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1.2 Scope of the present research

This project takes part in LEPh’s contribution to the SEASON [8] platform, developed
at CEA’s Laboratoire de Modélisation des Accidents Graves (LMAG) which makes use of
the SIMMER code [9] for coupled calculations between neutronics, thermo-hydraulics and
thermo-mechanics. SEASON’s neutronics simulations are still performed using the ECCO
module of ERANOS [10]. With the advent of the new generation code APOLLO3 and the
end of developments and contribution to the ECCO module, incorporating AP3 capabili-
ties in the SEASON platform seems to be a relevant option. The present research aims at
providing a variety of options to treat neutronics calculations in the context of accidental
conditions. In order to guarantee some flexibility in the approach, the calculation schemes
considered are based on a two-step architecture. The first is the so-called "lattice" step,
corresponding to a fine spatial and energy representation of the neutron transport problem
at the assembly level. The second step is the full core calculation which involves a coarser
representation in both space and energy to solve the neutron transport problem over the
whole reactor domain. This two-step architecture would allow for the full core calculation to
be performed in one of SEASON’s full core solvers, from assembly microscopic cross sections
provided by AP3 lattice calculations. This work’s main objective is to validate a APOLLO3®
scheme for the simulation of accidental conditions on the open "ANTOINID" core. The first
objective is to assess performances of existing solutions, such as the "SCRAP" scheme devel-
oped by J.F. Vidal and M. Zajaczkowski for LEPh. A particular emphasis is made on the
representation of voided configurations which could happen in the event of a loss of coolant
accident (LOCA) [1]. The second objective is to test alternative lattice schemes aiming at
a better representation of sodium voiding effects. The latter include exploratory approaches
such as the 2D1D architecture [11] as well as AP3’s heterogeneous leakage model [12]. The
schemes presented are designed for a wide range of applications, and could potentially pro-
vide a reliable replacement for the ECCO module in the SEASON platform. Additionally,
preliminary work done to develop an interface between the AP3 lattice stage and SEASON
is also briefly presented. This work is done as part of CEA’s SFRAG (Sodium Fast Reac-
tors : Accidents Graves) project, aiming at developing the capabilities of representing and
simulating accidental conditions in Sodium Fast Reactor cores.

1.3 Thesis outline

Chapter 2 covers the basics of reactor physics and introduces standard mathematical nota-
tion. A review of the commonly used deterministic methods for solving the neutron transport
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equation is presented and quantities of interest are introduced. Chapter 3 introduces the
reference TRIPOLI-4 model along with a first comparison with the SCRAP scheme. The
scheme’s performances are assessed on four core configurations representing hypothetical ac-
cidental conditions. An extension of the SCRAP scheme to the MOC integration strategy
is introduced. In Chapter 4, three lattice schemes are proposed. These are more complex
alternatives aiming at a better description of voided configurations, specifically anisotropic
effects due to neutron leakage along voided channels. The three schemes performances are
compared at the full core’s scale using the MINARET solver [13]. The study of voided con-
figurations is extended to full core calculations in PN formalism through the newly developed
NYMO solver [14]. Lastly, diffusion and simplified transport calculations are performed in
the MINOS solver [15]. All five schemes performances are compared for the three full core
solvers evoked. Final recommendations and ideas for future research are presented. It is also
worth mentioning that some work done towards using AP3 cross sections in the SEASON
architecture is presented in Appendix B.



5

CHAPTER 2 A REVIEW OF REACTOR PHYSICS

Reactor physics is the discipline that aims at simulating nuclear reactors. For a nuclear
engineer, it is of prime importance to be able to simulate operating conditions with desired
accuracy. This can be motivated by isotopic evolution calculations in the industrial sector,
which would for example assist the reactor operators’ decision to change a fuel assembly.
It could also be important to be able to simulate various geometric configurations from
a conceptual design point of view for example. These first examples would not typically
require precise "reference" calculations. On the other hand, accidental or transient analysis
will require a lot more precise calculation of the main quantities of interest. Due to the reactor
problem’s scale and heterogeneity, calculations are generally performed in two steps. The
first one is called a lattice calculation, its aim is primarily to calculate the materials’ coarse
groups cross sections, given the specifics imposed by the assembly geometry. The second
step is a full core calculation that simulates the neutron’s transport in the core’s geometry.
This chapter’s first aim is to define the mathematical and theoretical background needed
to approach reactor simulations. Secondly, numerical methods used in the computational
schemes studied for the ANTOINID core will be presented. Lastly, the specific quantities of
interest in the study of accidental configurations of the ANTOINID will be defined.

2.1 The neutron transport equation

2.1.1 Definitions

Neutron interactions with materials in a reactor’s core is the phenomenon a reactor physicist
wants to simulate. At the heart of these interactions is the neutrons’ transport, which can be
described by the Boltzmann equation. The latter represents the neutron population balance
in a control volume. Neutron population will be mathematically attached to a quantity called
the neutron flux. The formalism presented follows Hébert’s presentation in "Applied Reactor
Physics" [1]. This approach is based on statistical mechanics, making use of a six-dimensional
phase space, in which :

1. A neutron’s position is defined by three degrees of freedom as r = xi + yk + zk,

2. A neutrons’ velocity, defined by three additional degrees of freedom, the velocity module
Vn = ||Vn||, where Vn = dr/dt and its direction Ω = Vn

Vn
which then encompasses two

angular degrees of freedom.
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Time dependence is introduced using the variable t, allowing for population density and
velocity to change in time.

The neutron flux is the quantity of interest for the resolution of the transport equation, it is
defined as :

ϕ(r, Vn,Ω, t) = Vnn(r, Vn,Ω, t) (2.1)

where n(r, Vn,Ω, t) is the neutron population density.

Integrating over the solid angle gives the integrated flux :

ϕ(r, Vn, t) =
∫

Ω
d2Ωϕ(r, Vn,Ω, t). (2.2)

The neutron population in a control volume evolves through :

1. Neutron leakage out of the control volume

2. Neutron scattering by nuclei present in the control volume

3. Neutron capture by nuclei

4. Neutron generation through fission events

each of the reactions contributing to scattering, capture and fission events have a certain
associated probability of occurring. This probability is expressed through a microscopic cross
section, denoted σx,i(r, Vn), with units of barns (b) (1b = 10−24cm2). In this notation, index
x corresponds to the reaction and i to a specific nuclei in the medium. For a macroscopic
material which would be a homogeneous mixture of nuclei, the macroscopic cross section
for reaction x will be defined as Σx = ∑

i Niσx,i, where Ni represents the number density of
nuclei i.

2.1.2 Derivation of the Boltzmann Transport Equation (BTE) for neutrons

Defining control volume C, with boundary surface ∂C, one can write the number of neutrons
in such a control volume as ∫

C
d3r n(r, Vn,Ω, t)dVnd

2Ω. (2.3)

The differential form of the BTE is obtained by considering the change of the neutron pop-
ulation in an infinitesimal time ∆t. The change in neutron population during ∆t in C will
be :

A =
∫

C
d3r[n(r, Vn,Ω, t+ ∆t)− n(r, Vn,Ω, t)]dVnd

2Ω. (2.4)



7

The neutrons streaming out of C during ∆t will be accounted for by an integral of the neutron
current over ∂C, combining this with the divergence theorem in volume C will give :

B =
∫

C
d3r∇ ·Ωϕ(r, Vn,Ω, t)dVnd

2Ω∆t. (2.5)

The number of neutrons lost to collisions will be accounted for through the term :

C =
∫

C
d3rΣ(r, Vn)[Vnn(r, Vn,Ω, t)]dVnd

2Ω∆t. (2.6)

Lastly, the new neutrons created in the control volume during ∆t can be expressed by intro-
ducing the source density Q(r, Vn,Ω, t) :

D =
∫

C
d3rQ(r, Vn,Ω, t)dVnd

2Ω∆t. (2.7)

By conservation of particle balance, the BTE can be written as

A = −B− C + D (2.8)

discarding the integral over control volume C and taking the limit as ∆t→ 0 allows to write
the differential form of Boltzmann’s equation for neutron transport as :

1
Vn

∂

∂t
ϕ(r, E,Ω, t) +∇ ·Ωϕ(r, E,Ω, t) + Σ(r, E)ϕ(r, E,Ω, t) = Q(r, E,Ω, t). (2.9)

where Q(r, Vn,Ω, t) is the neutron source term and Σ(r, E) is the material’s total macroscopic
cross section. For convenience, the dependence on neutron velocity Vn has been replaced by a
dependence on the kinetic energy variable E = mnV 2

n

2 . In this work, when solving for neutron
flux in assembly or full core calculations, the steady state hypothesis will be made. This
allows us to remove the BTE’s time dependence and equation (2.9) then becomes :

∇ ·Ωϕ(r, E,Ω) + Σ(r, E)ϕ(r, E,Ω) = Q(r, E,Ω) (2.10)

2.1.3 The characteristic form of the BTE

The BTE can be written in its characteristic form. The latter is obtained by integrating the
streaming operator Ω · ∇ϕ over a characteristic, a straight line whose direction is given by
the unit vector Ω. A parametric notation is introduced using variable s, corresponding to
the distance travelled along a characteristic from a reference point r. The streaming operator
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can also be parameterized introducing the s dependence, giving the characteristic form of
the BTE.

d

ds
ϕ(r + sΩ, E,Ω) + Σ(r + sΩ, E)ϕ(r + sΩ, E,Ω) = Q(r + sΩ, E,Ω) (2.11)

2.1.4 The integral form of the BTE

In other resolution techniques, such as the collision probability method (CP), the BTE is
written in its integral form. This formulation is obtained by integrating the angular flux
(2.1) along a characteristic. An integrating factor e−τ(s,Vn) is introduced, expressed in terms
of the optical path τ , defined as :

τ(s, Vn) =
∫ s

0
ds′Σ(r− s′Ω′, Vn). (2.12)

Using this integrating factor and re-writing equation (2.11) leads to the integral form of the
transport equation expressed as :

ϕ(r, E,Ω) =
∫ ∞

0
ds e−τ(s,Vn)Q(r− sΩ, E,Ω) (2.13)

This form of the BTE corresponds to the expression of the problem on an infinite domain.
In the case where the integration domain is finite, one would have to integrate from 0 to the
maximal value for s.

Equation 2.13 can be interpreted as the fact that a particle emitted from source Q, will travel
with direction Ω in a media with total macroscopic cross section Σ. Its contribution to the
flux at a certain point away from the source will thus be exponentially attenuated due to its
optical path τ (eq. (2.12)) through the medium.

2.1.5 Boundary Conditions

When modelling real configurations, the domain D in which the neutrons travel can be
bounded by a surface ∂D. This section looks at different conditions that can be imposed on
boundary ∂D depending on the model’s needs. An outward normal vector N(rs) is defined
∀rs ∈ ∂D. Numerical solutions to the BTE will be interested in the angular flux, as defined
by equation (2.1), in V, so for Ω ·N(rs) < 0.

An albedo boundary condition is written as :

ϕ(rs, Vn,Ω, t) = βϕ(rs, Vn,Ω′, t),∀Ω ·N(rs) < 0 (2.14)
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this type of boundary condition relates the incoming flux with a known outgoing flux, where
Ω′ is the outgoing particle’s direction. For a vacuum boundary condition, the albedo β is set
to 0. For a reflective boundary condition, β = 1.
A specular reflection condition is imposed as :

Ω ·N(rs) = −Ω′ ·N(rs) (2.15)

where (Ω×Ω′) ·N(rs) = 0.

Additional boundary conditions such as the white and periodic conditions are defined in
Hebert’s book [1] but will not be used in this text.

2.1.6 Steady-State Source density

When the quantities involved in the BTE do not vary significantly in time, the steady-state
hypothesis is valid. The fission reactions are assumed to be isotropic in the LAB frame. This
allows to express the neutron source term Q from equation 2.10, as a sum of two terms.

Q(r, E,Ω) =
∫

4π
d2Ω′

∫ ∞

0
dE ′Σs(r, E ← E ′,Ω← Ω′)ϕ(r, E ′,Ω′)

+ 1
4πKeff

Qfiss(r, E)
(2.16)

The first integral term corresponds to the neutron sources contributing from the diffusion
and (n,xn) reaction. Σs is the total macroscopic scattering differential cross section, grouping
diffusion and (n,xn) reactions.

The second term corresponds to the neutrons originating from fission sources. The Qfiss(r, E)
factor amounts for the isotropic fission sources and can be explicitly written as shown in
equation 2.17. In this formulation, Jfiss is the total number of fissionable isotopes, χj is
the fission spectrum for isotope j. It is a probability density, normalized to 1. Moreover,
ν represents the average number of neutrons emitted per fission event. Lastly, Σf,j is the
macroscopic fission cross section for isotope j.

Qfiss(r, E) =
Jfiss∑
j=1

χj(E)
∫ ∞

0
dE ′νΣf,j(r, E ′)ϕ(r, E ′) (2.17)

The Keff factor is the effective multiplication factor, it is an artificial factor, introduced in
order to maintain the steady-state condition. It plays a crucial role in analyzing a configu-
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ration’s criticality, defined as ρ = Keff −1
Keff

. For Keff > 1, ρ > 0, a configuration is said to
be over-critical, meaning that the neutron production terms dominate and neutron popula-
tion increases exponentially. For Keff < 1, ρ < 0, a configuration is said to be sub-critical,
implying that the neutron absorption terms dominate so that the neutron population will
decrease.

It will therefore be important to aim for Keff → 1 so that an optimal critical state is reached
at the full core scale. In real life applications, this can be achieved by operating the control
mechanisms such as control rods or boron concentration for example.

2.1.7 The Multi-group Formalism

When solving the BTE, the energy variable is treated by discretizing the continuous neu-
tron energy domain in a set of G groups. Within these groups, neutrons are considered
as one-speed particles and all energy dependent quantities are condensed into these groups.
Generally, the lethargy variable u = ln(E0

E
) is introduced, where E0 is a reference energy. It

is generally taken to be the maximal energy of fission produced neutrons (10MeV or 20MeV

depending on the cross section library used) , however the convention of E0 = 10MeV has
been kept in the APOLLO3 code.

Groups can then be represented as

Wg = {E;Eg ≤ E ≤ Eg−1} = {u;ug−1 ≤ u < ug}; g = 1, G (2.18)

One can then write the multi-group steady-state BTE for a group g as :

Ω · ∇ϕg(r,Ω) + Σg(r)ϕg(r,Ω) = Qg(r,Ω) (2.19)

where the multi-group source density as given by equation 2.16 takes into account neutrons
from a group h coming into group g, as contributions to the group’s source density. In a
similar way, the fission sources are treated through the averaging of the fission spectrum over
group g.

2.2 Solving the BTE

2.2.1 The Collision Probability method (CP)

The Collision Probability method (CP) makes use of the BTE’s integral formulation. Spa-
tially discretizing equation 2.13’s multi-group formulation and hypothesizing all particle
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sources to be isotropic leads to the CP formulation. The domain of integration of equa-
tion 2.13 is partitioned into a set of regions Vi.

The CP formulation is written as such :

VjΣj,gϕj,g =
∑

i

Qi,gViPij,g (2.20)

where :

1. ϕj,g is the average integrated flux in region j for group g

2. Σj,g is the average macroscopic cross section of region j for group g, weighted by the
integrated flux.

3. Pij,g is the probability for a neutron born in group g and in any region Vi, to undergo
its first collision in region Vj.

Reduced CPs are introduced as pij,g = Pij,g

Σj,g
, which insures correct numerical behavior in the

case where Vj is a voided region as both Σj and Pij will tend to zero.

The reciprocity and conservation properties are used to solve for the reduced CPs through
numerical integration. This is done through a tracking of the domain, allowing for the
computation of neutron optical paths along a sufficiently large number of trajectories. Once
the CPs are known, the source term Qj,g is computed and the integrated flux in all regions
Vi can be solved for using the following equation :

ϕi,g =
∑

j

Qj,gpij,g. (2.21)

In this work, the CP method is used as part of Tone’s method for self-shielding, which will
be introduced later.

2.2.2 The Method of Characteristics

The Method Of Characteristics (MOC) makes use of the backward characteristic form of
the BTE as shown in equation 2.11. It is generally considered as one of the most precise
methods for computing neutron flux and its capabilities can be extended to unstructured 2D
or 3D geometries [16]. Due to its capabilities of providing a precise description, it comes at
a great computational cost. In order to optimize the method with respect to computational
time, it is subject to ongoing research focusing on acceleration techniques. In this work it is
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used at the lattice stage of the calculation, for 2D flux calculations on unstructured assembly
geometries. The following aims at presenting the necessary mathematical background to
understand the MOC technique. The integration domain is partitioned in Vi regions and a
tracking is produced similarly as in the CP method. The MOC integration strategy is based
on the discretization of equation 2.11 along each particle path in the domain’s tracking. For a
region Vi, it takes into account contributions to the flux from all paths in the tracking domain.
By introducing the assumption that ϕ(r, E,Ω) ≈ ϕg(r,Ω), the multi-group is applied and the
subscript g will be implied in the rest of this paragraph in an effort to clarify the notation.

Mathematically the MOC integration strategy can be expressed as :

Viϕi =
∫

Vi

d3r
∫

4π
d2Ωϕ(r,Ω) =

∫
Γ
d4T

∫ ∞

−∞
dsχvi

(T, s)ϕ(p + sΩ,Ω) (2.22)

where, Γ = {T} represents the tracking domain, ie the collection of single characteristics
T, defined by their orientation Ω and starting point p. Starting points are selected on a
reference plane ΠΩ, perpendicular to T. χvi

(T, s) is a characteristic function equal to 1 if
the current point p + sΩ is inside region Vi and zero otherwise. It must be noted that the
flux given in equation 2.22 is a scalar flux that has been integrated over the whole domain,
with respect to both the angular and spatial variables. Due to the anisotropic nature of the
neutron flux studied in this work, the angular dependence must be kept into consideration.
For this reason, one must solve for the angular flux. A detailed description of the procedure
used in the TDT code included in APOLLO3 can be found in Santandrea et al. [16]. In
order to keep this discussion concise, elements of notation from R. Le Tellier’s thesis [17] are
introduced :

Considering a tracking Γ, with a characteristic going through K regions. The lengths of each
chord, Lk(T), along with the index Nk(T) of the corresponding region are computed and
stored. These form a set of pairs (Nk, Lk)k∈[1,K]. Thanks to these parameters it is possible
to express the points where the characteristic intersects with interfaces between regions, as
well as the angular flux at these intersection points. This can be written as :

rk+1 = rk + LkΩ
ϕk(T) = ϕ(rk,Ω), k ∈ [1, K]

(2.23)

it can be noted that for a cyclic tracking, as used in this work, the relation r1 = rK+1 must
be obeyed.

In the MOC, the average moments of the angular flux are computed in each region i. This is
done by projecting the angular flux on the spherical harmonics basis, whose Ferrer definition
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can be found in Hébert’s book [1]. This allows Le Tellier to write an equation similar to 2.22,
expressing the angular flux moments :

ViΦm
l,i =

∫
Vi

d3r
∫

4π
d2ΩRm

l (Ω)ϕ(r,Ω) (2.24)

using the MOC formalism to treat integration over the tracking of the domain, equation 2.24
can be re-written as :

ViΦm
l,i =

∫
Γ
d4T

K∑
k=1

δi,Nk
Lk(T)ϕ̄k(T)Rm

l (Ω), (2.25)

where δk,Nk
is the Kroneker delta, ensuring the fact that only contributions of chords in region

i are considered.

The notation in equation 2.23 allows to write the definition of the average angular flux on a
chord as :

Lkϕ̄k(T) =
∫ Lk

0
ds ϕ(rk + sΩ,Ω). (2.26)

This allows to solve the backward characteristic form of the BTE restricted to the tracking.
Integrating equation 2.11 over s ∈ [0, Lk], the transmission equation is obtained :

ϕk+1(T)− ϕk(T) + Σt,Nk
Lkϕ̄k(T) = LkQ̄k(T), (2.27)

where Q̄k(T) is the average source over the kth chord. Estimating this average requires an
assumption about the spatial dependence of the source. The most commonly used approx-
imation is the "flat source approximation" ∀s ∈ [0, Lk], Qk(rk + sΩ,Ω) = QNk

(Ω) leading
to the Step-Characteristic (SC) integration scheme for MOC. The flat source approximation
leads to considering constant angular fluxes in each region. The SC approach is kept in this
work since all MOC calculations are performed on two-dimensional geometries. Furthermore,
it is worth mentioning that higher-order MOC approaches are available in TDT. The latter
rely on expanding the source term and angular fluxes using a higher order polynomial repre-
sentations to treat their spatial dependence. This approach is used by Santandrea et al. in
their 3D MOC in order to treat the axial variations on the flux [16].

2.2.3 The discrete ordinates (Sn) method

The discrete ordinates method abbreviated Sn method, is a discretization technique used to
solve the BTE. It is based on the differential form of the transport equation 2.9, for which
the angular flux is discretized for specific angular values [1]. This leads to solving for the
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particle flux for each discrete angle.

Ωn · ∇ϕ(r,Ωn) + Σ(r)ϕ(r,Ωn) = Q(r,Ωn), n = 1, ..., N (2.28)

This approach is based on an angular quadrature set {Ωn, Wn, n=1,N}, where Wn is the
weight associated to each direction.

MINARET In the formalism used in MINARET, the one speed transport equation is
solved in each group, for each specific angle. The multi-group nature of the problem is taken
into account by considering the scattering cross sections’ standard expansion on Legendre
polynomials [13], in the source term for the one speed equation 2.28. The angular quadrature
set is used to compute the source term Q(r,Ωn) in 2.28. More particularly, it is used when
treating the angular dependence from the diffusion source, shown in equation 2.16.

Typical angular quadrature sets such as level-symmetric and product quadratures are avail-
able in MINARET [13]. In this work, the 3D core calculations performed using MINARET
make use of an hexagonal product quadrature. According to R. Le Tellier et. al. in [18],
standard level symmetric SN quadratures are not sufficient to properly calculate local effects
on neutron transport, such as the effects of the voiding of coolant zones in fuel assemblies.

IDT The SN method in one dimension is also used in SCRAP lattice calculations on a
homogenized plane geometry through APOLLO3’s IDT solver (see Chapter 3).

SNATCH Lastly, the SN method also comes into play in the SNATCH transport solver in
which an hexagonal product quadrature is also used [18]. Preliminary results are presented
in Appendix B.

MOC Angular treatment used in the MOC integration technique is also an SN based
method [19] [16], allowing for integration of the angular variable :

∮ dΩ
4π [∗], (2.29)

to be approximated by a discrete sum over a finite number (N) of directions Ωk :

N∑
k=0

w(Ωk)[∗], (2.30)
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where the weights wk are obtained using an appropriate quadrature formula. In this work,
these weights are obtained through a cyclic Gauss-Tchebytchev product quadrature adapted
to hexagonal geometries.

