
THE CLE-2000 TOOL-BOX

Robert ROY

Institut de génie nucléaire

École Polytechnique de Montréal

e-mail: roy@meca.polymtl.ca

December 1999



Abstract

In reactor physics, modern computer codes use a free-format input procedure, that simplifies the

tedious production of long lists of geometric and material data. This procedure will generally

make a crude syntactical analysis of the reader unit file, allowing the users to call a sequential

calculation but with added flexibilities such as putting data wherever they want and adding

comments. This first step in defining a user-friendly input stream is still used by many engineers

all over the world. Assuming a basic definition for the free-format procedure, an efficient CLE-

2000 compiler can now be formally written in any language. This second step enables insertion

of loops when calling modular parts of codes in order to carry out a sensitivity analysis on

various steps of large codes, without recoding or defining new modules. The CLE-2000 tool-box

is described in this report, along with various examples of coding in this language.



IGE-163 The CLE-2000 Tool-box 1

Contents

1 Introduction 4

2 CLE-2000 syntax (user’s guide) 6

2.1 Values and variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Declaration statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Operations and expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Executable statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Conditional statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Type conversion statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Parametric constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 End of compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 Example of plain CLE-2000 source files . . . . . . . . . . . . . . . . . . . . . . . 17

3 CLE-2000 drivers (programmer’s guide) 19

3.1 Routines involved in the compilation process . . . . . . . . . . . . . . . . . . . . 19

3.1.1 CLEPIL arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Routines involved in the execution process . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 REDOPN arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 REDGET arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.3 REDPUT arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.4 REDCLS arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Utility routines for CLE-2000 applications . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 CLEOPN arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 CLEGET arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.3 CLEPUT arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.4 CLECLS arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.5 CLECOP arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 External routine for parametric constants . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 CLECST arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



IGE-163 The CLE-2000 Tool-box 2

3.5 Example of a simplified DRIVER . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.1 Execution of CLE-2000 procedures . . . . . . . . . . . . . . . . . . . . . . 33

3.5.2 Passing arguments between CLE-2000 procedures . . . . . . . . . . . . . . 34

4 CLE-2000 examples (validation) 35

4.1 Example of recursivity: 8! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Values of the Bessel function J0(x) . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Calculations based on the Julian day . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Gauss-Legendre integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Finding zeros of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusion 40

References 42

A Appendices 43

A.1 Glossary of CLE-2000 keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.2 New syntactical features of version 2 . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.3 Record definitions on object files . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.3.1 Top-of-file record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.3.2 Input-stream records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.3.3 Variable-stack records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.4 Fortran-77 and Fortran-90 implementations . . . . . . . . . . . . . . . . . . . . . 50

A.5 Listing examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.6 List of all compilation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Index 55



IGE-163 The CLE-2000 Tool-box 3

List of Figures

1 CLE-2000 compilation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Definition of an instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The declaration statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 The binary operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 The unary operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 The relational operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

7 The EVALUATE statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

8 Access from the application of the variable content. . . . . . . . . . . . . . . . . . 12

9 Changing the variable content in the application. . . . . . . . . . . . . . . . . . . 12

10 The ECHO statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

11 The IF statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

12 The REPEAT statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

13 The WHILE statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

14 Type conversion operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

15 Calling a parametric constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

16 Statement for the end of compilation. . . . . . . . . . . . . . . . . . . . . . . . . 16

List of Tables

1 Results returned by xmachar.c2m . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Tree of routines called by CLEPIL . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 The package of routines controlling IO . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Indirect access to the CLE-2000 stack of variables . . . . . . . . . . . . . . . . . . 28

5 Complementary routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Unforgettable julian days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



IGE-163 The CLE-2000 Tool-box 4

1 Introduction

This note describes the first release of a language called CLE-2000. It provides information about

the language itself and its use when embedded in applications. Defining a new programming

language nowadays may sound silly; however, as will be shown in the following sections, the CLE-

2000 language is so simple that a compiler can be written in any other high-level programming

language. Quite similar to a calculator, the instructions in CLE-2000 are coded in a keystroke

manner. To use the language does not require any particular proficiency in programming,

but familiarity with a basic programming language is assumed. Like any other programming

language, the first step in the CLE-2000 processing of the source file involves a compiler. The

compiling step is needed in order to see if there are any syntactical errors in the source file. In

this first step of the language, instructions are interpreted to see if the logic can be followed

thoroughly and if types are respected within the evaluation/computation steps.

