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Institut de Génie énergétique
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Abstract

A new three-dimensional neutron diffusion code named
TRIVAC was set up using advanced discretization algorithms
and improved iteration strategies. The two variable order
discretization algorithms used in TRIVAC will be presented.
These are based, respectively, on the variational and nodal
collocation techniques. These algorithms will be shown to
produce reconstructible solutions which are upper and lower
limits of the exact solution. The eigenvalue matrix system is
solved using an ADI preconditioning of the power method in
conjunction with a symmetric variational acceleration tech-
nique. Validation results are reported for the IAEA two- and
three-dimensional benchmarks, and for a two-dimensional
PWR.

Résumé

Un nouveau logiciel tridimensionnel de diffusion neutronique
a été congu en utilisant des algorithmes de discrétisation
modernes etdes stratégies itératives améliorées. Nous allons
présenter les deux algorithmes de discrétisation d’ordre vari-
able utilisées par TRIVAC. Celles-ci sont basées respectivement
sur les techniques de collocation variationnelle et nodale. Nous
allons montrer que ces algorithmes produisent des solutions
interpolables et qui correspondent a des limites supérieure et
inférieure de la solution exacte. Le systéme matriciel aux
valeurs propres est résolu a |'ajde d'un préconditionnement
aDl de la méthode des puissances, en conjonction avec
une technique d'accélération variationneile symétrique. Des
résultats de validation sont rapportés pour les cas tests IAEA &
deux et trois dimensions ainsi que pour une représentation
bidimensionnelle d'un PWR.

Introduction
The primary goal of a discretization algorithm is to
transform the differential operators of the diffusion

equation into real number matrices adapted to an
efficient numerical solution. A review of most common
algorithms is presented in reference 1. This list should be
updated by appending the variational and nodal dis-
cretization techniques presented in this paper [2, 3].
There is no such thing as an ‘ideal’ discretization
algorithm and any choice is the result of a compromise.
Some techniques, such as the analytical nodal method
(aNM), are very efficient to compute a power map
defined over coarse elements, but they lack a straight-
forward reconstruction technique for the solution [4].
Other algorithms, like the classical finite element
approximations, are handicapped by difficulties such
as their incompatibility with an ap1 preconditioning.
The variational and nodal collocation techniques
used in TRIVAC appear to include most desirable proper-
ties in spite of the fact that they cannot compete with
the efficiency of nodal schemes based on the quadratic
leakage approximation. Let us mention the four most
interesting properties of the collocation techniques:

1. The numerical solution is reconstructible over each ele-
ment of the domain. The polynomial nature of the
solution greatly simplifies the integration of TRivac in
applications using the generalized perturbation theory or
the quasistatic algorithm of space-time kinetics.

2. The discretization order is variable, being a function of
the degree of the polynomials used to represent the
neutron flux over each element. High order polynomials
(cubic or quartic) are used to model pwr while linear
polynomials are used for caNDU reactors. In fact, the
linear variational and nodal collocation techniques are
respectively equivalent to mesh-corner and mesh-centered
finite difference approximations.

3. Collocation techniques are compatible with an Ap1 pre-
conditioning of the power method [5].

4. Matrices produced as a result of the discretization are real
and independent of the eigenvalue. Matrices correspond-
ing to the leakage terms are symmetric, positive definite,
and diagonally dominant. Other matrices are diagonal.

The two types of collocation techniques available in
TRIVAC will now be presented.

Keywords: reactor physics, diffusion equation, collocation techniques, finite elements, nodal methods.
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Definition of the Polynomial Basis

Both variational and nodal collocation techniques rely
on a polynomial representation of trial functions. A
weighted residual approach is used to find the approxi-
mate solution of the diffusion equation over the reactor
domain. There is an important distinction in the way
the weighted residual formalismis applied to each type
of collocation technique, and this distinction affects
the choice of the polynomial basis. The variational
collocation technique is based on a finite element
formalism where the residue, defined over the entire
domain, is orthogonal to the entire set of trial func-
tions. In addition, the interface conditions are treated
as natural conditions. With the nodal collocation
technique, however, the residues are cancelled ele-
ment by elementand the interface conditions are taken
into account a posteriori. Consequently, the variational
collocation technique is constrained to use a poly-
nomial basis with continuous trial functions over the
element boundaries. More flexibility is left to the nodal
collocation basis, which permits piecewise continuous
polynomials to be used.