2.2.4 The PN method

The PN method is based on the differential form of the BTE (eq. (2.9)) in which the angular
treatment relies on an expansion on the real spherical harmonics basis. More precisely, the
angular flux and source density are expressed by a truncated spherical harmonic expansion,
in this work to order N = 3. For the angular flux, this expansion can be written as :

ϕ(r,Ω) =
N=3∑
l=0

2l + 1
4π

m=l∑
m=−l

ϕm
l (r)Rm

l (Ω) (2.31)

where ϕm
l ’s are the angular flux’s moments, which carry the spatial dependence. Rm

l are the
real spherical harmonics defined through the Ferrer definition of Legendre polynomials, as
presented in Chapter 2 of Hébert’s book [1].

2.2.5 The Simplified PN (SPN) method

In the 1960’s, E.M. Gelabrd [20] introduced the SPN method based on the the expansion of
the angular flux on an incomplete development at order 2N+1, where only one moment is kept
for even orders, and three for odd orders. This of course introduces biases in the numerical
result since the angular fluxes do not converge to the exact solution when N is increasing. On
the other hand, the SPN method produces a linear system of equation involving less coupling
and a simplified structure, compared to its PN counterpart.

In this work, the performances of solver MINOS [15] are studied applying the SP3 formalism
to the "ANTOINID" full core calculations. The SPN equations will be presented in a sub-
sequent section when treating the Finite Elements Method (FEM) solution to the SPN full
core problem.

2.3 Resonance self-shielding

Resonance self-shielding is a phenomenon affecting absorption reaction rates, its primary
causes are the resonant absorption reactions as well as spatial "neutron shielding" effects. As
microscopic cross sections heavily depend on energy, this means that neutrons with energy
close to a resonance are more likely to interact with a given nucleus. This has the impact
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of reducing neutron flux in the energy domain where resonances are present. On the other
hand, spatial self-shielding effects are generally felt at the interface between coolant and fuel
regions. Considering a neutron traveling in the coolant, it will have a higher probability of
being absorbed in the outer radial region of the fuel rod, causing a decrease in neutron flux
in the fuel rod’s inner radial regions, thus decreasing its associated reaction rate. It must be
noted that this type of radial discretization of the fuel rods is only necessary when dealing
with assembly calculations for water moderated designs. In SFRs, the coolants slowing down
effect are less important which leads neutrons to have an average greater energy and optical
path. This means that rim effects on fuel rods can be neglected and that for a given fuel
assembly, only outermost fuel rods and outer coolant has to be treated separately. This will
be described in more details in Chapter 3.

The energy and spatial self-shielding effects are accounted for by the self-shielding step in
lattice calculations. Depending on the neutron slowing down energy range, different methods
are available in APOLLO3®. In fast reactor applications, the subgroup [21] method and more
particularly the Tone [22] method are the most commonly used.

In their paper [23], Vidal and Raynaud show that Tone’s method can completely replace
the method of subgroups for energies greater than 3 keV, in more demanding Light Water
Reactor calculations. The ANTOINID core’s fast spectrum justifies using Tone’s method,
thus allowing for a consequent Central Processing Unit (CPU) time reduction [23], [24].

Tone’s method In Tone’s method, the first assumption is that the neutron source is
uniform in each group g. The second more fundamental assumption is that the flux in the
jth region due to neutrons emitted from the ith region ϕij(u) is proportional to the energy
discrete flux ϕg

ij. The proportionality coefficient αj(u) is assumed to depend only on the
arrival region j [1] [23]. It must be noted that the variable u represents the lethargy as
defined earlier in subsection 2.1.7. Using the CP formalism presented earlier (Eqs. 2.20,
2.21), this is written mathematically :

ϕij(u) ≈ αj(u)Vi

Vj

P g
ij

Σg
t,j

Qg
i = αj(u)ϕg

ij (2.32)

The implementation of Tone’s method in APOLLO3® is based on the utilization of mathe-
matical probability tables in order to calculate effective cross-sections. It makes the approx-
imation of a narrow resonance model as the slowing-down source [24]. Using Tone’s method
greatly reduces the CPU time as it considers group CP matrices [24] without needing a finer
discretization of the fuel rods. This saves the computation of the CP matrices for each base
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point in the group’s probability table [23] as it is done in the subgroup method.

2.4 Homogenization and Condensation

In two steps schemes such as the ones presented in this work, the homogenization/condensation
step is crucial. Indeed, the aim of performing reactor calculations in two steps is to be able to
first treat lattice calculations on a refined spatial and energy mesh, for a reduced geometry.
At the second step, the geometry is representative of the full core, but the energy mesh is
coarser as well as the geometric description of each assembly. The process of computing
equivalent cross sections for a homogenized assembly geometry from the ones on the exact
spatial representation will be referred to as homogenization. Similarly, the process of switch-
ing from the fine energy representation (several hundreds of groups), to the coarser 33 groups
used in SFR’s full core calculations is called condensation.

One of the traditional approaches is the superhomogenisation (SPH) technique presented by
Kavenoky [25] and greatly developed by Hébert [26], is based on equivalence principles. It
imposes the conservation of the reaction rates obtained from the reference lattice calculation.
According to Jacquet [27] the SPH technique does not provide satisfying results for realistic
SFR cores involving steel reflectors. Indeed, it appears that the SPH technique does not
take angular effects on total and transfer cross sections into account. For this reason, Vidal
suggests the angular flux-moments weighting technique [28] for calculating condensed/fully
homogenized cross sections to be used in full core calculations. In order to do so, the flux-
moments technique does not impose the strict conservation of reaction rates but focuses on
preserving the angular dependencies of calculated cross sections. In practice, this is done by
modifying the transfer cross sections. The technique has been shown to be efficient in SFR
calculations in [29] and more recently in [28].

It is worth noting that in this work, condensation is performed from a 1760 (or 383) groups
fine energy mesh used at the lattice stage to a 33 groups mesh used for solving the problem
on the full core geometry. The 33 groups mesh used is a modified version of the "historical"
33 groups mesh used in ECCO/ERANOS. Some of its energy bounds have been modified
in order to be compatible with the finer 383 and 1760 groups energy meshes used in lattice
calculations. Spatial homogenization is performed from the exact assembly geometry to the
equivalent completely homogenized region.

Results obtained using the flux-volume weighting technique will be presented in Chapter
3. On the other hand, those from the flux-moments method will be introduced in sub-
sections 4.2.1 and 4.2.3. The impact of leakage models combined to these homogeniza-
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tion/condensation techniques will also be studied.

2.5 Neutron Leakage Models

It would be possible to treat the full core geometry in a single calculation step (with the
MOC 3D capabilities of APOLLO3 for example) but this would come to a tremendous cost
in CPU time. For this reason, the approach considered in this work is to perform an initial
flux calculation assuming an infinite lattice of assemblies. However, this representation does
not provide a satisfying description of neutron leakage effects in a realistic, finite domain. To
correctly represent the assembly in a realistic environment, leakage models are required in
order to take into account neutrons leaving the assembly, thus impacting the energy spectrum
and potentially acting as a source term for neighboring assemblies in the core. In the next
subsections, the B1 homogeneous and B heterogeneous models are briefly presented, as well
as their hypotheses and approximations.

2.5.1 The fundamental mode

The fundamental mode is assumed and applied to the infinite lattice of assemblies with spec-
ular boundary conditions. The neutron flux is assumed to be the product of a macroscopic
distribution in space ψ(r) with a fundamental flux denoted φ(r, E,Ω), so that :

ϕ(r, E,Ω) = ψ(r)φ(r, E,Ω) (2.33)

Moreover, the macroscopic flux distribution is assumed to be periodic and solution to the
Laplace equation :

∇2ψ(r) +B2ψ(r) = 0 (2.34)

where B2 is the buckling used to adjust the distribution’s curvature.

Choosing vector B such that B2 = B ·B, it is then possible to factor the neutron flux as :

ϕ(r, E,Ω) = φ(r, E,Ω)eiB·r (2.35)

2.5.2 The B1 Homogeneous Model

The B1 Homogeneous Model is based on the assumption that the neutron leakage out of the
assembly geometry can be properly described by a homogeneous equivalent geometry. This
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implies that the periodic fundamental flux from equation 2.35 becomes independent of the
spatial variable, thus becoming :

ϕ(r, E,Ω) = φ(E,Ω)eiB·r (2.36)

This assumption is introduced in the transport equation which is weighted and integrated as
required by the B1 model in order to get a set of two coupled equations that form the B1
equations. A detailed derivation can be found in A. Hébert’s book [1].

2.5.3 The B-Heterogeneous Model

The limitations of the homogeneous B1 leakage model are reached in the case of loss of coolant
accidents (LOCA) studied in this work. In these types of problems, the heterogeneous and
axial streaming effects through voided channels are not represented by the homogeneous
model. The B heterogeneous model also assumes the existence of the fundamental mode but
makes no assumption about the spatial dependence of the fundamental flux in equation 2.35.

J. Tommasi shows in his paper [12] that the assembly geometry’s central symmetry is a
sufficient condition to guarantee the eigenvalue Keff to be real. This model is thus applicable
to the ANTOINID’s assembly calculations since their hexagonal properties guarantee a π/6
symmetry which translates to a rotational invariance of the problem about the assembly’s
center. This symmetry also implies that the real part of the complex flux should be symmetric
with respect to rotations about the center. On the other hand, the complex part of the flux
will be anti-symmetric with respect to such rotations. These properties are used extensively
in the Flux-Moments homogenization/condensation method [28].

2.6 Lattice calculation schemes

This section aims at presenting the existing lattice schemes prior to this work. They al-
low for the treatment of SFR assembly calculations. Chapters 3 deals with evaluating the
performances of SCRAP and its extended version, later referred to as "MOC2DHom". Chap-
ter 4 presents results from more "advanced" schemes, two of which are based on the 2D1D
architecture.

2.6.1 "SCRAP-based" lattice schemes

The SCRAP scheme was developed and validated by Jean-François Vidal and Maciej Za-
jaczkowski on the the 3600 MW variant of the Japanese Sodium Fast Reactor (JSFR) [30].
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SCRAP’s aim is to be a robust and efficient candidate for design studies of SFR assembly
calculations. Its specifics and choices of parameters were accessed from confidential internal
notes. The SCRAP lattice scheme makes use of a 383 groups energy mesh and consists of
five keys steps. First, Tone’s method [22] [24] is used to perform the self-shielding on the
exact two dimensional fissile sub-assembly geometry. Then, the 2D geometry is homogenized
to a single media, through the Flux-Volume homogenization technique [31]. This allows for a
quick SN one dimensional flux calculation on the homogenized geometry, performed through
AP3’s Integro-Differential Transport (IDT) solver [2] [32]. This initial flux calculation is
performed in the context of an infinite lattice of fissile sub-assemblies. A B1 homogeneous
leakage model is then applied and the leakage term is in turn used as a source for sub-critical
assembly calculations. The obtained cross sections are condensed to a 33 groups energy
mesh and kept to a single homogenized medium (one per sub-assembly type). This last
condensation step is performed using the Flux-Volume method once again.

It is worth noting that before starting this project, the python script defining the SCRAP
scheme was provided by Vidal. The "MOC2DHom" and "MOC2DHet" schemes were extended
from SCRAP by replacing the initial flux calculation by a call to the TDT solver [2]. This
allows to perform a MOC integration step on the exact 2D unstructured geometry. The
choice of tracking parameters for the TDT solver is taken according to those recommended
by P. Archier et. al. in [21]. The MOC2DHet scheme was also extended to make use of
APOLLO3’s B1 heterogeneous leakage model [12] [33]. The latter also makes use of the
Flux-Moments homogenization/condensation technique whose efficiency was shown by Vidal
et. al. in [28]. These amendments to the original SCRAP architecture were done to support
the present work, thanks to the help of JF. Vidal.

2.6.2 2D1D schemes

The 2D1D approach is based on the MOC integration technique. It was originally developed
by B. Faure as part of his thesis [11] in order to treat the axially heterogeneous ASTRID
core [34]. The 2D1D formalism is based on the assumption that a three dimensional assembly
geometry can be taken to be equivalent to a collection of 2D slices representing each media.
The 2D1D solver thus performs a coupled calculation between 2D unstructured representa-
tions of each slice, treated by the TDT solver, and a 1D column calculation. The latter is
performed thanks to the homogenization of each axial slice, allowing to create an equivalent
1D geometry. An illustration of this principle can be seen in figure 2.1 taken from B. Faure’s
work [11].
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Figure 2.1 Example of 2D1D discretization of a 3D problem.

The full 2D1D scheme In the first iteration, flat fluxes are initialized on each of the 2D
geometries. Obtained cross sections are homogenized to the corresponding 1D axial geometry,
using the Flux-Moments method. The IDT solver is called to perform a flux calculation on the
homogeneous slices composing a column (or assembly). Leakage out of each slice is computed
as the difference between fluxes at the zmin and zmax interfaces. The leakage terms obtained
are then used as sources for TDT-MOC calculations on the exact 2D geometries. The process
is repeated iteratively until a convergence criteria is reached on the IDT eigenvalue. This full
2D1D scheme is described in "Algorithm 6" of B. Faure’s thesis [11].

The hybrid 2D1D scheme The hybrid version of the 2D1D scheme was also implemented
by B. Faure and described as "Algorithm 7" in [11]. It differs from the full 2D1D scheme
in its treatment of fissile sub-assemblies. Indeed, their cross sections are computed from a
2D MOC eigenvalue calculation, combined with a B-heterogeneous leakage model. The rest
of the algorithm is similar to the full 2D1D, except that fissile slices’ cross sections are not
iterated over. This allows for an alternative axial description of each assembly.

Implementation of 2D1D in this project The exploratory nature of this project lead
to considering the 2D1D formalism as an alternative to the "SCRAP-based" schemes. The
implementation was made possible thanks to the help of G. Vallochi and JF. Vidal, whose
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python script was adapted to the configurations presented in this work. It must be kept in
mind that although the 2D1D solver architecture is part of APOLLO3, it is not part of the
non-regression tests. This could imply that developments made since Faure’s implementation
might have altered its behavior. The 2D1D study is presented in more details, along with its
associated "full core" results, in Chapter 4.

2.7 Finite Elements Methods (FEM) : treatment of the full core problem

The solvers used to treat the full core problem : MINOS, MINARET and NYMO are all
based on Finite Elements Methods (FEM) for treating the spatial variable ( [13], [15], [14]).
This section aims at introducing the basic formalism necessary to understand the principles
behind full core calculations.

2.7.1 MINARET (SN)

The exact transport approach is implemented in MINARET as described in Moller and Lau-
tard’s work [13]. In this approach, the angular discretization relies on the discrete ordinates
method. Its formulation leads to re-writing the mono kinetic, one group BTE as :

Ωn · ∇ψn(r) + Σt(r)ψn(r) = qn(r) (2.37)

as presented by Calloo et. al. [35]. Σt represents the macroscopic total cross section and qn

is the neutron source associated with direction Ωn which considers external and scattering
sources from other directions. The multi-group equation is solved through the scattering
cross sections expansion in Legendre polynomials [13]. In this work’s context, the Legendre
expansion’s order will be set to 1 or 3 in SN calculations, depending on the lattice scheme
used. For each energy group, equation 2.37 is solved using a Discontinuous Galerkin Finite
Elements Method (DGFEM). The core’s domain C is meshed into 3D triangular prisms.
The treatment of the solution’s spatial dependence is assured by the DGFEM method, on
the other hand the angular variable is treated through an SN quadrature set. In a 2D
projected geometry, hexagons are decomposed into triangular elements. Equation 2.37 is
multiplied by a test function, integrated by parts to obtain the variational formulation of
the transport problem. It is then discretized on each element, restricting the test functions’
space to be the space of discontinuous piece-wise polynomials of order p ≥ 0 [36]. In a
DGFEM, the function space used to approximate the solution is the same as the one used
to express the test functions. The main advantage of the Discontinuous technique is that
no strong condition on continuity is set at the interface between elements, allowing for a
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more independent, parallel treatment of the numerical solution on each subdomain. The
exact details and derivation of the discretized variational form as well as the treatment of
interfaces between elements can be found in Gastaldo et. al.’s work [36].

2.7.2 NYMO (PN) approach

The NYMO solver is also based on a Discontinuous Galerkin FEM approach, like MINARET.
It was extended by Assogba et. al. to support three dimensional meshes made from non-
conforming unstructured 2D meshes, extruded along the third dimension [14]. In particular,
the treatment of 3D prismatic meshes was made possible. In this work, the calculation mesh
used in NYMO PN calculations is exactly the same as the one generated for MINARET.

In [37], Bourhrara presents the numerical method implemented based on the the PN vari-
ational formulation they proposed in an earlier paper [38]. Their solution is based on a
discretization of the angular flux, in which they express each group’s angular flux as a lin-
ear combination of spherical harmonics (eq. 2.31). The angular flux’s moments are then
discretized by projection on a chosen basis of linear independent polynomials [37]. The lin-
ear system which follows from this discretization is decomposed and re-written in terms of
sparse matrices which are stored in Compressed Sparse Row format. The non-symmetric
linear system can then be solved using the GMRES solver, suited for such matrix-vector
operations [37].

It should be noted that voided configurations can be particularly hard to describe as Assogba
claims that only "almost voided" regions with σ ≥ 10−6b are supported [14].

2.7.3 MINOS

Diffusion Diffusion theory is based on Fick’s Law of Diffusion, it is a convenient way to
relate the neutron current to the flux’s gradient. Mathematically, it is written :

Jg(r) = −Dg(r)∇ϕg(r). (2.38)

In equation 2.38, Dg is a 3×3 diagonal tensor, containing each group’s directional diffusion
coefficient. This law can be interpreted as expressing the tendency for neutrons in highly
populated regions to diffuse towards regions where they are less numerous. This method is
only acceptable at the full core scale and is not suited to treat assembly calculations.

In MINOS [2], a P1 approximation of the transport equation is used, limiting the flux’s
development of the spherical harmonics basis to order 1. The hypothesis of micro-reversibility
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is used to treat anisotropic transfer cross sections. This leads to mixed dual FEM formulation
corresponding to a coupled system between :

1. a balance equation: a modified version of the transport equation involving the current’s
divergence, modified total macroscopic cross section and neutron source term.

2. a vector equation, modified version of Fick’s Law, involving the flux’s gradient and the
current.

This system of coupled equations is projected on a set of test functions (Ψ,q). This is done
multiplying the scalar balance equation with a test function Ψ. On the other hand, the vector
equation is multiplied by the vector test function q. Both equations are then integrated over
the whole spatial domain. This is written as :


∫

C ∇ · JΨ + ΣrϕΨ =
∫

C SΨ∫
C

J·q
D

+∇Φ · q =
∫

C Q · q
(2.39)

where, C is the core’s spatial domain, Σr = Σt−Σs0 is the modified total cross section, D is
the P1 corrected diffusion coefficient D = 1

3(Σt−Σs1) . Applying Green’s theorem and relevant
boundary conditions to the first equation in 2.39 leads to the primal form of the diffusion
problem. On the other hand, applying Green’s theorem and boundary conditions to the
reformulation of Fick’s law in 2.39 leads to the dual form. The latter is the functional that
needs to be optimized in order to solve for the neutron currents and Flux over the core’s
domain. In order to do so, the functional is discretized over Raviart-Thomas-Nedelec (RTN)
elements [15]. Details about the mathematical definition of such elements can be found in
Raviart and Thomas’ work [39] and in Nedelec’s work [40]. The elements used in MINOS are
quadrilaterals K, they are obtained through a bi-linear mapping from a reference element
K̂ = [−1, 1] × [−1, 1] × [−1, 1]. For this reason, the hexagons forming the ANTOINID core
have to be subdivided into quadrilaterals. In this work, the hexagons are split into 4 trapezes.

Simplified Transport The treatment of the full core problem with MINOS can also be
done in the SPN approximation as it is an asymptotic limit of the exact transport equa-
tion [15]. In three dimensions, it is assumed that even components in the flux’s expansion
are scalar functions (ϕ2l), and that odd components are vector functions (ϕ2l+1) [20]. The dif-
ferential operator then becomes the gradient for even scalar terms, and a divergence operator
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for odd vector components. The SPN equations can then be written as :

(2l)∇ · ϕg
2l−1 + σg

2lϕ
g
2l + (2l + 1)∇ · ϕg

2l+1 = Sg
2l

(2l + 1)∇ϕg
2l + σg

2l+1ϕ
g
2l+1 + (2l + 2)∇ϕg

2l+2 = Sg
2l+1

(2.40)

where l is the order in the expansion so l = 0, 1, 2, 3, ...., N , in this work N will be set to
3. S2l+1 is the source term corresponding to scattering from groups g′ ̸= g to group g.
σg

l = (2l + 1)(σg
t − σg→g

sl ) in which σg
sl is the lth order of the scattering cross section for

group g, and σg
t is the total cross section in group g. The even source components include

contributions from the even terms of the scattering cross section expansion, as well as fissile
sources contributions, through the term 1

Keff
χg ∑

g′ νσg′

fissϕ
g′

0 .

To get the dual variational form of the SPN equations, equations 2.40 are multiplied by odd
and even test functions ψ2l+1 and ψ2l and integrated over the physical domain. Green’s
theorem is applied to the odd equation, and vacuum boundary conditions are imposed. This
required ϕ2l ∈ L2(C) and ϕ2l+1∈ H(div, C), ie that ∇ · ϕ2l+1 ∈ L2(C) and ϕ2l+1 ∈ L2(C)3

[15] [39]. Similarly as for diffusion, the mixed dual variational form is discretized on RTN
elements using their associated interpolation functions basis. The discretization of test and
solution functions is done using the Discontinuous Galerkin method.

2.8 Quantities of interest in SFR accidents

In a loss of coolant accident, the core’s reactivity will change according to the neutron’s
balance evolution. The reactivity is defined in terms of the effective multiplication factor
Keff as

ρ = Keff − 1
Keff

. (2.41)

This quantity can thus also be interpreted as the tendency for a medium, given a specific
geometry and composition, to be over-critical, ρ > 0 (Keff > 1) or sub-critical ρ < 0
(Keff < 1). Reactivity is related to the balance of neutrons produced over neutrons lost.
Production of neutrons comes from the fission events, diffusion or (n,xn) reactions. Neutrons
are lost when they are absorbed or when they escape through leakage.