Source file - Compiled file

- Listing

Figure 1: CLE-2000 compilation.

In the present version, users can code CLE-2000 instructions only in the 72 first character

positions of any line of the source file. The new compiler will detect entries from columns 73 to

80, and any non-blank entry following column 72 will be considered as an error. Comments can

also be included in the source file; two forms of comments are accepted by the compiler:

• an asterisk (character *) in the first column: then, the whole line is considered as a

comment;

• an exclamation mark (character !) in any column of the source file: the rest of the line is

considered as a comment.

Note that the old form of comments beginning with (* and ending with *) is considered as an

obsolete feature.



IGE-163 The CLE-2000 Tool-box 5

Except for the comment lines, blanks (characters  ) are significant; they are used in order to

separate variables, operations, keywords, etc. All CLE-2000 instructions (except for the last line)

must be terminated with a semicolon ; that semicolon must also be the last instruction

of that particular line of the source file. Users that do not follow these basic rules will end up

with syntactical errors or unpredictable results. The CLE-2000 compiler always checks if the

first word following a semicolon is a reserved keyword; forgetting a semicolon can thus have

catastrophic side effects.

The CLE-2000 language provides loops, conditional testing and macro-processor capabilities.

Reversed Polish Notation (RPN) was chosen for the calculator. Although it is not the conven-

tional way to program computations in high-level languages, major benefits are that RPN helps

data stacking, permits data swapping and allows computations to be processed in the exact

order the user wants them done. The CLE-2000 language was kept as simple as possible; the

user can use its symbolic logic, but there is no intention to compete with high-level code devel-

opment. In the spirit of simplicity, the following restrictions were imposed in the actual version

of CLE-2000:

• there are NO array types: should a user want to index a variable and process vectors or

matrices, he has to write his application;

• there are NO implicit type coercions: too often precision is lost because users are not

aware of side effects when combining single and double precision data;

• there are NO procedures or functions: should a user want to separate a procedure for

subsequent use, he has to separate its source file and think of how to link it with others.

With these three restrictions, quality assurance can be easily managed on CLE-2000 source

files. The CLE-2000 compiler is responsible for producing a compiled file, where conditional

logic is manageable and where computations result in data of the correct type anywhere in the

source file. Once the compiler has been embedded in an application, the correct renderings

of the meanings that the user wishes to express in his source file are beyond the scope of the

language.



IGE-163 The CLE-2000 Tool-box 6

2 CLE-2000 syntax (user’s guide)

Since all CLE-2000 instructions (except for the optional QUIT statement that we will later

consider) must be terminated with a semicolon ; followed by a carriage return, we will here

consider that an instruction is a composed form of the following type:

statement -
�
 �	; -

�
 �	(CR)∗

∗: (CR) means a carriage return

Figure 2: Definition of an instruction.

The difference between instructions and statements will become clear when we consider

coupling CLE-2000 instructions with instructions of other codes or other modules. The simple

fact that the semicolon may not end a CLE-2000 statement is not important to the compiler.

There are two basic fields in any source file:

• CLE-2000 statements: these instructions must begin with one of the following keywords:

INTEGER REAL STRING DOUBLE LOGICAL EVALUATE ECHO IF

ELSEIF ELSE ENDIF WHILE ENDWHILE REPEAT UNTIL or QUIT ;

• instructions outside CLE-2000: any instructions whose first word is not in the previous

list.