We will now present the collocation techniques in the
case of a one-speed formalism. Changing over to the
multigroup formalism presents no additional difficulty.
Moreover, we will limit this study to three dimensional
Cartesian domains composed of an assembly of homo-
geneous parallelepipeds. Under these conditions, the
neutron diffusion equation is written

B a9 ab 8 ad
ax Dy(x,y,2) I @ Dy(x,y, ) 5; %z D,(x,y,z) Pz
+2xy, 200y, 2y =5 y,2), (1)

with ¢(x, y, z) continuous everywhere in the domain.
Currents —~D,(x, y, z) dd/dx, —Dy(x, y, z) dd/dy and
—Dy(x, y, z) d¢/dz are almost continuous, but may
present localized discontinuities over lines of singu-
larity [1]. The boundary conditions are either zero flux
(d(x, y, z) = 0) or positive albedo:
ad  11-Bxy, 2)
Dy, 2) X 21+B(xy, 2
P . 11-BKx,y,2)
@— 21+ Bx vy, z)
D,(x,y z)?f 11—————1 — By, 2
T e T 214 B(x, y, 2)

o(x,y,2)=0; (2a)

Dy(x,y, 2) o(x,y,2)=0; (%)

oy, =0, ()

where the “—” or “+” sign is used, depending on
whether the boundary is to the left of or to the right of
the domain in relation to the direction of each axis.

We will now assume that the nuclear properties
are uniform over each parallelepiped composing the
domain. These parallelepipeds will then be used to
support one or more elements. We will designate the
value of each nuclear property over element e by D,,,
Dy, D,e, and ..

Before introducing the trial functions defined over
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Figure 1: Discretization of a Cartesian domain.

element e, we will transform Cartesian coordinates
(X, y, z) of the element into local coordinates (u, v, w)
corresponding to a unitary cube of reference. The
Cartesian coordinates are described in Figure 1.

The following variable transformations will be used:

u= A_xe[X_ %(Xm—i + X 4]

1
V= E [y =2(¥n-3 + Yn+y)]

e

1
W g2t 7)) 3)

with

AXe =Xm1+3 ™ Xm—4

Ay, = Yn+3~ Yn-4

Aze=2z,1 3~ 254 4)

Over each element we will assume a tensorial expan-
sion of solution &(x, y, z) and of source term S(x, y, z)
with the help of low order polynomials, which are
denoted {P(u); k = 0, K}. In cases where point (x, y, z)

belongs to element V,, these two expansions take the
form

(%, ¥, 2) = de(u, v, W)

K K K
=2 I I ®krlkebp (u)Py (v)P(w) (5a)
k=0 kp=0 ky=0

and

S(x,y,2) = S.(u, v, w)

K K K
=2 2 X Slgl'kz'k3Pk1(u)Pk2(V)Pk3(W) (5b)
Ki=0 kp=0 k3=0




The Variational Collocation Method

The classical formalism of the finite element method
involves the analytical integration of the terms com-
posing the mass and stiffness matrices. The integra-
tions are trivial insofar as the trial functions are simple
polynomials. The mass matrix thus obtained is non-
diagonal, which makes the classical approximations
incompatible with the apr1 preconditioning.

The variational collocation method corresponds to
the approximations of the finite element method when
the mass and stiffness matrices are numerically inte-
grated in order to diagonalize the mass matrix [2]. This
is made possible by expanding the solution in terms of
Lagrangian polynomials, whose collocation points are
identical to the base points of a Lobatto’s quadrature
formula. This type of quadrature makes possible the
exact integration of the stiffness matrix, which is a
necessary condition to ensure the convergence of the
variational collocation method. Finally, we note that
the linear variational collocation method is identical to
the mesh corner finite difference method.