Changes in reactivity will therefore be reflected in the neutron flux calculations, which in
turns impacts the computed reaction rates.
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2.8.1 Sodium voiding effect on reactivity

During a loss of coolant accident (LOCA), sodium can begin to boil so that a void fraction
is introduced in the core. Alternatively, this voiding of sodium could be due to a leak in the
cooling system. The void fraction in itself, as well as the location where the event takes place
greatly impacts the effects on reactivity. These effects can be broken down into the following
contributions :

1. Neutron absorption by sodium goes down, more neutrons are available for fission :
positive effect on reactivity.

2. Loss of neutron moderation by sodium, the spectrum hardens : positive effect on
reactivity.

3. Neutron leakage increases : negative effect on reactivity.

Sun et. al. [41] show that these effects on reactivity can be broken down in the following
way:

ρ = 1− L+ C + F

P
(2.42)

in equation (2.42), C represents the capture term, F , represents the fission contribution, and
their sum to the absorption term A as defined by Sciora et. al. [42], L represents the leakage
term and P represents the production term, due to neutrons emitted during fission events as
well as (n,xn) reactions.

State of the art SFR safety relies on designs that maximize the negative leakage contribution,
ideally reaching a net negative voiding effect on reactivity, acting as a passive security system
in the event of LOCA [42].

In order to evaluate the sodium voiding effect on reactivity, two static configurations are
studied. The nominal configuration (NOM), where sodium density is normal, it will be
compared to the voided configuration (VOID), in which all the coolant in the voided regions
has been replaced by a simulated "void" (Na23 at 1.00× 10−15b−1cm−1).

The effect on reactivity is computed in the following way :

∆ρV = ρV OID − ρNOM = ( 1
Keff,NOM

− 1
Keff,V OID

)× 105. (2.43)

In equation 2.43, reactivity is expressed in pcm; this convention is used in the rest of this
text.
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In 2013, C. Bay worked on comparing full core solvers performances on estimating the "void
effect" as part of their Master’s thesis [43]. Their work includes sodium void effect on reac-
tivity calculations in MINOS (SP3, SP5) and MINARET (S4, S8) solvers. These full core
calculations were performed on the Takeda SFR benchmark presented in [44]. It is interesting
to note that full core calculations presented in Bay’s work all consider the same 4 groups
cross sections defined in Takeda’s work [44], except for those corresponding to the added
plenum medium. The latter were taken from the CFV calculations with 90% sodium and
10% steel in the nominal configuration, and 10% steel diluted in "void" for the voided config-
uration. Comparisons with presented lattice schemes can be hard to interpret as the origin
of Takeda’s sections was not found. Results from the present study will still be compared to
those presented in Bay’s work at the end of Chapter 4.

2.8.2 Doppler effect on reactivity

The temperature of a material will have a direct impact on the thermal agitation of the
nuclides included in the composition of the material. This causes a broadening of resonant
cross sections of the agitated nuclides. Indeed, a Doppler effect will be observed due to a
change in the relative velocity between incident neutrons and thermally agitated nuclides.

The Doppler effect affecting the cross sections of reactions induced by neutrons will have a
macroscopic effect on reactivity. Since the resonant absorption cross sections are broadened
by the Doppler effect, increasing the temperature will have an overall negative effect on
reactivity.

As for the voiding effect on reactivity, the Doppler effect will be evaluated in terms of its
impact on reactivity (in pcm), according to the following equation :

∆ρD = ρDOP − ρNOM = ( 1
Keff,NOM

− 1
Keff,DOP

)× 105. (2.44)

2.8.3 Reaction Rates

Reaction rates are of course not specific to the study of accidents in SFR. Nonetheless,
they will be used as a finer comparison ground as their accurate computation is of prime
importance for deterministic codes. Focus will be made on fission rates. Indeed, their accurate
representation amounts for the greater part to determining the power distribution in the core,
which is an essential part in its neutronic characterization. The voiding and Doppler effects
on fission rates will therefore be studied and used to compare the different deterministic
computational schemes considered. Fission rates are defined as the product of the fission
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cross section with the neutron flux, as shown in equation 2.45. It can be noted that the flux
being defined up to a multiplicative constant, it will thus be normalized such that the power
dissipated in the core is 1 MW .

τfiss,i = σfiss,i(E)Niϕ(r, E,Ω) = Σfiss,iϕ(r, E,Ω) (2.45)

where i represents a fissile isotope, σfiss,i(E) is the energy dependent microscopic fission
cross section of isotope i, Ni is isotope i’s density and ϕ(r, E,Ω) is the neutron flux. The
quantities of interest in this work will be the fission rates given by equation 2.45, integrated
in energy and angle and summed over fissile isotopes. This reduces the fission rates field as
a three dimensional scalar field, associating a fission rate value to each point in the three
dimensional core model. In practice, fission rates are extracted by integrating fission rates
fields over "cells" corresponding to mesh sub-volume elements. The normalisation used to
treat the fission rates before the APOLLO3-TRIPOLI4 comparison is specified in Chapter 3.
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CHAPTER 3 VALIDATION STUDY OF SCRAP SCHEME

3.1 The ANTOINID benchmark

The ANTOINID is an open core defined by Antoine Martini during his internship at LEPh in
the summer of 2022. It is a simplified ASTRID-like SFR core. The ANTOINID core consists
of 3 radial zones, the first being the C1 fuel zone, consisting of six rings of hexagonal fuel
assemblies. The inner fissile C1 zone is surrounded by two rings of hexagonal C2 fuel assem-
blies, differing from C1 only in isotopic composition, with C1 having a lower Pu enrichment
(∼ 15.8%) than C2 (∼ 17.9%). Lastly, the fissile zone is surrounded by three rings of hexag-
onal reflector assemblies. Axially, lower reflectors and sodium plenums are located under and
above the fissile zone. Its properties are close to those of the CFV (low voiding effect core)
version of ASTRID [42] [34] in terms of sodium voiding effects. Indeed, both were conceived
in order to have a negative sodium voiding effect on reactivity, providing them with a passive
safety system in case of accidental conditions. In order to achieve this negative sodium void-
ing coefficient, axial neutron leakage is maximized by introducing a ten centimeter height
difference between C1 and C2 fuel assemblies. The open concept ANTOINID is a simplified
core inspired from CFV version 2, described in Chenaud’s paper [45]. CFV version 2 is itself
adapted from version 1, presented at ICAP2012 by Varaine et. al. [34]. The ANTOINID
geometry was made smaller and assemblies were slightly modified to reach criticality at the
beginning of the fuel cycle. The aim of this academic core is to be used as a testing tool for
the APOLLO3® code as well as the SEASON platform, under development at LMAG.

The SEASON platform couples neutronics codes capabilities with a thermo-physics code
in order to analyze accidental transients. Historically, it had been developed using the
ECCO/ERANOS calculation route traditionally used for SFR calculations.

With the aim of replacing ERANOS simulations with those of APOLLO3®, Martini’s work
using ECCO/ERANOS was adapted to APOLLO3® with the objective to validate both
lattice and full core calculations for the ANTOINID core. Different hypotheses about the
direct radial homogenisation of fuel sub-assemblies, neutron leakage and reflector models are
tested.

First, the TRIPOLI-4 benchmark is defined along with the main quantities of interest. Sec-
ondly, the "Sodium Cooled Reactors with APOLLO3®" (SCRAP) approach is presented.
Results for both lattice and full core MINOS calculations are presented and compared with
TRIPOLI4 reference results. SCRAP results are analyzed, the scheme’s performances and
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drawbacks are discussed. An extension of the SCRAP scheme is then presented and used to
test the hypothesis associated with the geometry used for the lattice flux calculation. Con-
clusions about the radial homogeneity and leakage model assumptions formulated by SCRAP
are drawn.

3.2 Tripoli-4 benchmark definition

Definition of studied configurations The configurations studied are the nominal (NOM),
voided (VOID), Doppler affected (DOP) and both voided and Doppler (DOP+VOID) cases.
In the VOID configuration, all sodium coolant densities are replaced with a density ap-
proaching zero (N = 1.00× 10−15[b−1cm−1] ). In the DOP configuration, fuel temperature is
increased from 1474 K to 2974 K. In the DOP+VOID configuration, both effects are taken
into consideration.

On the full core scale, the voiding effect is taken to affect all assemblies in the C1/C2 radial
zone. By that it is meant that plenums and lower reflectors are voided along with C1 and
C2 fuel assemblies. Their sodium concentrations are set to N = 1.00× 10−15[b−1cm−1], and
the radial reflector zone remains untouched.

It is worth noting that all temperatures in structures are set to 774 K, as well as in constituents
of fuel assemblies that are not the fuel pellets themselves.

Definition of the nomenclature The ANTOINID core can be radially described by three
distinct zone. As previously explained, the fissile zone is broken down into two C1 and C2
zones, surrounded by a radial reflector. The axial distributions in C1 and C2 zones are
referred to as "assemblies", these are a collection of different materials including reflector and
fuel zones. Each assembly can thus be broken down into a lower reflector ("SREFLLOW1/2"),
a fissile zone ("C1/2") and an upper plenum ("SPLN1/2"). For the rest of this work, the
C1/C2 "assembly" will refer to the collection of "sub-assemblies" ("SREFLLOW1/2, "C1/2"
and "SPLN1/2"). This choice is done so that a "C1/2 assembly" refers to the complete axial
distribution of materials, following the convention set by P. Archier et al. in [21].

The axial distribution of a C1 assembly modeled in Tripoli-4 is shown in figure 3.1. The
lower part (gray) corresponds to the steel lower reflector, the second part (in red) is the C1
fuel sub-assembly and above that is the upper plenum, filled with sodium (yellow). The gray
color represents steel structures, the yellow and orange zones correspond to sodium coolant.
The red color represents the fuel rods, with a central voided zone shown in white. The C2
assembly is similar, with longer fuel rods, a different fuel composition, and a smaller plenum.
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Figure 3.1 Graphical representation of the ANTOINID’s assembly structure, from Tripoli-4
visualization tool.

The ANTOINID fuel sub-assembly model The ANTOINID fuel sub-assembly mainly
consists of a hexagonal steel tube filled with 169 fuel rods. Each sub-assembly is cooled
by sodium, inside and around the tube. A visual representation of the Tripoli-4 model
can be found in figure 3.2. Monte-Carlo calculations are performed in the infinite lattice
hypothesis by imposing specular reflective boundary conditions on a single sub-assembly. C1
and C2 fissile sub-assemblies only differ in fuel compositions. Kinf , void effect at constant
temperature and Doppler effects at constant sodium concentration are presented in tables 3.1
and 3.2. In order to perform these calculations, three normalized punctual neutron sources
are initialized at different heights z = 50, 75, 100 cm, at the sub-assembly’s symmetry center
(x, y) = (0, 0). These only come into play at t = 0, initializing the neutron population.
The subsequent neutrons are simulated using subsequent histories produced. A total of
40 000 batches of 10 000 neutrons are simulated for each configuration. In the case of
voided configurations, calculation times can increase from time scale of a day to more than

C1 sub-assembly Kinf T4±5 pcm Fuel Temp. (K) ∆ρV (pcm) Void ∆ρD (pcm)
NOM 1.20746 1474 2663± 6 Yes −665± 6
VOID 1.24757 2974 2854± 6 No −474± 6
DOP 1.19784
DOP+VOID 1.24024

Table 3.1 Tripoli-4 results for C1 fuel sub-assembly : Kinf different conditions, voiding and
Doppler effects on reactivity.
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C2 sub-assembly Kinf T4 ±5 pcm Fuel Temp. (K) ∆ρV (pcm) Void ∆ρD (pcm)
NOM 1.28890 1474 2517± 5 Yes −520± 6
VOID 1.33211 2974 2654± 5 No −382± 6
DOP 1.28032
DOPVOID 1.32536

Table 3.2 Tripoli-4 results for C2 fuel sub-assembly : Kinf different conditions, voiding and
Doppler effects on reactivity.

a week. Given the time constraints associated with this project, it was attempted to cut
down calculation times for voided configurations. In order to optimize the simulation times,
the "TIME_SUP NEUTRON" option was introduced. This parameter allows to specify
an upper bound for the simulated neutrons’ life time. It was observed that limiting each
neutron’s life time to 10−5, 10−4, 10−2 or 1 seconds didn’t have any significant statistical
impact on the Kinf values calculated. Indeed, all discrepancies in the Kinf ’s were of the
order of ∼ 10 pcm, which was well within the 1 standard deviation range used to conduct
this quick survey. Since using this restriction on a larger number of neutron histories greatly
cut down the MC simulation time, it was decided to proceed with setting the parameter to
10−5, keeping in mind that it could introduce biases of the order of ∼ 10 pcm. This should
be kept in mind when comparing AP3 results with those presented in tables 3.1 and 3.2.
Additional work could be done in further assessing this parameter’s influence, however since
the main focus of this project was to study the deterministic AP3 approaches in more detail,
it appeared outside of this work’s scope.

The ANTOINID core model The full ANTOINID core Monte Carlo simulation was
implemented in Tripoli-4. The geometry was defined by Antoine Martini in the native T4
language using a combinatorial volumic approach. In order to obtain more detailed scores
for fission rates, the model includes an axial discretization of the fuel sub-assemblies in 10 cm
high sub-volumes. This amounts to a total of eight and nine sub-volumes for C1 and C2 fuel
sub-assemblies respectively. Fission scores in each of the sub-volumes are used as a reference
when comparing with deterministic calculations.

Results for full core calculations in the four configurations are presented in table 3.3. Voiding
and Doppler effects on reactivity are calculated. Normalized fission rate maps are presented
in figure 3.4. Nominal (a), voided (b), Doppler (c) and Doppler+voided (d) configurations
are shown. In the rest of this work, fission rates are normalized so that their sum over all
fissile regions considered, is equal to the total number of fissile regions. This can be expressed
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Figure 3.2 Graphical representation of the ANTOINID’s 2D fuel sub-assembly structure,
from Tripoli-4 visualization tool.

(a) Top view of the ANTOINID core. (b) Axial distribution of materials in the core,
view on the y=0 axis.

Figure 3.3 Radial (left) and axial (right) distribution of materials in the ANTOINID core.
To the left, C1 fuel assemblies (red), C2 fuel assemblies (orange) and radial reflectors (green).
To the right, lower reflector (green), C1 (red) and C2 (orange) fuel sub-assemblies and their
height difference, covered by sodium plenum (yellow).
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mathematically as :
N=782∑

i

τ̃i = N =
N=782∑

i

Nτi∑N
i τi

(3.1)

where N = 782 is the total number of fissile volumes considered: 728 from the eight 10 cm
slices of C1 and C2 sub-assemblies, and 54 from C2 sub-assemblies on the last 10 cm slice, τ̃i

are the normalized rates and τi are the rates before normalization. In the 2D maps presented,
fission rates have been summed over all fissile isotopes, and have been axially integrated over
the fissile part of the core. It is worth mentioning that this type of normalization is necessary
in order to allow for a code to code comparison as a critical flux solution is only defined
up to a normalization constant. A breakdown of axial dependence of fission rates can be
seen in figure 3.5. Only fission rate scores from the "bottom-left" to "top-right" traverse are
considered. Additional T4 calculations are performed in order to try to isolate contributions
of voiding effects on reactivity. Only the sodium plenum is voided, then only the sodium in
fuel regions. Lastly, both are voided, leaving the lower reflector intact.

Analysis of fission maps shown in 3.4 reveals that voiding sodium coolant leads to an overall
decrease of fission rates in the central part of the core, correlated with an increase in the
outer assemblies’ fission rates. This could be attributed to a "flattened" flux distribution in
the voided configurations. This is due to the fact that neutrons travel greater distances in
voided configurations, thus leaving more possibilities for neutrons from high flux zones to
migrate to other zones. On the other hand, it can be seen that the Doppler effect on fission
rates increases the variation in fission rates from outer to inner fuel assemblies. This effect is
due to the broadening of resonant absorption cross section due to thermal agitation of fissile
nuclides [1]. Since the absorption cross section is the sum of the fission and capture cross
sections, it is hypothesized that the broadening of fission cross sections is the main source for
this difference between NOM/DOP and VOID/DOP+VOID configurations. The Doppler
broadening of capture cross sections of isotopes present in the fuel pellets would then be
responsible for the negative Doppler effect on reactivity presented in table 3.3.

Config. Keff

TRIPOLI4
σ
(pcm) Fuel Temp. (K) ∆ρV

(pcm) Void ∆ρD

(pcm)
NOM 1.01518 4 1474 -749±9 No -639±6
VOID 1.00752 8 2974 -573±9 Yes -463±11
DOP 1.00864 5 Combined DOP+VOID ∆ρD+V (pcm)
DOP+VOID 1.00284 8 -1212±9

Table 3.3 Tripoli-4 results for full core simulations, Keff in different conditions, voiding effects
at both temperatures and Doppler effects in both non-voided and voided configurations.
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(a) Axially integrated reference T4 fission rates,
NOM configuration.

(b) Axially integrated reference fission rates, VOID
configuration.

(c) Axially integrated reference T4 fission rates,
DOP configuration.

(d) Axially integrated reference T4 fission rates,
DOP+VOID configuration.

Figure 3.4 Reference fission rates for Nominal (a), voided (b), Doppler (c) and
Doppler+voided (d) configurations, axially integrated and symmetrized.
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(a) Fission rates at each 10 cm fuel height, NOM
configuration.

(b) Fission rates at each 10 cm fuel height, VOID
configuration.

(c) Fission rates at each 10 cm fuel height, DOP
configuration.

(d) Fission rates at each 10 cm fuel height,
DOP+VOID configuration.

Figure 3.5 Fission rates on radial traverse, integrated on each 10 cm fuel slice.
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Figure 3.5 helps comparing the axial effects on fission rates. Indeed, a comparison from left
to right (non-voided to voided) reveals that the fuel slices most impacted by the voiding are,
h = 8 (grey), h = 9 (yellow) and h = 7 (pink). These correspond to the fuel slices closest to
the voided sodium plenum, with h = 8 and h = 9 slices directly sharing interfaces with the
plenum. It is hypothesized that most of the decrease of fission rates in these slices is due to
the voided regions in the sodium plenum acting as preferred leakage channels for neutrons
to escape the core. This leaves less possibility for outbound neutrons to be reflected back
to fuel sub-assemblies and thus leads to a strong decrease of reaction rates in these regions.
On the other hand, slices h = 2, h = 1 and h = 3 experience a slight increase in fission
rates, due to the loss of slightly moderating effects of sodium, the neutron energy spectrum
hardens leading to a slight increase in these regions. This could be due to the fact that lower
reflectors are primarily made of steel, leaving comparatively less neutron leakage channels
than the upper plenum. This effect could also potentially be due to the chosen normalization
as the decrease of fission rates in the upper slices would tend to increase rates in other zones
as the sum of rates is imposed to be constant.

Spatial dependence of voiding effects on reactivity The sodium void effect on reac-
tivity being highly dependent on the spatial distribution of voided regions, some tests were
performed varying the voided zone to quantify the compensating effects on reactivity. First,
only the upper plenum zones above the C1 and C2 zones were voided (VOID = SPLN), then
only the C1 and C2 fuel regions were voided (VOID = C) and lastly, both plenum and fuel
regions are voided. The resulting eigenvalues and effects on reactivity are presented in table
3.4

It is interesting to note that the total reactivity loss due to the voiding of the upper plenum
is -1161 pcm. This negative effect in reactivity is understood to be due to the leakage of
neutrons through axial void channels. On the other hand, the reactivity increase due to

Configuration Keff T4 σ (standard deviation) ∆ρV

pcm
NOM 1,01518 4.11× 10−5 0
VOID = SPLN 1,00335 1.11× 10−4 -1161
VOID = C 1.02410 1.15× 10−4 858
VOID = C+SPLN 1.01033 1.39× 10−4 -473
VOID=ALL 1.00752 7.84× 10−5 -749

Table 3.4 Keff and sodium void effects obtained for T4 simulations, spatial dependence on
sodium void effect.
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voided fuel regions is +858 pcm, which is taken to be due to the decrease in neutron modera-
tion/absorption by sodium leading to a higher energy neutron spectrum which increases the
chances of witnessing higher energy fission events. These two effects’ opposing behaviors are
displayed here as it can be seen that voiding both C and SPLN zones results in a net -473
pcm effect. It can be noted that independently, both effects do not add up to the combined
effect. The difference is taken to be due to the additional leakage introduced by a greater
production in the upper fissile zones in the voided case. In order to get to the total -749
pcm effect, an additional -276 pcm is required, this is taken to be due to the lower reflector’s
voiding which would participate to the negative neutron leakage contributions.

These results will be used as a reference when considering the ANTOINID’s neutronic be-
havior. APOLLO3 deterministic scheme’s performances will be assessed by considering :

1. Errors on reactivity (pcm) : ∆ρ = ( 1
Keff,AP 3

− 1
Keff,T 4

)× 105

2. Errors on void and Doppler effects on reactivity (pcm) : ∆∆ρ = ∆ρAP 3 −∆ρT 4

3. Relative errors on fission rates : ∆τf = (τf,AP 3 − τf,T 4)× 100/τT 4

3.3 SCRAP project scheme approach

The SCRAP (Sodium Cooled Reactors with APPOLLO 3) project scheme was developed
by Jean-François Vidal and Maciej Zajaczkowski in order to access the needs of LEPh and
LE2C for a fast and robust APOLLO3 SFR scheme. SCRAP was previously validated by
comparison with TRIPOLI4 on the larger JF-36 benchmark core, the 3600 MW variant of
the Japanese Sodium Fast Reactor (JSFR) [30].

The first goal of this project is to validate and analyze performances obtained by SCRAP
on the ANTOINID benchmark. The scheme is performed in the classical two computational
steps. In the first step, assembly calculations are performed in order to generate sets of
microscopic cross sections, as a function of local parameters. In this work, the parameters
used are the fuel temperature and the sodium density. These are stored in the MPO format,
specific to APOLLO3. In the second step, the full core calculation is performed using the
MINOS solver [15].

3.3.1 SCRAP lattice calculations

The lattice geometries are described and generated using the INCA tool, currently in de-
velopment at DER/SPRC. Three types of geometries are generated corresponding to fissile,
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reflector and plenum sub-assemblies. All three consist of a primary hexagonal structure filled
with 169 cylinders. In fissile sub-assemblies, the cylinders harbour solid fuel pellets (MOX).
In the reflectors, these cylinders are made of steel and in plenum, they are filled with sodium.
The three 1/12th of geometries are shown in figure 3.6. The latter are used for zone and
physical properties assignments, in figure 3.6, each color represent a different zone. Most
notably, the outermost fuel pins are treated separately, allowing for different self-shielding
properties. The coolant is also treated differently, depending on whether it is located inside
or outside the hexagonal tube. This allows for a different treatment of each zone during the
self-shielding step. The tracking parameters for Tone’s method involve twelve horizontal and
three vertical angles. The integration step is set to 0.1 cm. These are parameters that were
recommended in the reference AP3 scheme for SFRs presented in P. Archier et al. [21].