Instructions of these two basic fields are assumed not to overlap each other; as explained above,

it is important not to forget the semicolon termination of any instruction. After each semicolon,

the compiler will try to identify which instructions have a CLE-2000 meaning. For CLE-2000

statements, the semicolon will be simply withdrawn from its description.

2.1 Values and variables

Any value accepted by the CLE-2000 compiler has one of the following five types: logical, integer,

real, double or string. When analyzing a possible value, CLE-2000 determines its type according



IGE-163 The CLE-2000 Tool-box 7

to:

Integer any sequence of decimal numbers (unsigned integer);

Integer a sign + or − followed by any sequence of decimal numbers (signed integer);

Real a sequence of decimal numbers with one decimal point;

Real a sequence of decimal numbers, preceded or not by a sign and with or without a decimal

point, with an E followed by a signed or unsigned integer;

Double sequence of decimal numbers, preceded or not by a sign and with or without a decimal

point, with an D followed by a signed or unsigned integer ;

String a sequence of characters enclosed between two quotation marks (character ”) or two

apostrophes (character ’) (or any sequence with no blank that was not identified as a

numeric value by the previous items) ;

Logical a type restricted to CLE-2000 statements (as described later).

There are value limits for these different types. These limits are imposed by the language

in which the CLE-2000 compiler is written. As in the original 1.0 version, the usual limits for

integers, real and double precision data apply. The following restrictions are imposed on the

content of a string:

• the length of any string is restricted to 72 characters;

• a string must not contain an exclamation mark (character ! reserved for comments);

• a string must not contain double IO symbols (this excludes characters << or >> whose

functions will be described later);

• in CLE-2000 statements, strings must be enclosed between quotation marks (character ”);

• outside CLE-2000, strings are character sequences that were not identified as numeric

(with no blank) or character sequences between apostrophes (character ’).



IGE-163 The CLE-2000 Tool-box 8

Variable names are restricted to 12 alphanumeric characters. Every name must begin with

a letter or an underscore, the other values may be letters, digits or underscores. A particu-

lar type of variable is a pre-defined constant which begins with a $ sign (see the section on

parametric constants). Once declared, these variable identifiers are uniquely associated with a

memory location in the direct access (object) file. At any step in the CLE-2000 source file, the

user may store a value in the variable. He may also recall the value of a variable inside any

evaluation/calculation step.

2.2 Declaration statements

There are five types available in CLE-2000. Variables must be declared only once in a source

file; they are static in the sense that, once defined, their values will stay available anywhere

in the source file. The declarations can be given anywhere in the source file, as long as these

declarations are done at the basic logical level (that is not inside IF WHILE or REPEAT

statements). It is important to note that a variable must be declared before its first appearance

in an executable statement. There are two forms of declarations: the simple declaration of the

type and the declaration followed by initialization of the variables.

�
 �	DOUBLE�
 �	INTEGER�
 �	LOGICAL�
 �	REAL�
 �	STRING

variables
�
 �	:= expressions

optional

Figure 3: The declaration statement.

Using string variables, the user can manipulate strings up to 72 characters in length. Here

are some examples of possible declaration:

LOGICAL  logic Why_not  ;

INTEGER  i j k := 0 1 2 ;

INTEGER  prime div ;

REAL  a b c := 0.0 1.0 .02E+2 ;



IGE-163 The CLE-2000 Tool-box 9

STRING DATE := "12/21/1953" ;

DOUBLE  Pi := 3.14159265358979D0 ;

In the first declaration statement, the value of the logical variable “logic” is undefined. The

same thing happens in the second statement, where “prime” and “div” are not defined. However,

in the four last statements, the variables are also initialized.

2.3 Operations and expressions

CLE-2000 uses reverse polish notation (RPN) in order to carry out arithmetic expressions. The

four usual binary operations are available plus exponentiation.

expression expression

�
 �	+�
 �	−�
 �	∗�
 �	/�
 �	∗∗

Figure 4: The binary operations.