We have already tested the variational collocation
method based on linear, quadratic, cubic, and quartic
polynomials defined over two- and three-dimensional
domains [5]. These approximations use the following
trial polynomials:

1. Linear Lagrangian polynomials (K = 1)
In this case, the collocation points are chosen at abcissa
u = —1/2and u; = 1/2in local coordinates. The trial
polynomials are therefore given as:

Po(u) = —u + % (6a)
and
Py(u) = u + 4. (6b)

2. Quadratic Lagrangian polynomials (K = 2)
The collocation points are now chosen at abscissa uy =
-1/2, u3 = 0and u, = 1/ 2. The corresponding trial
polynomials are

Po(u) = 2u? — u, (7a)

Py(u) = —4u® + 1, (7b)
and

Py(u) = 2u? + u. (79)

3. Cubic Lagrangian polynomials (K = 3)
The collocation points are now chosen at abscissa ug =
-1/2,u=-1/(2V5),u; = 1/(2V5)and u; = 1/2. Note
that the position of points u; and u, is imposed by the
requirement that the set (uy; k = 0, K) correspond to the
base points of a Lobatto’s quadrature formula. The corre-
sponding trial polynomials are

Py(u) = —5u+3u +iu—4§, (8a)
5vV6 .
P,(u)=5\/§u3—%u2—Tu+%, (8b)
5V5
Py(u) = —5\/gu3—%U2+Tu+§ (8¢)

and

Pyu)=5u’+3ud—fu—

(8d)

Bl

4. Quartic Lagrangian polynomials (K = 4)
The collocation points are now chosen at abscissa uy =
-1/2,u;=-V3/28,u,=0,u3 =V3/28anduy =1/2.
The corresponding trial polynomials are

Py(u) = 140 — 7u® — u? + 3u, (9a)
2 1 1 1

Pl(u):49{4—u4+————u3+—u2— u}, (9b)
3 V21 6 v

112 , 40

Py(u) = =5 ut - 5 u>+1, (9c)
2 1 1

Ps(u):49{*—u4~————u3+—u2+ u}, (9d)
3 V21 6 4V

and
Py(u) = 14u + 7u® - §u? — §u. (%e)

Once the polynomial basis has been defined, the
variational collocation method proceeds as any finite
element formalism. However, all the linear or bilinear
products involving the trial functions should be carried
out using a Lobatto’s quadrature formula in order to
diagonalize the mass matrix.

The Nodal Collocation Method
We have developed a second family of collocation tech-
niques using a nodal formalism. These techniques
assume an expansion in Legendre polynomials of the
neutron flux over each element, withoutimposing a C
continuity on the interfaces. The absence of a Cy
continuity precludes the use of a variational formula-
tion based on the classical functional of the finite
element method [1]. We will show that a nodal for-
malism makes it possible to bypass this restriction,
while satisfying the four conditions previously stated
and without having to resort to a numerical integration
of the kind used in the variational collocation method.
The nodal collocation method has two features
which distinguish it from other polynomial nodal
approaches [6]. First, the nodal collocation method
does not require the quadratic transverse leakage ap-
proximation to generalize in two or three dimensions.
Instead, it uses a tensorial expansion of Legendre
polynomials, which introduces no further approxima-
tion to the one-dimensional case. Second, we will
show that the linear nodal collocation method isidenti-
cal to the mesh centered finite difference method. Until
now, only the analytical nodal method (aNMm) ap-
peared to be linked to this type of finite difference [4].
The Legendre polynomials used in the nodal collo-
cation method differ somewhat from their classical
definition because of the following two constraints:

1. Polynomials Pi(u) must be defined over the interval
(=1/2,1/2) to ensure that the reference cube has a
unitary volume.
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2. Polynomials Py(u) must be mutually orthonormal over the
reference interval; that is,

3
J . du Pi(u) Py(u) = 3y (10
where 3y is the Kronecker delta function.

We will therefore use the following Legendre poly-
nomials:

Py(u} =1, (11a)
Pi(u)=2V3uy, (11b)
Py(u) = —? (12u?-1), (11¢)

and, in general:
> _, [kt
k() = Em‘mu (W)
2k+3 k
Y ﬁk_ﬁpk~l(u)f (11d)

A weighted residual approach is then applied to
these trial functions in order to transform equation (1)
into a constant matrix system. The algebra involved
with the nodal collocation method is tedious and will
be omitted here. A complete description of the method
can be found in reference 3.

ifkz1.