(a) Fissile sub-assembly geometry
(1/12th).

(b) Reflector sub-assembly geom-
etry (1/12th).

(c) Plenum sub-assembly geome-
try (1/12th).

Figure 3.6 INCA generated unstructured geometries for Fissile (a), Reflector (b) and Plenum
(c) sub-assemblies. Colors show associated zones, allowing for the assignment of different
physical properties.

First, the fissile sub-assemblies are treated; Tone’s method for resonance self-shielding [22] [24]
is performed on the exact 2D geometry (fig. 3.6(a)), on a 383 groups fine energy mesh. Once
the self-shielding is performed, the exact 2D geometry is turned into a homogeneous 1D
equivalent geometry, using the Flux-Volume homogenization method. In order to do so, a
single node, one dimensional mesh is generated. Specular reflection conditions are applied,
implying that the considered geometry is effectively an infinite homogeneous "paste". It must
be noted that this flux calculation geometry thus becomes equivalent to an homogeneous
0D calculation. Since the homogenized geometry is rotationally invariant, the integration
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direction for the IDT plane flux calculation is arbitrarily chosen to be the x-axis. The
homogenized cross sections are computed by summing the self-shielded cross sections over
the regions in the exact mesh, weighting them by the product of the flux and the volume
of the corresponding region. This requires the initialisation of a flat flux on the exact 2D
geometry. APOLLO3’s IDT solver is called to perform a SN flux calculation on the 1D
homogenized geometry, using the same 383 groups energy mesh. The angular treatment is
performed through a (8,8) double Gauss-Legendre quadrature. For fissile sub-assemblies, the
B1 homogeneous model is used and a search for the critical B2 is performed. The treatment
of sub-critical assemblies is also performed in two step. First, Tone’s self-shielding method
is used on the exact two dimensional geometries (fig. 3.6 (b) and (c)). Then, the latter are
homogenized, similarly as for fissile sub-assemblies. A SN source calculation is performed on
the homogenized geometry, using the neutron leakage rate obtained from fissile sub-assemblies
as the source term.

The neutron leakage out of C1 fuel sub-assemblies is taken to act as a source for the plenum
located directly on top of the inner fuel part of the core as well as for the lower reflectors
located just underneath C1. The leakage calculated for C2 are taken as a source for the
radial reflectors, the lower reflectors under C2 fuel as well as for the plenum above C2 fuel
sub-assemblies.

Condensation of cross sections from the 383 groups energy mesh to 33 groups outputs is
performed using the Flux-Volume technique.

The main hypotheses made in this approach are the following :

1. Homogeneity : A homogeneous 1D sub-assembly geometry is valid for a flux calculation
on fissile zones. This flux calculation can be performed on a 383 energy groups mesh.

2. Leakage : Neutron leakage terms can be computed using the B1-homogeneous model.

3. Reflector models : Reflectors can be represented by a homogeneous 1D geometry. The
cross sections can be obtained through an independent source calculation on 383 energy
groups. The leakage out of the fissile sub-assemblies acts as the external source.

These three primary hypotheses will be tested throughout the rest of this work.

Intermediate results : lattice calculations Kinf results for the SCRAP scheme in an
infinite lattice with no leakage model are presented in table 3.5. As the infinite lattice case
with no leakage is equivalent to a single fuel sub-assembly with reflective specular boundary
conditions, these results are compared with Tripoli-4 benchmark values, for both C1 and C2,
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while voiding and Doppler effects on reactivity are calculated and presented in tables 3.6 and
3.7.

It is important to note that the times indicated in table 3.5 correspond to the "No Leakage"
case. For cross section library production with a homogeneous leakage model and source
calculations for sub-critical sub-assemblies, the total time required is around 330 seconds
and the calculation requires about 4.10 GiB of RAM. Most of the computation time (∼200
seconds) is spent in the module handling isotopes, materials and geometries while the self-
shielding step takes about 15s. The time spent in the IDT flux solver to compute the 383g
flat spatial flux is 5 seconds (∼2.5s per fuel sub-assembly) and each of the source calculations
for the reflector and plenum takes from 10 to 20 seconds. The times recorded correspond to
cases executed on 16 threads in parallel, CPU type is Intel(R) Xeon(R) Silver 4210R, clocked
at 2.40GHz. Unless specified, all lattice and full core calculations presented in the rest of
this work are performed as such.

3.3.2 SCRAP full core calculations

The solver chosen for SCRAP full core calculations is MINOS in the simplified diffusion
approach to neutron transport. The ANTOINID’s geometry is defined in a "hexagonal-z"
structured mesh : first the 2D zones are defined, involving the innermost C1 zone composed
of six rings of hexagons, then the C2 zone is defined, consisting of two rings. Lastly, three
rings are added to constitute the radial reflector zone. The 2D mesh composed of hexagons
is then extruded along the z axis, the chosen axial discretization is to add 1 node every 2.5
cm. In each of the 2D radial zones, an axial composition is specified, attributing physical
properties along the axial dimension.

The MINOS solver relies on a Raviart-Thomas Nedelec finite element discretization [15]. For
this reason, each 2D hexagonal sub-assembly is subdivided into quadrilateral sub-cells. A

SCRAP No Leakage T4
t (s) Config. Kinf IDT ∆ρ AP3 / T4 (pcm) Kinf ± 5 pcm

C1 C2 C1 C2 C1 C2
45 NOM 1,20411 1,28524 -230 -221 1,20746 1,28890
59 VOID 1,24416 1,32821 -220 -220 1,24757 1,33211
58 DOP 1,19456 1,27654 -230 -231 1,19784 1,28032
58 DOP+VOID 1,23670 1,32142 -231 -225 1,24024 1,32536

Table 3.5 Calculated Kinf for C1 and C2 fuel, difference in reactivity between AP3
SCRAP/T4
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T=1474K T=2974K
∆ρV OID SCRAP (pcm) AP3-T4 (pcm) ∆ρV OID SCRAP (pcm) AP3-T4 (pcm)

C1 2673 11 2852 2
C2 2517 0 2661 7

Table 3.6 Comparison of voiding effects on reactivity between SCRAP calculations and T4
reference.

VOID = No VOID = Yes
∆ρDOP SCRAP (pcm) AP3-T4 ∆ρDOP SCRAP (pcm) AP3-T4

C1 -664 1 -485 -11
C2 -530 -10 -387 -5

Table 3.7 Comparison of Doppler effects on reactivity between SCRAP calculations and T4
reference.

trapeze splitting is used, introducing four sub-cells per hexagon. The choice of finite element
order is 1 for both radial and axial elements. The calculation mesh used for the 2D radial
discretization can be seen in figure 3.7.

Figure 3.7 "Trapezoid splitting" calculation mesh used in MINOS.

The obtained Keff are reported in the first column of table 3.8. The differences in reactiv-
ity between un-voided and voided calculations are computed, as well as Doppler effects on
reactivity. These effects are compared to the reference T4 results previously shown in table
3.3.
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SCRAP cross sections were also used to solve the full core problem in the simplified trans-
port approximation. Similar mesh and finite elements methods as the ones presented for
the diffusion approximation are used to solve the SP3 equations on the full core geometry.
Calculated Keffs and corresponding effects on reactivity are presented in the second column
of table 3.8

For both Diffusion and SP3 approximate transport operators, three dimensional fission rates
fields are computed from the obtained neutron flux. Rates are normalized during post treat-
ment and compared to normalized TRIPOLI-4 rates. The three dimensional rates are inte-
grated along the axial dimension, enabling an assessment of the solver’s performances through
analysis of the associated 2D error distribution.

The Root Mean Squared error (RMS) associated with each error distribution is computed
using the following formula :

RMS =

√√√√ 1
N

N∑
i=1

(∆τ%
i )2 (3.2)

where N is the number of axially integrated fission rates and ∆τ%
i is defined as the relative

error between normalized SCRAP and T4 fission rates, expressed in %.

Diffusion Results on spatial fission distribution obtained from SCRAP cross sections using
the MINOS diffusion formalism are now presented. Relative errors on normalized, axially
integrated fission rates obtained from SCRAP/ MINOS Diffusion calculations are presented
in figures 3.8 (a), (b), (c) and (d). It is worth mentioning that diffusion calculations with
the MINOS solver involving cross sections from the SCRAP lattice step require around 100
seconds and 3.80 GiB of RAM for nominal and Doppler affected calculations. In the case
of voided configurations, the RAM usage is unchanged, however calculations take about 150
seconds. This is due to a slower convergence of the fission source.

The RMS error associated with the four configurations are RMSNOM = 0.89%, RMSV OID =
0.98%, RMSDOP = 0.86% and RMSDOP +V OID = 0.99%.

These quadratic errors are rather satisfying judging by the fuel sub-assembly homogeneity
hypothesis introduced at the SCRAP lattice stage.

In order to get a better understanding of the radial and axial effects on the biases introduced
on fission rates, the relative error on normalized rates (AP3-T4 (%)) is plotted in figure 3.9.
The radial traverse is taken across the ANTOINID core, from a vertex of the hexagonal shape
to its symmetric. Each 10 cm height in fuel sub-assemblies is represented by a different color.
Additionally, figure 3.10 shows the evolution of the relative error on fission rates with respect
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(a) Relative error on fission rates, NOM configura-
tion.

(b) Relative error on fission rates, VOID configura-
tion.

(c) Relative error on fission rates, DOP configura-
tion.

(d) Relative error on fission rates, DOP+VOID con-
figuration.

Figure 3.8 Relative difference (%) AP3-T4 on fission rates obtained from SCRAP in diffusion
calculations in MINOS. Nominal (a), voided (b), Doppler (c) and Doppler + voided (d)
configurations.
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(a) Relative error on fission rates,
NOM configuration.

(b) Relative error on fission rates,
VOID configuration.

(c) Relative error on fission rates,
DOP configuration.

(d) Relative error on fission rates,
DOP+VOID configuration.

Figure 3.9 Relative difference (%) AP3-T4 on fission rates obtained from SCRAP diffusion
vs radial position (ERANOS hexagon numbering). Nominal (a), voided (b), Doppler (c) and
Doppler+voided (s) configurations. Radial traverse across the core.
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(a) Relative error on fission rates,
NOM configuration.

(b) Relative error on fission rates,
VOID configuration.

(c) Relative error on fission rates,
DOP configuration.

(d) Relative error on fission rates,
DOP+VOID configuration.

Figure 3.10 Relative difference (%) AP3-T4 on fission rates obtained from SCRAP diffusion
vs axial position (10 cm slice). Nominal (a), voided (b), Doppler (c) and Doppler+voided
(d) configurations. Axial traverse on C1 central and outer assemblies, C2 inner and outer
assemblies.



47

SCRAP
tlattice = 330 s
RAM ∼ 4.1 GiB

TRIPOLI-4
Keff±8 pcm

∆ρ
MINOS
Diffusion

∆ρ
MINOS
SP3

NOM 1.01518 -118 pcm 63 pcm
VOID 1.00752 122 pcm 377 pcm
DOP 1.00864 -171 pcm 13 pcm
DOP+VOID 1.00284 86 pcm 343 pcm
∆ρV (pcm)
T=1474K/2974K -749/-573 -509/-316 -436/-244

Error ∆ρV (pcm)
T=1474K/2974K 0/0 240/258 313/330

∆ρD (pcm)
Void = No/Yes -638/-463 -692/-500 -689/-497

Error ∆ρD (pcm)
Void = No/Yes 0/0 -53/-36 -50/-34

Time (s) 403 670 174 592
RAM, core calculation Not recorded 3.80 GiB 14.89 GiB

Table 3.8 Comparison of MINOS Diffusion and SP3 calculation. For all four configurations,
error on the eigenvalue, calculated void and Doppler effects and their associated errors are
displayed.

to the discrete 10 cm height in fuel. The assemblies represented are central and outer C1 as
well as inner and outer C2 assemblies, all located on the same radial traverse as previously
described. An illustration of the radial and axial traverses used can be found in figure A.1
of Appendix A.

It should be noted that in figure 3.9, the error associated with h = 9 (fuel sub-assemblies in
110cm ≤ z ≤ 120cm) is zero for radial positions from 27 to 33. This is simply because fuel
in C1 assemblies stops at a 110cm height. For similar reasons, no relative error is associated
with h = 9 for C1 assemblies in figure 3.10.

Simplified Transport The results from SCRAP cross section used in full core MINOS SP3

are now presented. The relative errors on fission rates calculated from MINOS SP3 using the
cross sections generated by the SCRAP lattice scheme are presented in figures 3.11 (a)(b)(c)
and (d) The associated root mean squared errors are RMSNOM = 0.63% in the nominal
configuration, RMSV OID = 0.64%, RMSDOP = 0.60%, and RMSDOP +V OID = 0.65%.

Additionally, errors on fission rates along the axial traverses in central and outer C1 assem-
blies, as well as inner and outer C2 assemblies are presented in figure 3.12.

The simplified transport calculations performed take around 220 seconds for NOM and DOP
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configurations, while the voided VOID and DOP+VOID configurations require around 580
seconds. It is also worth taking into account that the SP3 solution required considerably
more RAM than the diffusion approach, using almost 15 GiB per configuration.

3.4 SCRAP Results Analysis

The SCRAP scheme appears to provide acceptable results at the lattice step. Indeed, despite
the apparent important bias on reactivity (∼ −230pcm), the void and Doppler effects on re-
activity given by equations 2.43 and 2.44 are correctly captured, despite the strong hypothesis
made for the lattice calculation. The results hint at the fact that spatial homogenization of
the ANTOINID’s fuel sub-assemblies seems to be a valid assumption. This is not a totally
surprising since SFR fuel sub-assembly designs are generally radially "homogeneous" from a
neutronic point of view. This is mostly due to the fact that no strong neutron thermalizers
are present. This wouldn’t be the case when using water as a moderator for example. Since
neutrons are not thermalized, their mean free paths are more important, making them less
sensible to radial heterogeneity. This property allowing for fast IDT 1D SN calculations
on the homogenized geometry appears as the scheme’s greatest strength, enabling fast and
accurate representations of NOM and DOP configurations at the full core scale. Indeed, for
both SP3 and Diffusion calculations, Doppler effects on reactivity seem correctly captured.
Relatively small biases are introduced with the negative Doppler effect on reactivity being
over estimated by about 50 pcm. However, both Diffusion and SP3 cases fail at correctly
capturing the effect of sodium voiding in plenum, fuel and lower reflector regions. Indeed, in
the diffusion approximation, the calculated void effect at Tfuel = 1474K represents ∼ 68%
of the total effect at this temperature. At Tfuel = 2974K, only 55% of the total effect is
captured. The results for voiding effects on reactivity are even less satisfying with the SP3
transport description as only 61% and 46% of the total effects of on reactivity are captured
at Tfuel = 1474K and Tfuel = 2974K respectively. Figure 3.8 reveals a systematic over esti-
mation of fission rates in the C1 fuel area and an under estimation of fission rates in the C2
fuel area. It can also be noticed that relative errors on fission rates increase in the presence of
voided regions. This is made more apparent when looking at figure 3.9 in which the relative
difference between SCRAP and T4 rates is plotted as a function of a traverse radial position,
on each 10 cm fuel slice. This effect can be assumed to be due to a misrepresentation of the
radial reflectors. Indeed, it seems that the latter do not reflect enough neutrons towards the
fissile part of the core. This view also reveals that in the voided configurations, the fission
rates in the lower part of the core, slices h = 1, 2, 3, 4 (blue, orange, green and red) are even
more overestimated than for the NOM and DOP configurations, reaching up to almost ∼ 2%
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(a) Relative error on fission rates, NOM configura-
tion.

(b) Relative error on fission rates, VOID configura-
tion.

(c) Relative error on fission rates, DOP configura-
tion.

(d) Relative error on fission rates, DOP+VOID con-
figuration.

Figure 3.11 Relative difference (%) AP3-T4 on fission rates obtained from SCRAP in SP3
MINOS calculations. Nominal (a), voided (b), Doppler (c) and Doppler + voided (d) config-
urations.
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(a) Relative error on fission rates,
NOM configuration.

(b) Relative error on fission rates,
VOID configuration.

(c) Relative error on fission rates,
DOP configuration.

(d) Relative error on fission rates,
DOP+VOID configuration.

Figure 3.12 Relative difference (%) AP3-T4 on fission rates obtained from SCRAP SP3 vs
axial position (10 cm slice). Nominal (a), voided (b), Doppler (c) and Doppler+voided
(d) configurations. Axial traverse on C1 central and outer assemblies, C2 inner and outer
assemblies.
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over estimation in the core’s central part. On the other hand, in the upper part of the core,
the fission rates in slice h = 7, 8, 9 (yellow, gray and pink) tend to now be under estimated
by about 2%, with minimal values reaching up to almost 4% underestimation.

These effects can be further illustrated by figure 3.10 which show the relative error’s evolution
for four selected assemblies, as a function of the height in fuel sub-assembly. The consistent
overestimation of the fission rates in inner C1 fuel regions can be seen looking at the blue
and orange data points. On the other hand green and red data points show the under-
estimation of rates in C2 assemblies. Furthermore, figure 3.10 suggests the need for a better
representation of axial reflectors. Indeed, in all four configurations, the lower reflectors’
impact on fission rates can be seen as all four graphs display a consistent increase in the
relative error’s value between slices 2 and 1, breaking the apparent trend of error evolution
in the core’s inner part. Comparable behavior can also be witnessed between slice 7 and
8 in C1 fuel as well as slices 8 and 9 for the C2 region, in NOM and DOP configurations.
In the presence of a voided plenum, it can be seen that all of the fission rates tend to be
underestimated for regions at the interface. The inner C2 fuel sub-assembly at h = 9 is where
the maximal underestimation (almost −4%) is reached. This is assumed to be because this
inner C2 sub-assembly shares more interfaces with the voided sodium plenum than any of
the other fuel sub-assemblies. Indeed, C1 fuel and outer C2 only share their upper face with
plenum, whereas the top inner C2 sub-assembly also shares interfaces with sodium plenum
located above C1 fuel. This type of bias could be due to the axial reflector model used.

The results obtained from SP3 calculations tend to confirm the biases picked up from the
diffusion approximation. Despite providing a better description at the fission rates scale,
as revealed in figures 3.11, SP3 calculations with SCRAP cross sections do not provide a
satisfying estimation of the void effect on reactivity. Indeed, as seen in table 3.8, MINOS SP3

gives a worse prediction of the void effect on reactivity than the diffusion approximation. This
is assumed to be due to compensating effects introduced via the diffusion approximations.
This tends to confirm that the SCRAP scheme’s axial leakage representation is not sufficient
to properly represent the voided configuration. This can be further seen in as the evolution of
biases associated with fission rates along the axial traverses presented in figure 3.12 appears to
display similar behaviors in terms of biases associated with radial and axial representations.

This analysis reveals that SCRAP results are satisfying when it comes to the description of the
Doppler effect on reactivity. However, the misrepresentation of voided configurations should
be investigated. In order to explore possible biases associated with the SCRAP scheme’s
hypotheses, a MOC based scheme is presented in the following section.
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3.5 A SCRAP extension : MOC2DHom

As presented in the previous sections, SCRAP performances are limited in the presence of
voided regions in the case of a LOCA. In order to test hypotheses associated with SCRAP,
a MOC scheme using the exact 2D sub-assembly geometries is implemented. The main hy-
potheses associated with the SCRAP approach to over-critical sub-assemblies’ computations
were the following :

1. Flux in fuel sub-assemblies can be computed directly on a homogenized geometry :
radial homogeneity is assumed.

2. Neutron leakage can be computed form the homogeneous B1 leakage model.

3. Flux calculations in sub-critical zones can be performed through a source calculation
using leakage terms.

In order to test the first hypothesis, a more standard scheme was adapted from SCRAP. This
new scheme will be referred to as MOC2DHom. The differences between MOC2DHom and
SCRAP are that the main flux calculation is performed on the exact 2D assembly geometry,
using the TDT/MOC solver. The order of anisotropy considered is set to 3 and the fine 1760
groups energy mesh is used. The rest of the scheme’s architecture remains the same : the
leakage model used is the B1 homogeneous model and the homogenization/condensation step
is performed with the Flux-Volume method. The treatment of the sub-critical sub-assemblies
is similar, the leakage terms obtained are used as sources for MOC flux calculations.

The tracking parameters used for the collision probability method involved in the Tone self-
shielding step are the same as in SCRAP. The TDT/MOC tracking consists of twenty-four
horizontal and three vertical angles. An integration step of 0.04 cm is chosen. Since the
Doppler effect on reactivity seems properly captured by SCRAP, even between misrepresented
VOID and DOP+VOID configurations, the MOC2DHom scheme will be presented only for
NOM and VOID core configuration.

The MOC calculation step is performed on the unstructured mesh obtained from the same
INCA generated geometries. Specular reflection conditions are applied as an infinite lattice
of fuel assemblies is considered for the initial flux calculation. Making use of the symmetries,
1
12

th geometries are used to perform these calculations. The latter can be found represented
in figure 3.6.

The Kinf are obtained through the TDT/MOC solver without a leakage model, they are
presented in table 3.9. The corresponding ∆ρV and ∆ρD are computed and compared to



53

the reference T4 void and Doppler effects in tables 3.10 and 3.11. It is worth noting that
the times presented in table 3.9 are those required to treat both C1 and C2 assemblies in an
infinite lattice, without applying a leakage model. Time to run the MOC2DHom scheme for
the 7 sub-assemblies is shown in table 3.12.

AP3 No Leakage T4
t (s) Config. Kinf TDT ∆ρ AP3 / T4 (pcm) Kinf ± 5 pcm

C1 C2 C1 C2 C1 C2
208 NOM 1,20796 1,28952 34 37 1,20746 1,28890
140 VOID 1,24768 1,33219 7 5 1,24757 1,33211
206 DOP 1,19840 1,28081 39 30 1,19784 1,28032
200 DOPVOID 1,24026 1,32544 1 5 1,24024 1,32536

Table 3.9 Calculated Kinf for C1 and C2 fuel assemblies, difference in reactivity between
AP3 TDT/MOC and T4, 1760 energy groups mesh.

T=1474K T=2974K
∆ρV MOC (pcm) AP3-T4 (pcm) ∆ρV MOC (pcm) AP3-T4 (pcm)

C1 2635 -28 2816 -38
C2 2484 -33 2629 -25

Table 3.10 Comparison of voiding effects on reactivity between TDT/MOC calculations and
T4 reference.