The operations are available for all the available types. So far, the language does not permit

operations on different types; as stated above, this should prevent users from loosing accuracy

in any operation. The user is supposed to provide two expressions of the same type. Operations

with logical variables are possible. In that case, + and ∗ mean OR and AND respectively. For

logicals, − and / mean OR NOT and AND NOT. Two operations with character variables are

possible: + means concatenation of the two character strings and − means to withdraw from

the first word the ending occurrence of the second word.

Twelve of the most used unary operations were also available in CLE-2000. These basic

functions will cover most of the simple mathematical tasks of a calculator. These are given in

Figure 5.

These unary operations are generally available in the floating-point types REAL and DOU-

BLE . An exception is ABS that is also available with the INTEGER type. The NOT

operation can be only used with a logical type. In Figure 6, the six relational operators used in



IGE-163 The CLE-2000 Tool-box 10

expression

�
 �	ABS�
 �	ARCCOS�
 �	ARCSIN�
 �	ARCTAN�
 �	CHS�
 �	COS�
 �	EXP�
 �	LN�
 �	NOT�
 �	SIN�
 �	SQRT�
 �	TAN

Figure 5: The unary operations.

order to compare values are listed.

expression expression

�
 �	>�
 �	<�
 �	=�
 �	<>�
 �	<=�
 �	>=

Figure 6: The relational operations.

These binary comparison operations are available in order to compare two expressions of the

same type. The result of these comparisons is always a logical value.

We are now able to describe expressions in the CLE-2000 language. Expressions are com-

binations of values and operations. The values can be either direct values of one of the five

types or indirect values by recalling the contents of a CLE-2000 variable. The unary, binary and



IGE-163 The CLE-2000 Tool-box 11

relational operations can be combined to generate complex expressions as:

b b * a c * 4. * -

logic prime prime div / div * = +

fb 0. > fc 0. > * fb 0. < fc 0. < * +

s 2. xm q q r - * * * b a - r 1. - * - *

3. xm q * * tol1 q * ABS - e q * ABS >=

Because plain CLE-2000 does not permit type coercion, it is possible to say that: in the

first line expression, variables “a”, “b” and “c” are reals. In the second one, “logic” is a logical.

In the third one, variables “fb” and “fc” are reals, etc. Note that the first expression simply

calculates the value of b2 − 4ac.

Expressions can also be used in variable initialization. As long as any variable occurring in

the expression has already been declared, it is possible to use it in an expression.

2.4 Executable statements

In CLE-2000, calculations are normally done in an EVALUATE instruction.

�
 �	EVALUATE variables
�
 �	:= expressions

Figure 7: The EVALUATE statement.

Here are some examples of CLE-2000 calculations:

EVALUATE i := i 1 + ;

EVALUATE logic := logic prime prime div / div * = + ;

EVALUATE minim := 3. xm q * * tol1 q * ABS - ;

When linking CLE-2000 statements with input-stream instructions of another language,

access is provided to users. To access the content of a variable, the access instruction is:

Note that the access instruction is completely transparent to the non-CLE-2000 module; in

other words, the module will only see the data, not the name of the variable. Users must select

the appropriate type.



IGE-163 The CLE-2000 Tool-box 12

�
 �	<< variable
�
 �	>>

Figure 8: Access from the application of the variable content.

When developing a new module that will fully use the CLE-2000 syntax, the developer can

also have a inverse access in order to put a value in a CLE-2000 variable. To put a value in a

variable, the inverse access instruction is:

�
 �	>> variable
�
 �	<<

Figure 9: Changing the variable content in the application.

Note that the inverse access operation is done after checking if the type correctly matched

the one given by the user. In order to help the developer to recover an expected value, a good

programming rule would be to impose a keyword before the inverse access is taken over.

Finally, when users want to output values of CLE-2000 variables of their program, they can

use the ECHO instruction: �
 �	ECHO expressions

Figure 10: The ECHO statement.