Matrix Storage Schemes and Resolution Techniques
With a two-group energy formalism, the variational or
nodal collocation method is applied group by group to
generate the following matrix system:

> 2

Aggbg =5q (12)
with

2 1 -» nd

5= K"—{Blld)l + Biod} (13a)

eff

and

-

S =Andy. (13b)

Groupwise values of the neutron flux are therefore
represented by the polynomial coefficients associated
to all the elements. The solution of the overall eigen-
value problem can be found using the preconditioning
power method as presented in the reference 5. TRIVAC
also offers the possibility to solve a fixed-source
eigenvalue problem, which is useful in applications
involving the generalized perturbation theory [7, 8, 9]
and the improved quasistatic approach in space-time
kinetics.

Convergence of the preconditioned power method
is very slow in cases where the solution corresponds to
aflattened neutron flux. This difficulty was resolved in
TRIVAC using the symmetric variational acceleration
technique (svAT), as pointed out in reference 10. This
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approach offers some similarities with a conjugate
gradient technique applied to the eigenvalue problem.

The preconditioning matrix used in TRIVAC is equi-
valent to an apr splitting of the matrices Ag,. This
approach will be effective only insofar as the matrices
A, may be split according to the equation

Agg=Ugg + Xgg + PY, Pl + P,Z,.P], (14)
where U,,= matrix containing the diagonal elements
of Ay Xeg Yo, Zgs = symmetrical matrices cor.1ta1n1ng
the non-diagonal elements of A, corresponding to x,
y, and z couplings, respectively; Py, P, = permutation
matrices which ensure a minimum band width for
matrices Ygg and Zg.

This type of splitting capitalizes on the possibility of
numbering the unknowns in such a way that matrices
Xegr Y, and Z,, appear with a diagonal bar}ded
structure. An important characteristic of the variational
and nodal collocation methodsallowsamaximumband
width, respectively equal to K + 1 and 2K for a given
order of discretization.

Numerical Results
The variational and nodal collocation methods were
programmed and included in the TRIVAC computer
code. The two kinds of discretization share the same
computer environment and use the same numerical
analysis techniques for the solution of matrix systems.

The TRIVAC computer code is written in FORTRAN-77
and compiled by FORTRAN-Vs (1BM) at level two optimi-
zation. All vectors and matrices are declared in single-
precision (1 word = 32 bits) and are dynamically
allocated by a subroutine written in assembler. Certain
accumulators assigned to bilinear product calculations
are declared in double-precision, in order to minimize
round-off error. Numerical tests were carried outonan
18M-4381 (group two) computer and are therefore
typical of a scalar computer.

Itis useful to mention the main numerical techniques
and the calculation options used in this study:

1. The neutron diffusion equation (1) is discretized using
the variational or nodal collocation method. The order K
of discretization is equal to three (cubic polynomials) or
four (quartic polynomials). In all cases, the reactor radial
plane is partitioned using one and only one element per
assembly.

2. The fundamental solution of the eigenvalue system (12)
and (13) is obtained by the preconditioned power method,
with a two-parameter variational acceleration [5, 10].