VOID = No VOID = Yes
∆ρDOP MOC (pcm) AP3-T4 ∆ρDOP MOC (pcm) AP3-T4

C1 -660 5 -479 -5
C2 -527 -7 -382 0

Table 3.11 Comparison of Doppler effects on reactivity between TDT/MOC calculations and
T4 reference.

Full core calculations using the MINOS solver are performed. Table 3.12 shows a comparison
between MINOS diffusion and SP3, using cross sections generated from the MOC2DHom
scheme. The errors on nominal and voided eigenvalues are presented along with the calculated
void effect on reactivity (∆ρV ) and its associated bias with respect to the T4 reference. The
mesh used, along with finite elements orders are the same as for the SCRAP scheme; it
is shown in figure 3.7. Times and RAM usage presented for MINOS full core calculations
represent the most penalizing case,

Fission rates are recovered for both NOM and VOID configuration for the diffusion transport
operator. Figures 3.13 (a) and (b). Root mean squared error on rates (RMS) is computed.



54

MOC2DHom
tlattice = 450s
RAM ∼ 5.70 GiB

TRIPOLI-4
Keff±8pcm

∆ρ (pcm)
MINOS
Diffusion

∆ρ (pcm)
MINOS
SP3

NOM 1.01518 244 528
VID 1.00752 478 875
∆ρV (pcm) -749 -514 -403
Error ∆ρV (pcm) 0 235 346
tcore (s) 403 670 212 1318
RAM, core calculation Not recorded 3.82 GiB 21.55 GiB

Table 3.12 MINOS results, cross sections from the MOC2DHom scheme. Error on reactivity
along with void effect and its associated error are shown.

For the nominal configuration, the associated error RMSNOM = 0.67% whereas for the voided
case, it increases to RMSV OID = 0.78%. Looking at biases on the void effects, 235 pcm for
diffusion, and 346 pcm for SP3, it can be said that the switch to a MOC scheme was not
conclusive to improve the voided configuration’s representation.

It can be noted that the MOC’s addition improved errors on fission rates, as seen comparing
the RMS and relative errors on fission rates from SCRAP (fig. 3.8 and 3.11) with those
obtained with the MOC2DHom scheme.

Figure 3.14 shows the evolution of the relative error on fission rates as a function of height
in the fuel assemblies. A similar evolution as in the SCRAP case can be seen. In the VOID
case, a tendency of over estimating rates close to the lower reflector/fuel interface can be
seen, and a consistent under estimation of rates close to the upper plenum/fuel interface can
also be observed. This is assumed to be related to a misrepresentation of axial effects, which
could be due to a combinations of the leakage and axial reflector models hypotheses.

It can be concluded from the MOC2DHom study that the homogeneity of fissile assemblies
hypothesis made in SCRAP is not the limiting hypothesis. Indeed, surprisingly good results
for effects on reactivity are obtained at the SCRAP lattice step, as well as a satisfying descrip-
tion of NOM and DOP configurations, especially in terms of the Doppler effect on reactivity.
However, SCRAP does not seem suited for treating the ANTOINID’s voided configurations
since consistent biases on the sodium void effect seem to indicate a misrepresentation of
the axial effects associated in the ANTOINID’s voided configurations. This is supported
by the fact that similar tendencies are observed in the MOC2DHom study. It is hypothe-
sized that the homogeneous leakage model, with a Flux-Volume condensation, used in both
schemes is not sufficient to represent such effects. It can be concluded from the SCRAP and
MOC2DHom studies that both schemes are reliable in terms of their implementation, as seen
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(a) Relative error on fission rates, NOM configura-
tion.

(b) Relative error on fission rates, VOID configura-
tion.

Figure 3.13 Relative difference (%) AP3-T4 on fission rates obtained from diffusion cal-
culations in MINOS, from MOC2DHom cross sections. Nominal (left) and voided (right)
configurations.

(a) Relative error on fission rates, NOM configura-
tion.

(b) Relative error on fission rates, VOID configura-
tion.

Figure 3.14 Relative error on fission rates on axial traverse, rates integrated over 10cm fuel
slices, MINOS diffusion with XS from MOC2Hom - T4. Axial traverse on central and outer
C1, inner and outer C2.
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from infinite lattice calculations, and satisfactory fission rates. However, the biases due to
the use of the homogeneous leakage model dominate as the desired precision on the sodium
void effect is not reached.

In order to tackle this problem, important modifications to the lattice scheme are required.
Three schemes aiming at a better description of axial streaming effects in voided regions are
presented in the next Chapter. These are aimed at testing the two remaining leakage and
reflector model hypotheses. It can be noted that, although it has been concluded that the
homogeneity hypothesis is not the limiting factor, a MOC calculation will become necessary
when introducing heterogeneous leakage in more advanced schemes.
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CHAPTER 4 TREATMENT OF VOIDED CONFIGURATIONS:
EXPLORING DIFFERENT SOLUTIONS

This chapter aims at presenting some of APOLLO3’s possibilities for advanced schemes.
The techniques presented were developed in order to simulate voiding and axial effects,
which appeared dominant in Chapter 3. Different possible solutions are explored and their
performances in terms of cost/precision are compared. Possible drawbacks are identified and
ideas for improvement are presented.

4.1 Attempt at defining a "best estimate" lattice scheme

SCRAP’s homogeneous assumptions seem to be valid at the assembly scale in a context where
neutron leakage is not considered. Indeed, its results at the lattice stage are impressive
judging by the void and Doppler effects on reactivity comparison with T4. However, as
seen previously in Chapter 3, full core calculation results are not satisfying when it comes
to estimating the void effect on reactivity. This underestimation of the voiding effect was
hypothesized to originate from an inaccurate representation of neutron leakage out of the
core. Looking back at equation 2.42, underestimating the leakage term L could indeed be
one of the causes for this inaccuracy. In an attempt to better describe the axial leakage and
streaming effects, three new lattice schemes are proposed. Firstly, a scheme based on a B-
heterogeneous method implemented in the 2D TDT-MOC solver is implemented. Its vocation
is to test the hypothesis associated with the leakage model used for lattice calculations. This
first scheme will be referred to as the "MOC2DHet" scheme. Secondly, a full 2D1D scheme
is presented, aiming at a more accurate calculation of cross sections for the axial reflectors.
This would allow to test the hypothesis made to represent reflectors in the SCRAP scheme.
Thirdly, a hybrid 2D1D scheme is presented, which combines the 2D1D axial representation
with a similar fissile sub-assembly treatment as in the MOC2DHet scheme. It is worth noting
that the 2D1D approach is "exploratory", its use in this work will serve as an assessment of
its current capabilities. Sources of errors may vary from the lack of experience on optimized
solver parameters, to potentially unstable implementations as 2D1D is not part of the non-
regression tests for APOLLO3. All results related to the 2D1D method will thus have to be
analyzed carefully. The three additional schemes introduced will be tested for cross section
generation through their use in core calculations.

In a "best estimate" approach, the MINARET [13] solver is selected to treat the full core prob-
lem. MINARET results are presented for the three lattice schemes. The transport operator’s
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influence is then considered : for a given lattice scheme, MINARET, NYMO and MINOS
(diffusion and SP3) solvers are confronted. Performances in terms of computational time
and RAM usage are assessed. Conclusions about the hypotheses associated with leakage and
reflector models are formulated. Lastly, a brief analysis of the full core solvers’ performances
in a precision/cost approach is presented.

4.1.1 The "MOC2DHet" lattice scheme

The proposed 2D MOC lattice scheme keeps the SCRAP philosophy in the sense that fis-
sile sub-assemblies are treated first, a leakage model is applied, and source calculations are
performed for plenum and reflector sub-assemblies. The leakage term from C1 assembly
is used as a source for the lower reflector under C1 as well as the plenum above C1. On
the other hand, the leakage term from C2 assembly is taken as the source for the radial
and lower reflectors as well as plenum above C2. The assembly flux calculations are per-
formed using the MOC on a 1760 groups energy mesh. MOC calculations are performed
on the exact unstructured heterogeneous geometry. This allows for the introduction of a B-
heterogeneous leakage model and homogenization/condensation of fissile sub-assemblies by
the Flux-Moments method implemented in APOLLO3 [28]. It is worth noting that the Flux-
Moments homogenization was attempted for sub-critical assemblies. However, in this case
where sub-critical motifs are treated separately through a source calculation, a Flux-Volume
condensation seems to be preferable. Indeed, when the Flux-Moments method was tested for
homogenizing sub-critical assemblies’ cross sections, it was observed that full core MINARET
calculations did not converge in voided configurations. This is assumed to be due to the fact
that the current vector, whose components are the flux moments with odd orders, tends to
go to zero over the totally homogenized sub-critical assemblies [31]. This is due to the fact
that the Flux-Moments method requires a complex expression for the flux, as obtained when
using the B-heterogeneous model [29]. However, the source calculations performed to treat
the sub-critical assemblies only provide a purely real flux solution, the homogenization is
then attempted using the (real) moments of the flux. This leads the current to cancel out
after the complete homogenization of the sub-assembly.

The B-heterogeneous leakage model allows taking into account preferred leakage directions.
In the ANTOINID case, it appears that the main direction for neutron leakage is along the
axially voided regions. For this reason the buckling vector is taken to have a single component,
in the ẑ direction. In order to further capture the anisotropic behavior in the case of voided
conditions, the anisotropy order considered for scattering events is set to 3. In an effort
to reduce the computational cost, the hexagonal symmetries of assemblies is used. This
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allows for the treatment of 1/12th of each assembly. Specular reflection boundary conditions
are applied in order to work on an equivalent infinite lattice. Three types of unstructured
geometries are considered. Indeed, C1 and C2 share the same geometry, the three types of
reflectors are also described by the same 2D mesh, and the two types of plenums as well. The
geometries, and zone assignment properties are the same as the ones presented in Chapter
3, they can be seen in figures 3.6.

Two types of tracking are generated over the geometries, the first is associated with the
TDT/CPM solver [16] and used to perform a quick Pij calculation as part of Tone’s self-
shielding method [24]. It involves twelve horizontal angles, three vertical angles as well as a
transversal integration step set to 0.1 cm. The second one is associated with the TDT/MOC
solver, it uses twenty-four horizontal angles, four vertical angles and a transversal integration
step of 0.04 cm. These tracking parameters were selected as they were recommended by P.
Archier et. al. [21] defining the AP3 reference scheme for SFRs.

The times required to run the entire MOC2DHet scheme (also applying the B-heterogeneous
model to fissile assemblies and performing source calculations for sub-critical assemblies) are
1740s and 2228s for the NOM and VOID configurations respectively. Each of which requires
a bit more than 8 GiB of RAM. During these ∼2000s, 100 are taken to perform the zone
assignment step on the three geometries treated (fuel, reflector, plenum). 10s are spent in
the self-shielding module, 800s are spend in the TDT/MOC flux solver. About 25 seconds
are necessary to perform the homogenization/condensation step and around 50 to 60 seconds
are necessary for each of the five source calculations used to describe the plenum and the
reflectors.

4.1.2 The "full 2D1D" lattice scheme

The "full 2D1D" scheme is based on 2D calculations performed on the exact 2D geometries
on the x-y plane, coupled with an IDT/Sn 1D calculation on an equivalent homogenized
geometry. The exact (1/12th) unstructured geometries for lower reflector, fuel and plenum
sub-assemblies are used and specular boundary conditions are applied at the limits on the
xy plane. Axial distributions are specified, for the C1 assembly case : 30, 80 and 40 cm for
the lower reflector ("SREFLLOW1"), fuel ("C1") and plenum ("SPLN1"). When treating C2
assembly, the axial distribution is modified to 30, 90 and 30 cm for lower reflector ("SREFL-
LOW2"), C2 fuel ("C2") and plenum ("SPLN2") sub-assemblies respectively. An approached
geometry involving three homogeneous slices is generated and meshed, refining the axial steps
at the interfaces between materials, as well as close to the z = 0 and z = 150cm boundaries.
A vacuum boundary condition is applied at these planes. The scheme loops between the
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2D MOC and 1D calculations. A flat flux is initialized on the 2D geometries, cross sections
are homogenized by the Flux-Moments method to a corresponding 1D homogeneous axial
traverse geometry. A 1D flux calculation is performed by the IDT solver along the three
homogenized axial slices. The leakage terms out of each homogenized media are obtained by
taking the difference between incoming and outgoing fluxes, giving the net current through
the z = zmin and z = zmax interfaces. The leakage terms from the 1D calculations are then
used as sources for the 2D MOC step. The cross sections for each of the media making up
the exact geometries are thus updated and homogenized to perform a new axial calculation.
The process is repeated until convergence is reached, setting a 10−5 criteria on the eigenvalue
computed by the IDT solver on the 1D homogeneous geometry.

The 1760 groups cross sections on each of the three slices heterogeneous geometries are at the
end homogenized to a single medium (1 per slice) and condensed to 33 energy groups. The
homogenization/condensation method used is the Flux-Moments technique as it was observed
to be the only available in the 2D1D approach. Table 4.1 shows the assemblies’ eigenvalues
obtained from the IDT 1D calculation on the equivalent homogenized geometry. The voiding
effects computed at the assembly level are 275 pcm and 762 pcm for C1 and C2 assemblies
respectively. This suggests a possible discrepancy from possible reference results since a
reactivity loss would be expected in the voided configurations, due to the maximization of
axial neutron leakage.

In order to validate these assembly calculations, setting up the equivalent TRIPOLI4 model
appears necessary. C1 assembly’s geometry was implemented in native TRIPOLI4, reflection
conditions were applied in the radial direction, while void boundary conditions are used for
the z = 0 and z = 150 cm planes. The model was tested at the very end of the internship
period. Since not much time was left to make sure it was completely operational, it will
not be presented here. This model is only mentioned in this work as a potential tool for
future work. Hopefully, analysis of full assembly T4 models results can contribute to validate
the 2D1D methods. This could be done through comparison with IDT 1D homogeneous
calculations.

full 2D1D:
Flux-Moments

Keff

NOM
# 2D↔1D
iterations

Keff

VOID
# 2D↔1D
iterations ∆ρV (pcm)

C1 Assembly 1.07228 4 1.07545 7 275
C2 Assembly 1.16292 4 1.17332 10 762

Table 4.1 C1 and C2 assemblies’ eigenvalues from equivalent 1D IDT calculation : full 2D1D
with Flux-Moments condensation.
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Details about the algorithmic implementation can be found in B. Faure’s PhD thesis [11],
in which the full 2D1D scheme is described extensively. The corresponding pseudo-code
algorithm is "Algorithm 6" (page 95).

The full 2D1D scheme for a single assembly is completed in about 45 minutes for nominal
configurations and up to 70 minutes in the voided cases. The time greatly varies depending on
the choice of the tracking parameters and convergence criteria on the IDT-1D eigenvalue. In
order to get the results presented, the tracking used in the MOC2DHet scheme was applied.
It could be interesting to further optimize the method as this choice of tracking leads to
consequent computational times. This implementation uses a maximum of about 5 GiB of
RAM. The time recorded is one that was obtained by running the full 2D1D scheme on
20 CPU threads in parallel, as opposed to the 16 CPU threads used for previous SCRAP,
MOC2DHom and MOC2DHet calculations.

In his thesis [11], B. Faure presents some of the issues associated with this technique. Indeed,
the potential presence of negative source terms which could be introduced when axial effects
take over scattering and fission contributions need to be dealt with. In order to avoid such
numerical instabilities, two "fix-up" strategies were made available in APOLLO3. The "zero
source fix-up" which replaces sources’ negative isotropic components by zero, and leaves
the higher order terms untouched. This approach is efficient at tackling the problem of
negative source components, however it does not preserve neutron balance. On the other
hand, the "Transverse Leakage Splitting" (TLS) technique, replaces the negative isotropic
source components by equivalent corrections to the total macroscopic cross sections, thus
allowing to preserve the neutron balance.

The results presented from the full 2D1D lattice step all rely on the "zero source" fix-up
option. Using the TLS technique was attempted. However, it appears that this option is not
available in the APOLLO3 versions used due to the code’s evolutions since 2019.

Keeping in mind the fact that the full 2D1D lattice step has not been validated numerically
by a T4 comparison, full core calculations will still be attempted and conclusions about the
lattice scheme will be drawn from MINARET results analysis.

4.1.3 The "hybrid 2D1D" lattice scheme

The "hybrid 2D1D" scheme is similar to the "full 2D1D" in the sense that it is based on
the same principle of performing an axial IDT calculation on equivalent homogenized axial
slices. The difference is that the fissile zone is treated in the same way as it was in the
"MOC2DHet" scheme. A 2D MOC calculation is thus performed and a heterogeneous B1
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leakage model is applied. This differs from the full 2D1D scheme as the eigenvalue problem
is now considered for the fissile sub-assembly, instead of the iterative approach using source
calculations described in the previous sub-section. The cross sections for C1 and C2 sub-
assemblies are computed once, homogenized using the Flux-Moments method and used as
such in the 1D axial geometry. Only lower reflector and plenum sub-assemblies are then
iterated over in a similar fashion as described in the full 2D1D scheme. Leakage from the
1D calculation is used as a source for 2D MOC computation of the cross sections of the
sub-critical sub-assemblies.

The 1760g cross sections on the exact geometries are homogenized and condensed to 33 groups
using the Flux-Moments technique, leading once again to the creation of 3 corresponding
homogeneous media. The hybrid version of the 2D1D scheme is described in pseudo-code in
B.Faure’s thesis and referred to as "Algorithm 7" (p. 102) [11].

This hybrid version of the 2D1D MOC scheme runs in about 20 minutes, on 20 threads and
uses a total of around 5 GiB of RAM. The time and memory occupation values presented
correspond to the treatment of a single assembly. Similarly as in the full 2D1D case, the time
indicated corresponds to the one obtained on a 20 CPU threads parallel computation.

The results obtained from the hybrid 2D1D implementation at the lattice stage are presented
in table 4.2 which show the eigenvalues obtained from the IDT 1D calculations performed
on the full assembly.

hybrid 2D1D:
Flux-Moments

Keff

NOM
# 2D↔1D
iterations

Keff

VOID
# 2D↔1D
iterations ∆ρV (pcm)

C1 Assembly 1.07102 2 1.07287 2 161
C2 Assembly 1.16176 2 1.17071 2 658

Table 4.2 C1 and C2 assemblies’ eigenvalues from equivalent 1D IDT calculation : hybrid
2D1D with Flux-Moments condensation.

Looking at eigenvalues presented in table 4.2 reveals that positive contributions to the sodium
void effect on reactivity dominate for both assemblies. This would tend to hint at the fact
that these calculations could not be valid since a negative effect on reactivity is to be expected
due to the maximization of leakage through the voided channels. However, it is worth noting
that similar results are obtained in the "full 2D1D" case. Once again, reference Monte-Carlo
simulations would be required to fully interpret these results.
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4.2 Full core calculations with MINARET

Radial discretization The MINARET exact transport solver was chosen to treat full
core nominal and voided configurations. In the x-y plane, hexagonal assemblies are meshed
directly through the built-in mesher and are subdivided into triangular elements. Originally,
the triangular elements’ characteristic size was specified to 8 cm. Choosing Discontinuous
Galerkin Adaptative (DGA) finite elements, the triangles’ size is automatically adjusted such
that each hexagon is paved by fourteen triangles. The corresponding 2D radial calculation
mesh originally used is shown in figure 4.1. The choice of finite element order is increased to
two for radial elements, in the hope of obtaining a finer description.

Figure 4.1 Original calculation mesh used in MINARET.

Angular quadrature choice The angular discretization is performed using a (403) hexag-
onal product quadrature as recommended by Fournier et al. in [18], involving 4 positive polar
directions and 3 azimuthal directions per π/3 angle. This amounts for a total of 8 times 18, so
144 distinct directions on the unit sphere. The criteria for convergence are set to a precision
of 2 × 10−5 on the eigenvalue, 10−4 on the flux and 10−3 on internal iterations over fission
sources. The flux calculation is performed on the adapted 33 energy groups mesh used for
fast spectra. The anisotropy order for scattering cross sections is set to 3, leading to a total
of four scattering matrices per medium.
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Axial mesh choice The axial variations of the flux are of prime importance when estimat-
ing the streaming effects in voided configurations. A sensitivity analysis is thus performed
over the size and orders of axial elements. The first axial mesh considered is the same as
the one used for the SCRAP scheme. Sixty 2.5 cm increments are considered along the axial
direction. This mesh is tested for axial elements of orders one and two. Since initial results
using the "MOC2DHet" cross sections along with the "SCRAP" axial mesh were not entirely
satisfying, a finer axial mesh consisting of 120 elements with height 1.25 cm was implemented.
The results are presented in table 4.3 where eigenvalues for nominal and voided calculations
are presented. Voiding effects on reactivity, along with the error with respect to T4 results
are displayed. Computation times and necessary RAM resources are also shown. The choice
of ∆z = 2.5 cm with finite elements order of 2 both radially and axially amounts to a total
of 1,458,240 spatial unknowns. Switching to the fine ∆z = 1.25 cm mesh with axial element
order 1 takes the total number of spatial unknowns to 2,551,920. The impact of using finite
elements of order 2 along with ∆z = 1.25 was considered but not tested since refining the
mesh or adding extra degrees of freedom did not improve the precision on the loss of coolant
effect on reactivity.

Mesh Type Keff

NOM
Keff

VOID

∆ρV

MINARET
(pcm)

∆∆ρV

AP3-T4
(pcm)

Time(s)
NOM/VOID RAM (GiB)

∆z = 2.5 cm
order 1 1.017403 1.011209 -602 147 8897/12479 18.102

∆z = 2.5 cm
order 2 1.017404 1.011212 -602 147 14108/13893 20.518

∆z = 1.25 cm
order 1 1.017433 1.011235 -602 147 26859/22799 35.949

Table 4.3 MOC2DHet-MINARET results for sodium void effects on reactivity : sensitivity
to axial meshing and finite element order analysis.

Mesh optimization, reducing MINARET time and RAM usage The original choice
for the triangular finite elements used to discretize the spatial variable on the the x-y plane
was reconsidered, in an aim of optimizing the computational cost. Indeed, looking at table
4.3, it can be seen that no precision is gained by refining the axial mesh to a finer one,
while the computational times and RAM usage increase drastically. A similar reasoning is
applied for the radial mesh : since homogenization is performed at the assembly level, it
is not necessary to describe each hexagon by 14 triangular elements. The study of results
dependence on the axial meshing reveals that no real gain is made from a finer/higher order
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representation. The eigenvalues change slightly, within a few pcms range, but the voiding
effect on reactivity is not impacted at the pcm scale.

A final choice of finite elements calculation mesh is made. For the rest of transport calcu-
lations, hexagons are subdivided into 6 triangles, leading to regular prismatic elements with
equilateral triangular bases (fig. 4.2) and a height of 2.5 cm. In order to obtain this regular
radial mesh, the characteristic size of the elements was increased from 8.0 cm to 12.0. The
total domain is then composed of 60 slices of 2.5 cm high prismatic elements. This amounts
to a total of 546 840 spatial unknowns. The radial FEM order is kept to 2, and the axial
FEM order to 1. This choice might need to be reconsidered in order to further optimize the
calculation mesh.

Figure 4.2 Optimized calculation mesh used in MINARET SN calculations.

4.2.1 Calculations with cross sections from MOC2DHet

In order to assess the performances of the MOC2DHet scheme, MINARET calculations are
performed on the new mesh. Eigenvalues of NOM and VOID configurations, the void’s effect
on reactivity and fission rates are compared to the reference TRIPOLI-4 MC calculations in
table 4.4. The error associated with the void effect on reactivity is also shown. Time and
RAM resources presented are now those required using the "optimized" mesh.

Fission rates from NOM and VOID configurations are extracted from binary files and post-
treated. As described in the previous Chapter 3, the 3D fission rates are normalized to the
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sum of fissile sub-assemblies, using equation 3.1. Figures 4.3(a) and (b) show the relative
error between MOC2DHet+MINARET and T4 results on axially integrated fission rates for
NOM and VOID configurations. Figures 4.4(a) and (b) provide a more detailed view of the
relative error in each 10 cm fuel slice, along the radial described in figure A.1 of Appendix
A. The relative errors for fission rates on axial traverses in the Central C1, outer C1, inner
C2 and outer C2 sub-assemblies are shown in figure 4.5. These provide a better idea of the
biases introduced from the axial reflector model.

(a) Relative error (%) on axially integrated fission
rates, NOM configuration.

(b) Relative error (%) on axially integrated fission
rates, VOID configuration.

Figure 4.3 2D Map of relative errors on axially integrated fission rates, MINARET with XS
from MOC2DHet - TRIPOLI4 reference scores, NOM (a) and VOID (b) configurations.

The MOC2DHet results appear to be satisfying in both NOM and VOID configurations.
Looking at figure 4.3 (a), it can be seen that the relative error on axially integrated fission
rates are around ∼ −0.30% for the inner part of the fuel, even giving good results on the
inner C2 fuel. Errors are maximized on the outer C2 ring, with a maximum reached for C2
sub-assemblies at the hexagonal core’s vertices, showing a 1.37% overestimation of rates. This

Config. Keff

MINARET

error Keff

MOC2DHet-T4
(pcm)

Time
(s)

RAM
(GiB)

Void effect
(pcm)

Error on void
effect (pcm)

NOM 1.01739 213 4048 4.052 -603 146
VOID 1.01118 359 4975 4.051

Table 4.4 Full core MINARET results from MOC2DHet cross sections. Keff for NOM and
VOID configurations, void effect on reactivity and associated errors with respect to T4 ref-
erence.
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(a) Relative error (%) on fission rates, radial tra-
verse, NOM configuration.

(b) Relative error (%) on fission rates, radial tra-
verse, VOID configuration.

Figure 4.4 Relative error on fission rates on radial traverse, rates integrated over 10cm fuel
slices, MINARET with XS from MOC2DHet - T4. Radial position expressed in ERANOS
hexagons numbering.

(a) Relative error (%) on fission rates, axial traverse,
NOM configuration.

(b) Relative error (%) on fission rates, axial traverse,
VOID configuration.

Figure 4.5 Relative error on fission rates on axial traverse, rates integrated over 10 cm fuel
slices, MINARET with XS from MOC2DHet - T4. Axial traverse on central and outer C1,
inner and outer C2.

is hypothesized to be due to the radial reflector’s effect, which becomes even more important
for sub-assemblies sharing three sides with the radial steel reflectors. The NOM case has an
associated RMS error of RMSNOM = 0.58%. In the VOID configuration (fig. 4.3 (b)), the
bias on fission rates seems to display a similar behavior, although in this case, the error’s
amplitude is more important as the error on central C1 sub-assembly’s integrated fission rate
is almost doubled, to −0.75%. The bias on C2 sub-assemblies neighboring the radial reflector
now goes up to 1.87%. The RMS error associated is calculated to be RMSV OID = 0.80%.
These biases can further be decomposed by looking at figure 4.4, providing a more detailed
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description of radial and axial effects, along the reference traverse. It can be seen that in
both cases, rates in outer C2 are over-estimated at all heights, which goes to reinforce the
idea that this bias is introduced by the radial reflector model used. In the inner part of the
fissile zone, rates are consistently underestimated ∼ −0.5% for NOM and ∼ −1% for VOID,
except at heights h = 1 (blue), h = 8 (gray) and h = 9 (yellow). Indeed in the fuel slices at
interfaces with axial reflectors (h = 1) and plenums (h = 8, 9), fission rates tend to be over
estimated by ∼ 1 − 2% for NOM and ∼ 2 − 3% for VOID. This hints at the introduction
of biases originating from the axial reflector model, which is accentuated by the presence of
voided regions. The combination of radial and axial effects highlights the chosen reflectors
model’s limitations.

These effects can further be seen in figure 4.5. A clear consistent over estimation of fission
rates at all heights in the outer C2 is shown, related once again to the radial reflector effect. It
is worth noting that the other three (central/outer C1 and inner C2) follow similar patterns
in the biases evolution. The variation of relative errors between slices 1 and 2 reveals a
consistent underestimation in the flux’s axial gradient and overestimation in fission rates at
the interface with the lower refelctor. Similarly for slices 8 and 9, the evolution of the relative
differences along the axial dimension reveals a consistent overestimation of the gradient of
the flux and an overestimation of the fission rates on slices neighboring the sodium plenum.

The MOC2DHet scheme is satisfying in the sense that errors on axially integrated fission
rates remain small, in the order of ± ∼ 1% in both NOM and VOID cases. Its most notable
performance appears to be that the heterogeneous leakage model’s introduction allows for
a better treatment of axial effects in the central fuel zone. The scheme’s performance on
predicting the sodium void effect on reactivity is acceptable as it definitely gives a better
estimate than SCRAP although the precision obtained is not totally satisfying with a smaller
but persistent bias of ∆∆ρV = 146 pcm. This error still represents a 19.5% offset with respect
to the target reference T4 value of ∆ρV = −749 pcm. Since reactivity in both VOID and
NOM is over-estimated, and that in both cases :

1. Fission rates in the higher flux (central) zone are under-estimated,

2. Fission rates at the axial reflector’s interfaces are consistently over estimated,

the relative over estimation of the VOID configuration’s reactivity is hypothesized to be due
to the axial reflector’s treatment, which doesn’t allow for a fully precise representation of the
axial leakage effects. This would mean that in both cases, too many neutron are reflected
towards the fissile part of the core so that the observed local over-estimation of fission rates is
introduced. The neutron leakage would then be underestimated, leading to the consistently
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witnessed overestimation of reactivity. The study of the MOC2DHet scheme reveals that it
provides reliable results as description of the sodium void effect is significantly better than in
the previous schemes studied. However, it must be noted that both the axial and the radial
reflector models could gain from being improved. This could potentially be done through the
use of a radial traverse to calculate the cross sections of the radial reflector.

It is hoped that the 2D1D variants introduce a better representation of the lower axial
reflector and upper plenum. The full and hybrid 2D1D results will now be presented and
confronted to those obtained using the MOC2DHet scheme.

4.2.2 Calculations with cross sections from full 2D1D

In the exploratory full 2D1D fusion approach presented, the radial reflectors’ cross sections
are taken to be the ones calculated from the MOC2Dhet scheme. It is thus expected for
the bias introduced by the radial reflector model to remain. On the other hand, a better
treatment of axial reflectors is expected.

Config. Keff

MINARET

error Keff

full 2D1D-T4
(pcm)

Time
(s)

RAM
(GiB)

Void effect
(pcm)

Error on void
effect (pcm)

NOM 0.98771 -2740 4416 4.075 +574 1323
VOID 0.99335 -1416 4853 4.058

Table 4.5 Full core MINARET results from full 2D1D cross sections. Keff for NOM and VOID
configurations, void effect on reactivity and associated errors with respect to T4 reference.
Applying a Flux-Moments condensation.

Flux-Moments Condensation, Negative Sources fix up A simple look at table 4.5
reveals important biases introduced by this method. Both NOM and VOID configurations are
extremely under estimated in terms of reactivity, which shows in the fission rates, presented
in figure 4.6 (a)(b). It appears that in both cases, the distribution of fission rates is flatter
than that of the reference T4 calculations. This leads to an underestimation in the central
higher flux area, and to an overestimation in the outer radial regions, after normalization.
This could explain the important underestimation of both eigenvalues computed. This kind
of bias could reveal important issues in the lattice full 2D1D step as cross sections used for
MINARET full core calculations presented seem to be unable to reflect the system’s main
physical properties. Aside from important biases on the eigenvalues themselves, table 4.5
shows that the sodium void coefficient’s sign is wrongly predicted.
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(a) Relative error (%) on axially integrated fission
rates, NOM configuration.

(b) Relative error (%) on axially integrated fission
rates, VOID configuration.

Figure 4.6 2D Map of relative errors on axially integrated fission rates, MINARET with XS
from full 2D1D - TRIPOLI4 reference scores, NOM (a) and VOID (b) configurations. Flux-
Moments condensation used.

Multiple sources of errors could be identified as it is possible that some mistakes were made
in the user implementation. Impact of some specific parameters in the TDT/MOC source
calculations still require some investigation as there is only a limited experience from this
type of calculations in 2D1D methods.

However, it is probable that these unsatisfactory results could be due to a bug in the imple-
mentation of the full 2D1D method. Indeed, the 2D1D module not being part of APOLLO3’s
regression tests, it is assumed that the method could have indirectly suffered from changes
in APOLLO3 since B. Faure’s work (2019). In order to test this hypothesis, it could be
relevant to retrieve and recompile the anterior APOLLO3 version in which the 2D1D module
produced satisfying results. This was not attempted during the course of this work due to
the time constraints associated with the internship at CEA.

4.2.3 Calculations with cross sections from hybrid 2D1D

Table 4.6 shows the results and performances for MINARET calculations using hybrid 2D1D
generated cross sections. The scheme’s performances are primarily assessed by comparing
the deterministic void effect calculation with the value obtained from T4. Figure 4.7 shows
the relative errors (%) on axially integrated fission rates obtained from hybrid 2D1D in
MINARET. The RMS error associated with each of the configurations are RMSNOM = 0.74%
and RMSV OID = 0.99%. In order to visualize radial and axial effects, errors along the
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(a) Relative error (%) on axially integrated fission
rates, NOM configuration.

(b) Relative error (%) on axially integrated fission
rates, VOID configuration.

Figure 4.7 2D Map of relative errors on axially integrated fission rates, MINARET with XS
from hybrid 2D1D - TRIPOLI4 reference scores, NOM (a) and VOID (b) configurations.

(a) Relative error (%) on fission rates, radial tra-
verse, NOM configuration.

(b) Relative error (%) on fission rates, radial tra-
verse, VOID configuration.

Figure 4.8 Relative error on fission rates on radial traverse, rates integrated over 10cm fuel
slices, MINARET with XS from hybrid 2D1D - T4.

Config. Keff

MINARET

error Keff

hybrid 2D1D-T4
(pcm)

Time
(s)

RAM
(GiB)

Void effect
(pcm)

Error on void
effect (pcm)

NOM 1.01573 53 4088 4.054 -549 200
VOID 1.01009 253 4390 4.056

Table 4.6 Full core MINARET results from hybrid 2D1D cross sections. Keff for NOM
and VOID configurations, void effect on reactivity and associated errors with respect to T4
reference.
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(a) Relative error (%) on fission rates, axial traverse,
NOM configuration.

(b) Relative error (%) on fission rates, axial traverse,
VOID configuration.

Figure 4.9 Relative error on fission rates on axial traverse, rates integrated over 10cm fuel
slices, MINARET with XS from hybrid 2D1D - T4. Axial traverse on central and outer C1
assemblies, inner and outer C2 assemblies.

traverses are once again plotted in figures 4.8 and 4.9. In each of these NOM (left) and
VOID (right) configurations are compared. The error on sodium void effect ∆∆ρV = 200
pcm is not entirely satisfying as it is slightly worse than that of the MOC2DHet scheme
presented earlier. Relative errors on fission rates are satisfying, displaying similar behavior as
the ones obtained from the MOC2DHet scheme (fig. 4.3), with a slightly greater amplitude.
The overestimation of the fission rates in the vicinity of the radial reflector ranges from
0.96% to 1.70% for NOM and from 1.24% to 2.24% for VOID. Comparing to results from the
MOC2DHet scheme, similar underestimation in the inner part of the core is observed, this
time with a more pronounced variation in the relative errors, reaching −0.60% and −1.02%
in the central sub-assembly for NOM and VOID respectively. This tendency is confirmed by
the results along the radial traverse shown in figure 4.8. A closer inspection of these shows
that in the NOM configuration, all heights seem to be slightly underestimated ∼ −1.0% to
∼ −0.5% in the inner part of the core, which hints at a more consistent description of the
axial reflectors by the hybrid 2D1D scheme, as opposed to MOC2DHet which introduced
a systematic overestimation of fission rates in fuel volumes sharing interfaces with axial
reflectors. In the VOID case, fission rates at h = 8 and h = 9 are again over estimated, while
the other heights display similar behavior in the core’s inner part (∼ −1.5% to ∼ −0.5%
underestimation). This could be due to the bias introduced by the voiding of sodium plenums,
which introduces a more important void fraction, while the voided lower reflectors are better
modeled than with the MOC2DHet scheme.

The axial model’s impacts on the biases presented can further be analyzed from figure 4.9 (a)
which shows that the residual’s structure along the axial dimension is smoother, compared to
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which obtained from MOC2DHet calculations. Indeed, the variations in relative errors close
to the lower reflector’s interface is almost negligible for C1 assemblies (in blue and orange),
as well as for the inner C2 (in green). The outer C2 sub-assembly shows a slight decrease
in the fission rates over estimation between slices 1 and 2, however, this effect represents a
variation of around −0.25% which is significantly better than in the MOC2DHet case, for
which this variation represented around −1%. Furthermore, looking at heights 7, 8 and 9, it
can be seen that hybrid 2D1D performs better than MOC2DHet at the fuel/plenum interface.
Indeed, there are no particular over-estimations of fission rates at h = 8 for C1 assemblies,
as opposed to almost +2% with MOC2DHet (fig. 4.5 (a)). In the case of C2 assemblies, the
variation in errors on fission rates introduced is around +0.5%, leading to an over-estimation
of fission rates on h = 9. This variations is assumed to be introduced by the plenum’s model.
Once again this is significantly better than in the case of the MOC2DHet scheme, where
the variations in fission rates leading to their consistent overestimation at the fuel/plenum
interface was ∼ +1.5% in the nominal configuration.

In the VOID configuration (fig. 4.9 (b)), biases are made more prominent as the variation of
errors on rates at the lower reflector/fuel interface is now about −0.5%. At the fuel/plenum
interface, the over-estimations introduced by the plenum model are of the order of 1.5%,
which is still better than in the MOC2DHet case for which they were closer to 2%. It
should however be noted that radial effects on the error are accentuated in the hybrid 2D1D
calculations, with the biases on outer C2 rates at h = 9 going up to above 4% in the more
penalizing voided configuration.

Additionally, the radial effect on the over-estimation of fission rates at the reflector’s interface
can further be seen comparing figures 4.8 and 4.4, which show that in hybrid 2D1D, fission
rates in the outer C2 ring are consistently more over-estimated than with MOC2DHet. This
is assumed to be due to the fact that cross sections used for the radial reflectors are the same
in both cases : the one generated from MOC2Dhet through a source calculation using the
leakage term associated to C2. This analysis combined with previous MOC2DHet conclusions
reveals the persistent errors introduced by the MOC2DHet reflector model. A traverse to
model the radial steel reflectors should be considered, in order to generate its 33 groups cross
sections with better precision.

Comparing figure 4.8 with 4.4, the impact of the voided configuration can be assessed. It can
be seen that the influence of voided regions is not as important in hybrid 2D1D, as errors in
fission rates in the inner part of the core do not vary as much as when using the MOC2DHet
scheme. This confirms the previous analysis made on the biases along the axial traverse,
suggesting a better representation of axial effects in the hybrid 2D1D method.
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Overall, the hybrid 2D1D scheme brings a lot of interesting things to the table, most notably
a consequently better description of the axial effects on fission rates than the MOC2DHet.
These performances are obtained from the more complex axial reflector models introduced
from the 2D↔1D iterative method. On the other hand, the greater biases on axially inte-
grated fission rates as well as on the sodium void effect are hard to interpret. These could
be partly introduced by the radial reflectors’ model which had already been observed to in-
troduce consequent biases in the MOC2DHet case. The more important biases on axially
integrated fission rates observed in the hybrid 2D1D case could be due to the combined ef-
fects of radial and axial biases which would not compensate each others as much as in the
MOC2DHet case. At best, it should introduce similar biases as the ones seen in MOC2DHet.
At worst, it could be partly responsible for the overestimating of the voided configuration’s
reactivity, leading to a larger error on the sodium void effect. Indeed, a quick comparison of
tables 4.6 and 4.4 reveals that the 2D1D does a better job at estimating both configurations’
in terms of the biases on reactivity. However, relative to the nominal configuration, the
voided configuration’s reactivity is more over-estimated, leading to a worse performance on
sodium void effect predictions. This overestimation of the voided reactivity could be partly
due to the misrepresentation of radial reflectors, which seem to be reflecting too many neu-
trons towards the fissile zone. This could explain the accentuated bias on fission rates in the
outer C2 assemblies. It would be interesting to test additional radial reflector models such
as the introduction of a traversing motif through the core, or the treatment of a larger motif
at the lattice step which would involve a finely meshed fuel/reflector interface. Further work
is required to fully decorrelate the biases associated with the hybrid 2D1D model discussed.

4.2.4 A naive approach to the reflector model : implications for the hybrid
2D1D case.

Throughout the MOC2DHet, full 2D1D and hybrid 2D1D analysis and discussion, the radial
reflector model appears as a recurrent topic, introducing biases which are hard to de-correlate
from the axial reflectors’ effects. One thing is certain : the schemes presented fail at accurately
describing radial leakage effects. Indeed, the full 2D1D scheme is limited to considering axial
effects. It makes the assumption of an infinite lattice of 2D+1D assemblies, no leakage model
is used : each fuel sub-assembly in the lattice is not impacted by its neighbors on a more
macroscopic scale as in a fundamental mode approximation. On the other hand, the fuel sub-
assemblies’ treatment through the B1 heterogeneous model both in MOC2DHet and hybrid
2D1D forces the preferred leakage direction to be taken along the z axis, once again no radial
component is considered. In a naive approach, one could imagine using the 2D1D lower
reflector model as a radial reflector. This was easily implemented in the ANTOINID study,
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and the choice was made to study the impact of using MPOs initially generated for the lower
reflector below C2 assemblies as radial reflectors. In an attempt to unify the formalism, the
radial reflectors for both NOM and VOID configurations were set to be the one obtained
from the hybrid 2D1D C2 assembly calculations (SREFLLOW2). This introduces different
assumptions as for the MOC2DHet radial reflector calculations :

1. Leakage from C2 fuel is the only neutron source for radial reflectors.

2. At the lattice stage, axial leakage from C2 fuel to SREFLLOW2 is equivalent to radial
leakage from C2 to SREFLRAD.

3. Nominal SREFLLOW2’s use as a radial reflector remains valid in the VOID configura-
tion.

This approach was implemented to test the impact of a "traverse-like" radial reflector calcula-
tion. Results shown in table 4.7 reveal a better estimation of the voiding effect on reactivity
than in the original hybrid 2D1D study. Indeed, error on this effects calculation went down
from 200 pcm (table 4.6) to 173 pcm here. Although the use of SREFLLOW2 as a radial
reflector is probably not ideal, it goes to show that a more consistent description of the ma-
terial’s cross sections should be considered when using 2D1D generated MPOs at the core
calculation step. This highlights the need for a more suitable radial reflector model to be
studied in future work as it appears necessary in the description of relatively small cores like
the ANTOINID’s for which radial leakage terms are significant.

Config. Keff
Error Keff

Radial reflector test
Void effect
(pcm)

Error void
effect (pcm)

NOM 1.01404 -111 -576 173
VOID 1.00815 62

Table 4.7 Hybrid 2D1D results for NOM and VOID calculations, errors on reactivity and
void effect with a different radial reflector model.

Overall, conclusions about the hybrid 2D1D approach are harder to draw than for the two
previously presented schemes. On one hand, it can be safely assumed that the treatment
of the fissile zone provides a reliable description, similar to that of the MOC2DHet scheme.
However, the fact that the validation of "column by column" calculations was not performed
thoroughly makes it hard to conclude about the scheme’s validity. Nevertheless, the method
appears promising and it would be relevant to extend the tests of a new radial reflector to
this scheme. This could shine some light on the scheme’s performances in terms of evaluat-
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ing leakage effects since a more accurate radial reflector model would help isolating biases
associated with the description of axial reflector.

4.3 Comparison of the performances of the lattice schemes in MINARET

Judging by tables 4.4, 4.5 and 4.6 it appears that the lattice scheme giving a best estimate
on the sodium void effect is MOC2DHet, which displays an error on the estimated void effect
of ∆∆ρV = 146 pcm. This reduces the error associated with the sodium void effect on the
core’s reactivity by a factor of 2, comparing to SCRAP scheme results.

The 2D1D study leads to the observation that the full 2D1D scheme with Flux-Moments
condensation doesn’t give satisfying results. This is largely due to the fact that fission rates
in both NOM and VOID are highly underestimated, by up to almost ∼ −10%, in the central
fuel area. This could explain the important underestimation of both nominal and voided
reactivities, hinting at a systematic misrepresentation of the cross sections of the fissile sub-
assemblies. This is assumed to be due to source MOC calculations used in the full 2D1D
scheme. This interpretation would be supported by comparison with hybrid 2D1D results,
which does not display the same type of biases.

The differences between both variants of the 2D1D approach might be explained by the in-
sufficient hindsight on the convergence of source calculations of critical configurations, with
a fixed eigenvalue and potentially negative sources, in the full 2D1D approach. Indeed, this
type of source calculations could require particular attention from a debugging perspective
as the significant biases observed could hint at a potential instability in the method’s imple-
mentation.