3. A preconditioning is applied by carrying out one or two
ADIiterations per outer iteration of the power method [5].

4. The power method is initialized by a uniform estimate of
the solution (¢; = 1.0). The iterations are interrupted
when the following convergence criterion is satisfied:

max | &V — B
i

=107%, (15)
max | cbi(k) |
i



Table 1: 1aA-2D Benchmark Calculations

Polynomial €max € CPU time Outer Inner /

order Bandwidth K3, K‘;ff (%) (%) (s) iterations outer
Variational collocation 3¢ 4 568 1.029786 5.8 2.2 4.8 51 1

3 4 568 1.029785 5.8 2.2 6.4 39 2

4 5 1033 1.029596 0.93 0.34 15.9 87 1

4 5 1033 1.029592 0.93 0.34 14.3 45 2
Nodal collocation 34 6 621 1.029370 4.9 1.8 4.8 39 1

3 6 621 1.029374 5.0 1.8 7.1 33 2

4 8 1104 1.029590 0.78 0.26 15.1 63 1

4 8 1104 1.029582 0.77 0.26 16.7 39 2

*The number of unknowns per energy group.

"The reference solution was obtained by a nodal analytic calculation with a mesh of 34 x 34. The corresponding effective multiplication factor is

Ko = 1.029585.
“See Figure 2 for an illustration of thermal flux distribution.
9See Figure 3 for an illustration of thermal flux distribution.

Table 2: Tihange Test Problem Calculations

Polynomial € nax € CPU time Outer Inner /

order Bandwidth Kot o (%) (%) (s) iterations outer
Variational collocation 3 4 1888 1.000312 4.2 1.9 18.8 45 1

3 4 1888 1.000312 4.3 1.9 24.7 33 2

4 5 3401 1.000707 1.1 0.45 55.6 69 1

4 5 3401 1.000704 1.1 0.46 57.9 39 2
Nodal collocation 3 6 1989 1.001300 4.1 1.7 354 63 1

3 6 1989 1.001303 4.1 1.7 52.2 51 2

4 8 3536 1.000971 1.1 0.43 128.1 111 1

4 8 3536 1.000961 1.1 0.43 162.9 75 2

“The reference solution was obtained by a nodal analytic calculation with a mesh of 51 x 51. The corresponding effective multiplication factor is

Keff = 1.000823.

Table 3: 1aA-3D? Benchmark Calculations

L4

Polynomial €max € CPU time Outer Inner/

order Bandwidth Kot Koy (%) (%) (s) iterations outer
Variational collocation 3 4 9088 1.029313 6.8 2.3 240.8 87 1

3 4 9088 1.029315 6.8 2.3 258.2 51 2

4 5 21693 1.029117 1.2 0.36 1012.0 141 1

4 5 21693 1.029113 1.2 0.36 1128.0 87 2
Nodal collocation 3 6 9315 1.028810 5.3 2.0 223.9 75 1

3 6 9315 1.028812 5.2 2.0 247.3 45 2

4 8 22080 1.029045 0.97 0.34 815.5 9 1

4 8 22080 1.029037 0.97 0.34 1144.0 75 2

2All TRIVAC calculations are based on a mesh of 9 X 9 X 5 with axial mesh lines at 0., 20., 150., 280., 360. and 380. cm.
"The reference solution was obtained by a nodal analytic calculation with a mesh 26 x 26 x 18. The corresponding effective multiplication factor

is Kog = 1.029060.

where &} is the i-th flux component after k iterations.
This criterion makes possible a convergence precision
better than 0.05% over the zonal powers.

5. The solutions thus obtained are compared to the reference
calculations carried out with the analytic nodal method
[4]. The maximum and average errors over zonal powers
€max and € are calculated as in reference 1.

Tables 1 to 3 give the numerical results for three
specific cases: the two-dimensional (2D) and three-
dimensional (3D) taEa benchmarks [11] and the two-
dimensional Tihange test problem, which represents a
complete configuration of a pressurized water reactor
(pwr) at the beginning of the second cycle [12].

The overall numerical results reveal two interesting
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Table 4: Bounding Effect of Zonal Powers®

Variational Nodal
collocation collocation

e (%) (%)
1 -0.09 0.12
2 -0.51 0.30
3 -0.36 0.25
4 -0.42 0.34
5 0.14 —0.05
6 -0.14 0.16
7 0.18 -0.09
8 0.56 -0.42
9 -0.39 0.25
10 -0.34 0.23
11 -0.30 0.23
12 -0.30 0.21
13 -0.02 0.05
14 0.21 -0.14
15 0.57 -0.46
16 -0.29 0.22
17 -0.24 0.19
18 -0.13 0.14
19 0.05 —0.01
20 0.23 -0.17
21 0.93 -0.77
22 -0.21 0.18
23 -0.19 0.21
24 0.11 -0.07
25 0.61 -0.48
26 0.37 -0.32
27 0.06 -0.04
28 0.89 -0.77
29 0.91 -0.77

*1aEA-2D benchmark calculations discretized
by a quartic collocation method.

features, which are clearly seen in Table 4 for a specific
case:

1. For a given order of discretization, the variational and
nodal collocation methods offer similar accuracy.

2. The reference solution, obtained through the analytic
nodal method, is bounded by the variational and nodal
collocation solutions, respectively. This bounding effect
is observed for the eigenvalue and for most zonal powers.

It is worth mentioning that the band width of
matrices Xgg, Ygq, and Zg, is equal to K + 1 with the
variational collocation method, while it is equal to 2K
with the nodal collocation method. This feature tends
to penalize the nodal collocation method in terms of
calculation efficiency and memory utilization.

It is not possible to conclude that one discretization
method is numerically more stable than the other. The
variational collocation method is more stable for solving
the Tihange test problem while the nodal collocation
method seems to be preferable for the 1AEA benchmarks.

Figures 2 and 3 illustrate the thermal flux distribu-
tions obtained for the 1aga-2D benchmark when a
third order discretization is used. The distribution
corresponding to the variational collocation method
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Figure 2: Distribution of thermal flux for a discretization of the
1aEA-2D benchmark by the variational collocation method.

is formed from the assembly of bicubic polynomials
and does not have any discontinuities at element
boundaries. On the other hand, the distribution
corresponding to the nodal collocation method consists
of the assembly of piecewise continuous biparabolic
polynomials. The discontinuities, located on element
boundaries, are responsible for the incompatibility of a
Legendre representation with the variational formalism
presented in reference 1. While reconstructing the
neutron flux obtained by the nodal collocation method,
we have lost one order of representation on the trial
functions. However, this causes no practical handicap
during the later stages of calculation requiring such a
reconstruction.

Figure 3: Distribution of thermal flux for a discretization of the
1aEa-2D benchmark by the nodal collocation method.




Conclusions

We have described a new family of numerical tech-
niques for discretizing the neutron diffusion equation.
These collocation methods makes it possible to increase
the order of discretization by varying the degree of
polynomials used as trial functions. The minimum
order, corresponding to a linear representation, is
equivalent to the mesh-corner or mesh-centered finite
difference method.

The variational and nodal collocation methods ap-
pear to be linked, in so far as they provide lower and
upper limits for the exact solution of the diffusion
equation. This property has not been proven analy-
tically, but it has nevertheless been observed in the
majority of numerical tests carried out so far.

The variational and nodal collocation methods also
share a certain number of interesting properties for
numerical applications: they are compatible with an
A1 preconditioning and permit reconstruction of flux
after convergence. They therefore share the main
advantages of the finite element method, without
being committed by its main drawback.

The main criticism that could be made of collocation
methods is their reliance on tensorial expansions of
trial polynomials. This means that when going from one
to three dimensions, fora given order of discretization,
the number of unknowns associated with each elementis
cubed. This approach, while mathematically coherent,
requires more computer resources than methodsbased
on the quadratic transverse leakage approximation [4].

Work is now underway to use this new diffusion
module in fuel management and design applications,
such as:

1. orrEx-4 for the 3-D optimization of fuel enrichment,
burnup, and adjuster grading in a cANDU reactor, using
generalized perturbation theory [8, 9];

2. xstaTIC for the solution of the space-time kinetics equa-
tions using the generalized quasistatic algorithm;

3. anew diffusion module for the rMDP family of codes [13].
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