It is worth noting that for both full 2D1D and hybrid 2D1D full core calculations, the cross
sections used for the radial reflector are issued from the MOC2DHet scheme. Since 2D1D
schemes only consider leakage in the axial direction, radial reflector calculations are not easily
done in this context. A more accurate representation of the core/radial reflector interface
appears to be necessary. An extension of the 2D1D scheme could be considered in order to
treat the radial reflectors. However, due to time constraints, it was not implemented as part
of this internship.

Further work would be required to fully understand biases associated with both 2D1D vari-
ants. Validation of the latter through comparison with a Monte-Carlo reference calculation
would be required. The approach followed in the rest of this work was to test if biases ob-
served in MINARET were reproducible in other full core solvers. NYMO’s PN method along
with MINOS’s diffusion and SPN are now introduced to the MOC2DHet, hybrid and full
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2D1D schemes.

4.4 Extension to the NYMO PN solver

The full core model is extended to use the PN solver NYMO. It’s introduction in AP3 during
the latter stages of this internship made it possible to test spherical harmonics methods in
full core calculations. For each of the lattice schemes presented, NYMO will be compared
to the MINARET and MINOS solvers. The full core model’s adaptation was made rather
simple since NYMO can use calculation meshes built for MINARET. It was thus possible to
use the mesh shown in figure 4.2 in the NYMO solver. In order to perform rapid calcula-
tions and assess the different lattice schemes performances, the order in spherical harmonics
expansion is set to 3, the tolerance on the eigenvalue is set to 10−5 and the precision on
outer iterations to 10−5. Additionally, it was observed that a better convergence on rates
was reached when setting the tolerance for the FEM linear system solver to 10−5, instead
of 10−4. This choice of parameters was suggested by L. Bourhara after noticing that fission
rates were not symmetrically distributed around the core’s center. It can safely be concluded
that this asymmetry of the fission rates was simply due to this precision criteria.

4.5 Extension to the MINOS solver

The MINOS solver is used for both diffusion and SP3 calculations. The type of finite elements
used is once again Raviart-Thomas Nedelec [15]. Radial elements of order two have been
tested to check if the SCRAP mesh was properly converged, it appears that there is no
differences beyond the pcm precision between radial elements of order 2 and those of order
one previously presented. In a logic of resource optimization it thus appears relevant to
limit both axial and radial elements orders to 1. The axial discretization is equivalent to
the one used in the SCRAP scheme, with a total of sixty nodes, each spaced by 2.5 cm.
The axial hexagonal mesh is once again split into a sub-mesh composed of trapezes. The
mesh used for the subsequent MINOS calculations is the exact same as the one presented in
the SCRAP context. It is shown in figure 3.7. Full core calculations are performed in the
NOM and VOID configurations in both diffusion and SP3 approximations. For each of the
lattice schemes presented, MINOS performances will be compared to those of MINARET
and NYMO solvers.
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4.6 Comparison of Lattice/Solver combinations

Throughout this work a total of five lattice schemes have been presented. The initial SCRAP
approach was discussed in Chapter 3, along with its extended version, the MOC2DHom
scheme. An upgraded version, the MOC2DHet scheme based on the same architecture was
then presented earlier in this chapter. The 2D1D based schemes were also introduced, their
performances and biases have been discussed. As of now, the MOC2DHet and 2D1D lattice
schemes’ performances have been assessed through analysis of MINARET transport calcu-
lations. The NYMO full core solver is introduced as an additional example of a reference
transport solver. SCRAP and MOC2DHom cross sections are also used in MINARET and
NYMO solvers. Additionally, the performances of the MOC2DHet, full and hybrid 2D1D
schemes in MINOS (diffusion and SP3) are compared to those of exact transport solvers.
In doing so, every possible combination of lattice scheme and full core solver presented was
tested.

A summary of the performances for each of the lattice schemes introduced is presented. The
SCRAP, MOC2DHom, MOC2DHet, hybrid and full 2D1D schemes are confronted in tables
4.8, 4.9, 4.10, 4.11 and 4.12 respectively. For each of these, the time to treat the seven sub-
assemblies (C1, C2, SREFLRAD, SREFLLOW1, SREFLLOW2, SPLN1 and SPLN2) and
RAM (GiB) usage for the lattice step are shown. The errors on eigenvalues for the NOM
and VOID configurations are presented as well as the associated void effect (pcm). The error
(pcm) on the sodium void effect with respect to the T4 reference value is also shown. The
performances of the full core solvers are also introduced through the time spent in the full
core step and the RAM required. Times and memory usage presented correspond to the
most penalizing configuration (generally VOID).

SCRAP
tlattice = 330 s
RAMlattice ∼ 4.1 GiB

TRIPOLI-4
Keff±8 pcm

∆ρ (pcm)
MINOS
Diffusion

∆ρ (pcm)
MINOS
SP3

∆ρ (pcm)
MINARET
SN

∆ρ (pcm)
NYMO
P3

NOM 1.01518 -118 63 100 87
VOID 1.00752 122 377 511 493
∆ρV (pcm) -749 -509 -436 -337 -343
Error on ∆ρV (pcm) 0 240 313 412 406
tcore (s) 403 670 174 580 3510 1206
RAMcore GiB Not recorded 3.80 14.88 2.020 4.106

Table 4.8 Comparative results for SCRAP : MINOS, MINARET and NYMO performances
at estimating sodium void effect.
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MOC2DHom
tlattice = 450 s
RAMlattice ∼ 5.70 GiB

TRIPOLI-4
Keff±8 pcm

∆ρ (pcm)
MINOS
Diffusion

∆ρ (pcm)
MINOS
SP3

∆ρ (pcm)
MINARET
SN

∆ρ (pcm)
NYMO
P3

NOM 1.01518 244 528 571 556
VOID 1.00752 478 875 1017 886
∆ρV (pcm) -749 -514 -403 -303 -309
Error on ∆ρV (pcm) 0 235 346 446 440
tcore (s) 403 670 252 1319 4648 2419
RAMcore GiB Not recorded 3.80 21.58 4.05 4.20

Table 4.9 Comparative results for MOC2DHom : MINOS, MINARET and NYMO perfor-
mances at estimating sodium void effect.

MOC2DHet
tlattice = 2230 s
RAMlattice ∼ 10 GiB

TRIPOLI-4
Keff±8 pcm

∆ρ (pcm)
MINOS
Diffusion

∆ρ (pcm)
MINOS
SP3

∆ρ (pcm)
MINARET
SN

∆ρ (pcm)
NYMO
P3

NOM 1.01518 -20 170 213 198
VOID 1.00752 -93 211 360 338
∆ρV (pcm) -749 -821 -708 -603 -609
Error on ∆ρV (pcm) 0 -72 41 146 140
tcore (s) 403 670 455.9 1552 4975 2177
RAMcore GiB Not recorded 3.81 21.55 4.05 4.25

Table 4.10 Comparative results for MOC2DHet : MINOS, MINARET and NYMO perfor-
mances at estimating sodium void effect.

hybrid 2D1D
tlattice = 2400 s
RAMlattice ∼ 10 GiB

TRIPOLI-4
Keff±8 pcm

∆ρ (pcm)
MINOS
Diffusion

∆ρ (pcm)
MINOS
SP3

∆ρ (pcm)
MINARET
SN

∆ρ (pcm)
NYMO
P3

NOM 1.01518 -282 12 53 38
VOID 1.00752 -211 119 253 232
∆ρV (pcm) -749 -771 -642 -549 -555
Error on ∆ρV (pcm) 0 -22 107 200 194
tcore (s) 403 670 588 1197 4390 1268
RAMcore GiB Not recorded 8.75 21.92 4.06 4.23

Table 4.11 Comparative results for hybrid 2D1D : MINOS, MINARET and NYMO perfor-
mances at estimating sodium void effect.

The extension to the MINOS solver revealed that order 2 radial FEM were not necessary
as it was observed that adding additional degrees of freedom allowed only for a ∼ 1pcm
improvement on the voiding effects, to the cost of a significantly longer time. This also
allowed for an important reduction the RAM required for the SP3 technique as all angular
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full 2D1D
tlattice = 5700 s
RAMlattice ∼ 10 GiB

TRIPOLI-4
Keff±8 pcm

∆ρ (pcm)
MINOS
Diffusion

∆ρ (pcm)
MINOS
SP3

∆ρ (pcm)
MINARET
SN

∆ρ (pcm)
NYMO
P3

NOM 1.01518 -2852 -2910 -2740 -2747
VOID 1.00752 -1911 -1636 -1416 -1417
∆ρV (pcm) -749 193 525 574 568
Error on ∆ρV (pcm) 0 942 1274 1323 1317
tcore (s) 403 670 225 1432 4771 2630
RAMcore GiB Not recorded 3.81 15.77 4.05 4.14

Table 4.12 Comparative results for full 2D1D (Flux-Moments condensations) : MINOS,
MINARET and NYMO performances at estimating sodium void effect.

fluxes are kept in memory during the computation. It was observed that switching from radial
elements of order 2 to 1 reduced the RAM usage from ∼ 53 GiB to ∼ 22 GiB. This could
suggest that a similar convergence study should be undertaken for the MINARET/NYMO
radial mesh as calculation time gains could be made in doing so. It can be observed from
tables 4.8, 4.9, 4.10, 4.11 that :

1. The biases associated with MINARET and NYMO exact transport solvers are similar
when using the same XS.

2. The biases associated with MINOS Diffusion and SP3 are consistently smaller than
those from transport solvers.

3. MINARET and NYMO tend to over estimate reactivity for all lattice schemes, partic-
ularly in voided configurations.

4. The error on ∆ρV tends to be positive, underestimating the effect’s amplitude, except
in diffusion calculations with MOC2DHet and hybrid 2D1D schemes.

5. The full 2D1D results are unsatisfying with abnormal underestimations of both config-
urations : further work is required to validate and stabilize this method. The presence
of a bug in the implementation cannot be excluded.

6. MINOS diffusion and SP3 approximations give surprisingly good results when using
the MOC2DHet and hybrid 2D1D schemes.

Some comments can also be made about the differences introduced from one solver to the
other. It can be seen that NYMO obtained void effects all show a 6 pcm shift when comparing
with MINARET results. Furthermore, the voiding effects from the first four schemes display
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similar behaviors when switching from MINARET or NYMO to MINOS Diffusion or SP3. It
can be seen that the difference between exact transport calculations and diffusion calculations
is about 200 pcm. Similarly, the offset between MINARET/NYMO and SP3 void effects
is around 90 pcm. This suggests that the two MINOS approximations introduce close to
constant, reproducible differences in reactivity when comparing to the transport solvers.

In order to put these performances on macroscopic effects on reactivity into perspective, a
smaller scale comparison of the best performing combinations of lattice scheme/solvers is
proposed. Results from NYMO and MINOS calculations using MOC2DHet cross sections
are presented. The latter are compared to those obtained from hybrid 2D1D cross sections,
which give the second best estimate on void effects from exact transport solvers. It can also
be noticed that error on ∆ρV from diffusion calculations with hybrid 2D1D cross sections is
the best in terms of absolute difference with the reference T4 value.
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4.6.1 MOC2DHet results with NYMO and MINOS

NYMO P3 with MOC2DHet cross sections Figures 4.10 (a) and (b) present the rel-
ative errors on fission rates obtained from NYMO calculations. The associated RMS errors
are 0.64% and 0.84% for the NOM and VID configurations respectively. These are compa-
rable, yet slightly less satisfying than the ones obtained from MINARET calculations with
MOC2DHet cross sections. Such discrepancies could be due to parameters chosen for the
NYMO solver. Indeed, comparison with symmetric T4 rates reveals the slightly asymmet-
ric nature of the two dimensional rates field. Restraining NYMO’s convergence parameters
further was found to improve this asymmetric effect, in particular the FEM linear system
tolerance factor. This hints at the fact that NYMO’s parameters could probably still further
be optimized, making it an interesting competitor to MINARET, since it seems to provide
similar results in a consequently smaller amount of time.

(a) Relative error (%) on axially integrated fission
rates, NOM configuration.

(b) Relative error (%) on axially integrated fission
rates, VOID configuration.

Figure 4.10 2D Map of relative errors on axially integrated fission rates, NYMO with XS
from MOC2DHet - TRIPOLI4 reference scores, NOM (a) and VOID (b) configurations.

Axial distribution of errors on fission rates in both nominal and voided configurations are
presented in figures 4.11 (a) and (b). The latter display a similar behavior as errors obtained
from MOC2DHet with MINARET (fig. 4.5). This tends to confirm the interpretation made
from the MINARET results analysis : the hypothesis made about the reflector models rep-
resentation induces reproducible trends in the errors. The overestimation of rates at both
axial reflector’s interfaces with fuel regions is also observed in the NYMO case. Similarly,
the outer C2 rates can be seen to be consistently overestimated, confirming a similar impact
of the radial reflector at its interface with outermost fuel assemblies. This shows that the
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source calculations used to obtain the cross sections for reflector sub-assemblies introduce
consistent biases at a finer scale of comparison.

(a) Relative error (%) on fission rates, axial traverse,
NOM configuration.

(b) Relative error (%) on fission rates, axial traverse,
VOID configuration.

Figure 4.11 Relative errors on fission rates along the four axial traverses, NYMO with XS
from MOC2DHet - TRIPOLI4 reference scores, NOM (a) and VOID (b) configurations.

MINOS diffusion with MOC2DHet cross sections MINOS calculations results in
the Diffusion approximation are presented. Figures 4.12 (a) and (b) show the relative er-
rors on axially integrated fission rates. Both configurations display excellent RMS errors of
RMSNOM = 0.34% and RMSV ID = 0.54% respectively. The errors’ structure on the x-y
plane reveals a consistent over estimation of rates at the radial reflectors’ interface, a feature
shared with the previous results presented. However, it appears that rates on the "inner"
C2 ring are consistently underestimated in both NOM and VOID configurations. This type
of effects could suggest important compensations introduced by the diffusion approximation.
The importance of such compensating effects on the flux’s calculation could be assessed by
analyzing the radial distribution of errors, presented in figures 4.13 (a) and (b). In the nomi-
nal configuration, radial effects can be seen, displaying the clear tendency of underestimating
rates in the inner C2 assemblies at all heights, apart from h = 1 and h = 9. It can also
be seen that the C1 fuel region is accurately represented for all heights, except for h = 1
and h = 9 once again. On the other hand, analysis of sub-figure 4.13(b) reveals additional
axial compensation effects. These involve relatively important biases of ∼ ±1%, in the inner
axial part of the core, when looking at different heights’ contributions. However, as seen in
figure 4.12, these effects compensate each others, leading to a seemingly perfect precision in
the inner radial part, with biases on integrated rates of the order of ∼ 0.01%. This type
of compensation is expected in the diffusion approximation and it is worth highlighting the
impressive precision of MINOS results. This makes the solver particularly interesting for
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fast and rather precise evaluations of macroscopic quantities such as reactivity or integrated
fission rates.

(a) Relative error (%) on axially integrated fission
rates, NOM configuration.

(b) Relative error (%) on axially integrated fission
rates, VOID configuration.

Figure 4.12 2D Map of relative errors on axially integrated fission rates, MINOS diffusion with
XS from MOC2DHet - TRIPOLI4 reference scores, NOM (a) and VOID (b) configurations.

(a) Relative error (%) on fission rates, radial tra-
verse, NOM configuration.

(b) Relative error (%) on fission rates, radial tra-
verse, VOID configuration.

Figure 4.13 Relative errors on fission rates on radial traverse, MINOS diffusion with XS from
MOC2DHet - TRIPOLI4 reference scores, NOM (a) and VOID (b) configurations.

MINOS SP3 with MOC2DHet cross sections A quick glance at MINOS SP3 results
from MOC2DHet cross sections reveal a similar behavior to that observed using exact trans-
port solvers MINARET and NYMO. The 2D map of relative errors on axially integrated
fission rates (fig. 4.14 (a)) displays a similar radial reflector effect as the one observed in SN

and PN calculations. Furthermore, MINOS SP3 results for NOM have a root mean squared
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error of RMSNOM = 0.49% on fission rates which outperforms its exact transport counter-
parts. Despite obtaining a slightly better estimation of fission rates, it can be seen that the
biases’ axial dependency is similar to the MINARET or NYMO case, once again highlighting
the scheme’s need for a better axial reflector model.

(a) Relative error (%) on axially integrated fission
rates, NOM configuration.

(b) Relative error (%) on fission rates, axial tra-
verse, NOM configuration.

Figure 4.14 2D Map of relative errors on axially integrated fission rates (a), Relative errors
along the four axial traverses (b), MINOS SP3 with XS from MOC2DHet - TRIPOLI4
reference scores, NOM configuration

In the voided configuration, RMS error on fission rates goes up to RMSV OID = 0.86%, the
corresponding 2D errors map and their dependence along the axial traverses can be seen
in figures 4.15(a) and (b). Once again, the behavior of the error is really close to the one
observed in MOC2DHet MINARET results. Indeed, it can be seen that the biases on both
axial and radial reflector effects see their amplitudes increase in the presence of voided regions.
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(a) Relative error (%) on axially integrated fission
rates, VOID configuration.

(b) Relative error (%) on fission rates, axial tra-
verse, VOID configuration.

Figure 4.15 2D Map of relative errors on axially integrated fission rates (a), Relative errors
along the four axial traverses (b), MINOS SP3 with XS from MOC2DHet - TRIPOLI4
reference scores, VOID configuration

4.6.2 Hybrid 2D1D results in NYMO and MINOS

NYMO P3 with hybrid 2D1D cross sections NYMO calculations in the P3 approxima-
tion are ran using hybrid 2D1D cross sections. For the nominal configuration, the resulting
error distribution maps are shown in figure 4.16(a) and the relative errors along the axial
traverses are plotted in figure 4.16(b). In the voided case, the corresponding relative errors
are shown in figure 4.17 (a) and (b).

The Root Mean Squared errors associated with hybrid 2D1D NYMO fission rates are 0.80%
for the nominal case and 1.03% for the voided one. These appear similar to RMS errors
obtained from hybrid 2D1D in MINARET, and slightly worse than ones obtained in NYMO
using the MOC2DHet cross sections. In both configurations, the error distribution display
similar behavior as in the MINARET case. Indeed, radial reflector effects leading to compa-
rable over estimations are witnessed in figures 4.16 (a) and 4.17 (a). The axial distribution of
errors shown in figures 4.16(b) and 4.17(b) is also similar to the ones obtained from the same
cross sections in MINARET. Taking into account NYMO and MINARET computation times
and RAM usage, the similar errors consistently obtained with both MOC2DHet and hybrid
2D1D schemes tend to show NYMO’s strengths, placing it as an interesting competitor to
MINARET for reference transport calculations.
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(a) Relative error (%) on axially integrated fission
rates, NOM configuration.

(b) Relative error (%) on fission rates, axial tra-
verse, NOM configuration.

Figure 4.16 2D Map of relative errors on axially integrated fission rates (a), Relative errors
along the four axial traverses (b), NYMO P3 with XS from hybrid 2D1D - TRIPOLI4 refer-
ence scores, NOM configuration

(a) Relative error (%) on axially integrated fission
rates, VOID configuration.

(b) Relative error (%) on fission rates, axial tra-
verse, VOID configuration.

Figure 4.17 2D Map of relative errors on axially integrated fission rates (a), Relative errors
along the four axial traverses (b), NYMO P3 with XS from hybrid 2D1D - TRIPOLI4 refer-
ence scores, VOID configuration

MINOS diffusion with hybrid 2D1D cross sections In order to get a better under-
standing of how hybrid 2D1D cross sections behave in different full core approximations, their
treatment is extended to MINOS in the diffusion approach. Relative error maps for NOM
and VOID configurations shown in figures 4.18 (a) and 4.19 (a) display high performances in
terms of the RMS errors calculated. Indeed, the error maps display a nominal RMSNOM of
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0.38% and a voided RMSV OID of 0.67% respectively.

(a) Relative error (%) on axially integrated fission
rates, NOM configuration.

(b) Relative error (%) on fission rates, axial tra-
verse, NOM configuration.

Figure 4.18 (a) 2D Map of relative errors on axially integrated fission rates, (b) Relative errors
along the four axial traverses. MINOS diffusion calculation with XS from hybrid 2D1D, NOM
configuration

(a) Relative error (%) on axially integrated fission
rates, VOID configuration.

(b) Relative error (%) on fission rates, axial tra-
verse, VOID configuration.

Figure 4.19 (a) 2D Map of relative errors on axially integrated fission rates, (b) Relative
errors along the four axial traverses, MINOS diffusion calculations with XS from hybrid
2D1D, VOID configuration

Once again, the apparent "macroscopic" precision associated with the hybrid 2D1D/diffusion
combination must be analysed. Indeed, the low error on voiding effect (∆∆ρV = −22pcm)
and the impressive RMS errors displayed in both configurations seem to indicate that this



89

lattice/full core solver combination would be ideal. However, it appears particularly apparent
from figures 4.18 (a) and 4.19 (a) that radial compensation effects come into play. Indeed, in
a similar fashion as for the MOC2DHet/diffusion combination, the overestimation of outer
C2 fission rates seems to be correlated with a systematic underestimation of fission rates in
inner C2 assemblies. Axial compensation effects can similarly be seen, especially from figure
4.18 (b), which shows that rates close to axial reflectors’ interfaces tend to be underestimated
while those in the central axial area tend to be overestimated. In particular, this effect of
compensation is what leads to the impressive precision on axially integrated rates in the C1
fuel area.

MINOS SP3 with hybrid 2D1D cross sections Results obtained with MINOS SP3 from
hybrid 2D1D cross sections are shown in figures 4.20 and 4.21. In the nominal configuration,
a RMS error of 0.64% on fission rates is obtained. The latter are displayed in figure 4.20
(a). In the voided case, relative errors on fission rates amount for a RMS error of 1.02%, as
displayed in figure 4.21 (a).

(a) Relative error (%) on axially integrated fission
rates, NOM configuration.

(b) Relative error (%) on fission rates, axial tra-
verse, NOM configuration.

Figure 4.20 (a) 2D Map of relative errors on axially integrated fission rates, (b) Relative
errors along the four axial traverses. MINOS SP3 calculation with XS from hybrid 2D1D,
NOM configuration

The evolution of the relative errors in the axial direction are displayed in figures 4.20 (b) and
4.21 (b). The latter clearly show a similar over estimation of outer C2 rates, consistent with
biases introduced from the radial reflector model used. Furthermore, the evolution of biases
in the nominal configuration seems to indicate adequate treatment of the lower reflector. This
hints at potential advantages of the 2D1D methods compared to the more traditional schemes
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(a) Relative error (%) on axially integrated fission
rates, VOID configuration.

(b) Relative error (%) on fission rates, axial tra-
verse, VOID configuration.

Figure 4.21 (a) 2D Map of relative errors on axially integrated fission rates, (b) Relative
errors along the four axial traverses. MINOS SP3 calculations with XS from hybrid 2D1D,
VOID configuration

based on 2D MOC. However, this is not entirely convincing in the voided case, in which the
over estimation of fission rates in slice h = 9 would seem to indicate an underestimation of
leakage through the voided plenum. This interpretation is supported by the overestimation
of the configuration’s reactivity, as well as the possible misrepresentation of voiding effects
at the hybrid 2D1D lattice stage, hinted by the positive void effects shown in table 4.2.

4.7 Comparison with results from the Takeda benchmark

In 2013, capabilities of MINOS and MINARET at evaluating voiding effects on reactivity had
been studied by C. Bay [43]. Since all of Bay’s calculations have been performed using the
same 4 groups cross sections presented in Takeda’s paper [44], it will be assumed that the bias
associated with these cross sections can be neglected. The main conclusions drawn from Bay’s
work are that full core solvers based on the SN method, such as MINARET, offer the best
precision when evaluating both Keff and ∆ρV . Indeed, MINARET results, obtained with no
control rods, presented in [43] display errors down to a few pcm in the nominal configuration
and only ∼ 20 pcm in the voided plenum configuration. This leads to a total error of 25 pcm
on the plenum voiding effect for MINARET S8 calculations. On the other hand, conclusions
drawn from this 2013 study revealed that the MINOS SP3 and SP5 techniques did not provide
satisfying results with biases on Keff values of −483 pcm and −1151 pcm for the nominal
and voided configurations respectively, in the SP3 approximation. This amounted to a total
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bias of −668 pcm compared to their TRIPOLI4 reference calculation.

This greatly differs from results presented earlier in section 4.6, for which it can be seen that
the MINOS SP3 treatment seems to display consistently smaller biases than those associated
with MINARET calculations. This could be due to the fact that the SP3 approximation is
more suited to treat the ANTOINID core than Bay’s modified Takeda-4 benchmark. This
could be due to the ANTOINID design being bigger and more "homogeneous" compared to
the previously studied Takeda-4 benchmark. This could make the ANTOINID core more
suited for SPN calculations as it appeared that even the diffusion approximation was not so
penalizing. Indeed, as seen from comparing tables 4.8, 4.9, 4.10 and 4.11, the origin of cross
sections is one of the dominant factors when considering precision of full core calculations.
This can be particularly seen with the introduction of the B-heterogeneous leakage model,
along with a Flux-Moments homogenization technique which seem to greatly improve per-
formances at the full core step for all solvers, as seen in both MOC2DHet and hybrid 2D1D
schemes. It is possible that these methods involved in obtaining cross sections up to order
3 in anisotropy are more suited for SP3 calculations than those from the modified Takeda
benchmark used in Bay’s study. Indeed, the latter considered isotropic 4 groups cross sec-
tions with the aim of comparing full core solver’s capabilities. This could potentially lead
to a consistent misrepresentation in the SP3 and SP5 treatments. Alternatively, it could
potentially be explained by work done in MINOS since this anterior survey of capabilities of
full core solver.
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CHAPTER 5 CONCLUSION

5.1 Summary of Works

The present research has allowed to reveal the strengths and drawbacks of five APOLLO3
lattice calculation schemes applied to Sodium Fast Reactors. It has been shown that for
a relatively small core with a high void effect on reactivity, the main limitation in a two-
step scheme is the generation of the cross sections at the lattice step. In Chapter 3, the
SCRAP scheme, originally developed for design studies, was introduced and tested. The
latter was based on three primary hypotheses to perform lattice calculations. The first
hypothesis was about the radial homogeneity of SFR fuel sub-assemblies and that judging
by their fast spectrum, it was possible to perform the main flux calculation directly on
the homogenized geometry, provided that the self-shielding treatment had been carried out
beforehand on the exact heterogeneous geometry. The second was that neutron leakage
from fuel sub-assemblies was correctly represented by the homogeneous B1 model, even in
the case of voided configurations. Lastly, it was assumed that the 33 group cross sections
for the reflectors could be obtained from an independent source calculation performed on
the homogenized reflector geometry. As the sodium void effects on reactivity calculated by
MINOS were not satisfying using SCRAP cross sections, a total of four additional lattice
schemes were presented, in order to test the original hypotheses associated with the SCRAP
scheme. First, the homogeneous radial geometry hypothesis was tested by introducing a
more precise, 1760 groups MOC flux calculation, performed on the exact fuel sub-assembly
geometries. This lead to a better precision on the estimation of fission rates. However, a
lingering misrepresentation of axial effects resulted once again into an incorrect prediction
of the sodium void effect on reactivity. It was thus concluded at the end of Chapter 3,
that the homogeneity hypothesis introduced for SCRAP flux calculations was not a limiting
factor to the representation of voiding effects at the lattice stage. It was then hypothesized
that the B1-homogeneous leakage model involved in SCRAP and MOC2DHom calculations
was the cause for the misrepresentation of the sodium void effect. A more complex method
for representing the important axial effects present in voided configurations thus appeared
necessary.

In an attempt to find a solution, three advanced schemes were presented in Chapter 4. First,
the MOC2DHet scheme based on a B-heterogeneous method implemented in the 2D TDT-
MOC solver was introduced. Then, the full 2D1D and hybrid 2D1D schemes were applied,
making use of the 2D1D iterative scheme implemented in APOLLO3. The performances of
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the three advanced schemes were confronted on 3D full core calculations using the reference
transport solver MINARET. The analysis of the biases introduced by MINARET calculations
reveal that the use of the heterogeneous leakage model combined with a Flux-Moments
condensation technique provides a better description of axial leakage effects, showing that the
homogeneous leakage hypothesis used in SCRAP was not suited to treat voided configurations
of the ANTOINID core. Further analysis of the results from MOC2DHet reveal that an
independent source calculation treatment of reflectors induces systematic biases on fission
rates at the interfaces with reflectors. The axial reflector model hypothesis was then tested
through 2D1D calculations. Although the full 2D1D version did not give satisfying results,
the hybrid version hinted at the fact that a better treatment of axial reflectors was possible,
reducing the biases at interfaces with the axial reflectors. These biases appeared to be rather
important when using the MOC2DHet scheme.

At the end of Chapter 4, the test cases were extended to the NYMO PN solver, as well as to the
MINOS solver, including both the diffusion and the SPN approximations. The performances
of the MOC2DHet and hybrid 2D1D schemes in MINOS and NYMO were briefly analyzed,
showcasing the advantageous computational and RAM usage of these solvers.

This work provides an overview of APOLLO3 capabilities in the treatment of voided acciden-
tal configurations on the open ANTOINID core. Hopefully, it gives a rough idea for expected
performances of the numerical methods implemented, considering a cost/precision approach.
As often, complex computational methods lead to more important calculation times, as seen
with MOC2DHet and 2D1D schemes presented in Chapter 4.

The primary conclusions about SFR lattice schemes that can be drawn from this work can
be summarized as the following :

1. The MOC2DHet scheme appeared optimal when calculating sodium void effects on
reactivity for SN , PN and SPN full core calculations. Its use of a B-heterogeneous
leakage model and a flux-moments homogenization technique are understood to be the
responsible for the scheme’s performances.

2. The B1-homogeneous model, used in SCRAP and MOC2DHom schemes can be con-
cluded to be unsuited for the calculation of voided configurations.

3. The hybrid 2D1D scheme displayed interesting improvements in the representation of
the axial reflectors. However, further validation through a TRIPOLI-4 comparison
would be necessary to be fully confident in the method’s robustness.

4. All schemes suffered from a misrepresentation of the radial reflectors.
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5. The full 2D1D scheme did not provide satisfactory results, it is assumed that this could
be due to potential errors in the method’s implementation or to the lack of robustness
in the method used to perform fixed eigenvalue source calculations.

The main conclusions emerging from the survey of full core solvers are :

1. MINARET (SN) and NYMO (PN) exact transport solvers give equivalent "reference"
results.

2. Performances of the NYMO solver are particularly interesting in terms of computational
time, while displaying a precision similar to MINARET.

3. MINOS SP3 and diffusion results are in a surprisingly good agreement with reference
TRIPOLI-4 calculations. However it was shown that the diffusion approximation intro-
duced important radially and axially compensating effects, as unveiled by the analysis
of fission rates.

4. A consistent difference of about 200 pcm on the calculated sodium voiding effect can be
observed between diffusion and exact transport calculations. This could give a rough
idea of the type of biases introduced by the diffusion approximation.

5. Similarly, a difference of about 90 pcm on the sodium void effect is recorded between
simplified and exact transport calculations.

6. Comparisons with Bay’s 2013 work on the modified Takeda benchmark revealed some
important differences when comparing MINOS SP3 results.

Additional work, presented in Appendix B, was done on the implementation of an interface
to convert multi-parameter cross-sections libraries from the APOLLO3 format to the PARIS
input format used in the SEASON platform. This was presented at LMAG (Laboratoire de
Modélisation des Accidents Graves) to demonstrate the possibility to link APOLLO3 lattice
calculation outputs to full core calculations with the SNATCH [18] or IDT solver. Although
the implementation is not optimized in terms of time and memory access, it serves as a proof
of concept that the replacement of the ECCO module by APOLLO3 for SEASON lattice
calculations is possible.

5.2 Limitations

The approach presented in this work was based on an original set of three hypotheses. From
this set of initial assumptions, the first two about fuel assembly homogeneity and leakage
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models were thoroughly tested. However, the third hypothesis made on reflector models was
only tested for axial reflectors in the 2D1D formalism. The analysis of hybrid 2D1D results
presented in Chapter 4, reveals that the more advanced 2D1D methods can provide better
description of axial reflectors thanks to the 2D1D formalism.

However, 2D1D assembly calculations and full core full 2D1D results show that more works
needs to be done in order to master and validate the 2D1D method. Once again, the 2D1D
fusion approach is still exploratory, and subject to inconsistencies in implementation and
maintenance since B. Faure’s work [11]. This could explain the rather incoherent results
obtained from the full 2D1D variant. Despite the hybrid 2D1D results indicating a certain
improvement in the axial reflectors’ description, it also highlights the need for a better radial
reflector model. In this sense, the results presented are hard to interpret as both axial and
radial effects are difficult to de-correlate. Indeed, for a relatively small core of the scale of
the ANTOINID, the radial leakage effects can become dominant due to the fast neutron
spectrum. This questions one of the hypothesis made, which was that the error on voiding
effect came from the axial reflector’s misrepresentation. Indeed, as the fuel regions are
voided, the neutrons tend to have a higher energy, which potentially implies more leakage
through the radial reflectors. This leads to conclude that one of the main drawbacks of this
approach is that only axial effects were considered and that radial effects have been neglected
introducing a common bias in all of the presented schemes, due to the radial reflector model.
Lastly, it is worth pointing out that simply comparing reactivity values and fission rates
doesn’t give the full picture and is not sufficient to fully characterize the two steps scheme’s
performances. Alternatively, it could have been relevant to directly compare the neutron
flux distribution in the 3D core model. This additional point of comparison could help get a
better understanding of the effects of reflectors and thus provide specific insights on potential
effects of compensations for example.

The simple fact that all lattice schemes and full core solvers presented were only tested on the
ANTOINID core represents in itself another limitation. Indeed, as hinted by the comparison
of the present full core results with those of C. Bay on their modified Takeda-4 benchmark,
it is possible that the relatively simple ANTOINID geometry makes it easier to model than
other designs. This introduces an additional difficulty when trying to extrapolate results
from the present study to other applications. This comparison of present and past results at
the full core scale hints for the need of a benchmarking strategy which would allow for a more
in-depth comparison of the available methods. It must however be noted that the Takeda
benchmarks would not be suited for comparing lattice calculations as their exact assembly
geometries and compositions are not specified in Takeda and Ikeda’s original paper [44].
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From a accidental transient analysis perspective, the main drawback of the solutions pre-
sented in Chapter 4 is their consequent computational times. In the aim of setting up an
iterative coupled scheme in the SEASON platform for example, it would appear necessary to
reduce lattice scheme calculation times if cross sections are to be computed "on the fly". An-
other limitation would be that all of these results assume a prior knowledge of the assemblies’
geometries. However, in the event of structural damages to the assemblies, their geometry
would change consequently and the local materials densities would be altered. This repre-
sents an important challenge for the neutronic calculation and was not considered during the
course of this work.

The main limitations that were identified in the course of this project can be summarized as
the following points :

1. Both full and hybrid 2D1D lattice calculations were not properly compared and vali-
dated to a Monte Carlo reference result.

2. The 1D (SCRAP) or 2D (MOC) source calculations used to model the reflectors in-
troduce consistent biases. In particular, this highlighted the errors introduced by the
radial reflector which appears not to have been properly treated in this work.

3. The conclusions drawn from this specific study based on the ANTOINID design are
not necessarily easily generalized to more complex core designs.

5.3 Future Research

5.3.1 Suggestions to treat the limitations identified in this work

Investigation of the 2D1D fusion approach : As the full 2D1D results are not satisfy-
ing, it appears that additional work is required to investigate the cause of these biases. It is
hypothesized that the description of the fissile sub-assemblies through 2D MOC source cal-
culations does not give valid results, as unveiled by the full core calculations presented in this
work. This issue could be investigated by studying a reference TRIPOLI-4 model in order
to identify where the 2D1D calculations fail. Some work towards the T4 model simulation
has already been done and it would be relevant to continue from where it was left. Full and
hybrid 2D1D calculations could then be confronted to reference Monte Carlo simulations on
a single fuel assembly, in order to obtain a more detailed estimation of their performances.
It is hoped that this could help explaining the surprising sodium void effect values calculated
from IDT-1D eigenvalues. As it stands, it is still unsure if these issues can be tackled by
modifying the existing script used to call the 2D1D solver, or whether there are inherent
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issues with the APOLLO3 implementation. In order to check this, it could be relevant to
attempt the same 2D1D treatment of the ANTOINID assemblies using an anterior version
of APOLLO3, ideally the version in which B. Faure developed the original 2D1D module.

Radial reflector models : Further investigation of possible reflector models would be
relevant. A particular attention to the radial reflector model would be necessary as it has
been omitted in the present study. In order to assess the biases associated with the model
used in this work, alternative types of reflector models should be considered. One could
imagine calculating the flux in the reflector from a traversing motif which would include
enough fuel assemblies such that a critical (Keff = 1) domain is obtained.

Furthermore, a two dimensional core model could also be imagined in order to treat radial
effects independently of the axial distribution. This approach would allow for the validation
of a radial reflector model through a reference two-dimensional full core calculation using
MINARET or NYMO.

Introduction of 3DMOC assembly calculations : It would also be relevant to perform
assembly calculations in a 3D MOC approach as the recent developments in accelerating
three dimensional calculations made by Santandrea et al. [16] could provide a competitive
alternative to 2D MOC or 2D1D fusion methods. It was intended for a 3D MOC scheme to
be tested as part of this work, however it was not possible given the time constraints.

Validation of the MPOtoXML interface : Further work using the MPOtoXML inter-
face presented in Appendix B, could also be imagined. First of all, it would be necessary
to "validate" the interface itself in order to make sure that no bias could simply come from
its implementation. As seen in the results presented in Appendix B, more work would be
required to validate the ANTOINID study using the SNATCH solver. Developments made
in this direction would open new possibilities for using APOLLO3 generated cross sections
in the PARIS platform, including in SEASON full core simulations. This action could be
carried out along with the development of a neutronic scheme to be used in SEASON, for
which a hybrid architecture could be envisioned. This would allow for the pre-calculation
of multi-parameter cross section libraries which could be used in the first accidental phase,
during which the main geometric features of the assemblies are preserved. In the second ac-
cidental phase when the geometries would have degraded, a fast infinite medium calculation
could be performed "on the fly", in order to take into account the relocation of materials,
such as fuel assemblies melting for example. This would contribute to more precise coupled
accidental transients calculations.
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5.3.2 A more general benchmarking strategy

This work has allowed to show that the accurate representation of voided configurations in
SFRs still represent a challenge to this day. A deeper analysis of the different methods and
their associated biases should be approached through their extension to more benchmark
test cases. These could include designs such as the ANTOINID, Bay’s modified Takeda-4
benchmark [43] [44] (only for full core calculations) and the JPN (JF-36) core [30]. Alter-
natively, an adapted "CFV-like" benchmark such as the FBR, referred to by A. Calloo [46]
could be used. However, it must be noted that its specific design has not been published yet.
This approach would help removing dependencies to specific designs and give a better idea of
the domain of applicability of each lattice/solver combination. To start with, the 2D MOC
lattice scheme based on the B-heterogeneous leakage model (MOC2DHet) could be extended
to the JF-36 benchmark. It would also be relevant to test it for the ASTRID case, as sug-
gested by B. Faure et al. in [47]. It should be kept in mind that in this 2D MOC approach,
a more advanced radial reflector model should be considered as pointed out earlier in this
work. Additionally, treatment of a variety of other assembly geometries could also help fix-
ing and validating the 2D1D fusion approach. Similarly, it would be worth comparing these
results with the 3D MOC approach to assembly calculations. Moreover, comparisons with
the DRAGON5 lattice code could be relevant as it is also capable of producing condensed
and homogenized cross sections in the MPO format.

Regarding the treatment of full core calculations, it would be ambitious but relevant to
run a series of tests on all of the available benchmarks in order to compare the full core
solvers at our disposal. This would require the clear definition of a series of benchmark tests
that would reflect the capabilities of each solver to simulate voided configurations. Provided
for the MPOtoXML interface to be validated, the possibilities of full core solvers could be
extended to those available in the PARIS platform.

This academic approach would allow for a more complete survey of DRAGON5 and APOLLO3
lattice calculation capabilities on a wider variety of SFR assembly designs. The cross sections
generated by these calculations would all be available in the MPO format which opens up
for the possibilities of comparing full core calculations from APOLLO3, DONJON5 and even
the PARIS platform. However, it must be kept in mind that these suggestions would be
ambitious and would not necessarily comply with CEA’s interests and obligations towards
its industrial partners. Nonetheless, future academic collaborations between CEA and Ecole
Polytechnique de Montréal, similar to this project, could be imagined.
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APPENDIX A ERANOS NUMBERING AND TRAVERSES PLOTTED

Figure A.1 Representation of the ERANOS numbering used to label the hexagons. The radial
traverse is shown in the black rectangle. The assemblies selected for the axial traverses are
labeled according to color and marker plotted.

Figure A.1 shows the ERANOS hexagonal numbering as well as the radial traverse used to
produce figures showing relative errors at each height along the traverse. Additionally, the
labeled fuel assemblies are the ones referred to as "Central C1", "Outer C1", "Inner C2" and
"Outer C2" in the text. Axial traverses are performed at these radial positions.
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APPENDIX B MPO TO XML INTERFACE

The standard output of AP3 lattice schemes is the MPO file. It is based on the hdf5 file
format, and corresponds to a sequence of concatenated dictionaries. Each key represents a
node and the tree structure leads to saved data, such as calculated assembly cross sections or
energy mesh. On the other hand, the PARIS formalism is based on the XML format. With
the SEASON platform being based on the PARIS platform, the development of a python
class "MPOtoXML" serving as an interface between both formats was prototyped. Thanks
to previous work done by Giorgio Vallochi as part of his Ph.D thesis [48], the interface’s
development started from his "MPOParser" python class. The class’ functions were extended
to retrieve the group to group scattering matrices from the MPO format, in a class called
"MPOParserv2". The latter are stored in a sparse matrix format in order to avoid the
large number of transfer cross sections which are simply 0. This is not the case in the
PARIS XML format which stores the full matrices representing scattering cross sections.
The "MPOtoXML" class developed allows to treat a list of MPOs to be converted to XML
format compatible with the PARIS architecture. All of the necessary 33g cross sections are
thus parsed from MPOs in the input list using "MPOParserv2", in turn, these are converted
to the required XML format by the "MPOtoXML" class. It was thus possible to use cross
sections generated from a AP3 lattice step in full core solvers using the PARIS convention.
This conversion of cross section format was implemented in order to test full core solver
from the SEASON platform. Due to time constraints, it was decided not to work in the
SEASON platform itself, but on standalone version of PARIS and its SNTACH solver were
installed with the help of Laurent Buiron. The graphic interface MACCAO was used to re-
create the ANTOINID’s core model and a "dummy" diffusion calculation was launched from
MACCAO. This allowed for the creation of xml files describing the ANTOINID geometry
and physical media. The latter were then used in the SNATCH solver which was then
able to perform 3D SN calculations with a 403 hexagonal product angular quadrature. The
ANTOINID’s description was completed through the use of XML cross section files generated
with the MPOtoXML interface. This demonstrates the feasibility of using AP3 generated
cross sections in full core simulations performed in the PARIS platform. The XML data
format and java architectures being similar between PARIS and SEASON, it is hoped that
this work represents a first step towards the possible use of AP3 generated cross sections in
the SEASON platform. It must be noted that the current state of the MPOtoXML python
interface is not optimized and would definitely necessitate consequent optimization.
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SNATCH was tested with cross sections from the SCRAP and MOC2DHet lattice schemes
for NOM and VOID configurations, yielding results presented in tables B.1 and B.2.

Config. Keff

SNATCH

error Keff

SCRAP-T4
(pcm)

Time
(s)

RAM
(GiB)

Void effect
(pcm)

Error on void
effect (pcm)

NOM 1.01673 150 9091 ∼ 40 -464 285
VOID 1.01196 436 10479 ∼ 40

Table B.1 Full core SNATCH results from SCRAP cross sections. Keff for NOM and VOID
configurations, void effect on reactivity and associated errors with respect to T4 reference.

Config. Keff

SNATCH

error Keff

MOC2DHet-T4
(pcm)

Time
(s)

RAM
(GiB)

Void effect
(pcm)

Error on void
effect (pcm)

NOM 1.02042 505 unrecorded ∼ 40 -1001 -252
VOID 1.01010 254 unrecorded ∼ 40

Table B.2 Full core SNATCH results from MOC2DHet cross sections. Keff for NOM and
VOID configurations, void effect on reactivity and associated errors with respect to T4 ref-
erence.

It can be seen that SNATCH results using cross sections from SCRAP have associated biases
that are similar to those obtained through the MINARET solver presented in Chapter 4, with
a misrepresentation of the voiding effect by 285pcm. On the other hand, calculations from
the MOC2DHet cross sections (table B.2) are not consistent with the MINARET SN repre-
sentation. Since both solvers use the same transport operator, this is rather unexpected and
would require some investigation. It is possible that the SNATCH solver was not parameter-
ized properly. The biases recorded could also be due to possible errors in the "MPOtoXML"
interface. Additional work would be required to investigate these discrepancies
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