This last output statement is normally used to output values, but it can also be used to do

computations as in the last of these examples:

ECHO prime "is a prime number" ;

ECHO "Tolerance ="      tol

     "Number of iter =" iter

     "Root value ="     zbrent ;

ECHO "Calculation of ’b2-4ac’ gives:" b b * a c * 4. * - ;



IGE-163 The CLE-2000 Tool-box 13

2.5 Conditional statements

As a primitive programming language, CLE-2000 is able to perform loops and tests. These are

the most important statements of the language because they allow repetitive calculations on

data files that would normally be cumbersome to be carried out. The one-block or multi-block

decision maker is similar to the one in other languages and is shown in Figure 11.

�
 �	IF condition
�
 �	THEN statements

�
 �	ELSEIF condition
�
 �	THEN statements

�
 �	ELSE statements

�
 �	ENDIF

optional (may be repeated)

optional

Figure 11: The IF statement.

Assuming the following input:

IF logic THEN

    ! set_of_statements_1

    ECHO "This is logic..." ;

ELSE

    ! set_of_statements_2

    ECHO "This is NOT logic..." ;

ENDIF ;

the conditional test on the “logic” variable determine which of the set of instructions 1 or 2 will

be executed. If “logic” is true, set 1 is executed and set 2 is bypassed. If “logic” is false, set 1

is bypassed and set 2 is executed.

Plain CLE-2000 contains two kinds of conditional loops: the REPEAT . . . UNTIL loop

and the WHILE . . . ENDWHILE loop.

In this first conditional loop



IGE-163 The CLE-2000 Tool-box 14

�
 �	REPEAT statements
�
 �	UNTIL condition

Figure 12: The REPEAT statement.

REPEAT

      ! set_of_statements

      EVALUATE i := i 1 + ;

      EVALUATE logic := i 10 = ;

UNTIL logic ;

CLE-2000 will first do the set of instructions; then if the “logic” condition is false, CLE-2000

will repeat the whole set of instructions. If the “logic” condition ever turns out to be true, the

loop will stop.

�
 �	WHILE condition
�
 �	DO statements�
 �	ENDWHILE

Figure 13: The WHILE statement.

In this second loop

WHILE logic DO

      ! set_of_instructions

      EVALUATE i := i 1 + ;

      EVALUATE logic := i 10 = ;

ENDWHILE ;

the fundamental difference is that the condition is checked before entering into the loop. That

means that if the “logic” condition is false, the set of instructions will not be executed at all.

When using loops, one must be sure that the logical value will eventually become false; if this

is not the case, an infinite loop will go on and the user will have to interrupt his execution.



IGE-163 The CLE-2000 Tool-box 15

2.6 Type conversion statements

As stated in the introduction, there are no implicit type coercions in CLE-2000. However, the

user can change the type of a value (integer, real or double) using one of the six keywords:

R TO I D TO I I TO R D TO R I TO D or R TO D . These keywords act as unary

operators.

expression

�
 �	R TO I�
 �	D TO I�
 �	I TO R�
 �	D TO R�
 �	I TO D�
 �	R TO D

Figure 14: Type conversion operators.

The type of the expression must agree with the selected conversion (beginning with I for an

integer expression, R for a real expression and D for a double expression). The final type is

given by the last characters of the selected keyword for the chosen conversion (ending with I for

conversion to integer, R for conversion to real and D for conversion to double). An important

quality-assurance feature of the CLE-2000 compiler is its ability to determine the exact type of

any component of an evaluation stack.

2.7 Parametric constants

An attractive feature of this new CLE-2000 release is the possibility for developers to furnish a

set of pre-defined constants. This set is available as an external function called by CLE-2000

during compilation. These parametric constants cannot be declared during compilation because

their types are already imposed.

�
 �	$ cst name

Figure 15: Calling a parametric constant.



IGE-163 The CLE-2000 Tool-box 16

Parametric constants are clearly identified by their names which have to start with a $ sign.

The constant name cst name can have at most 11 characters that should obey the same rules

as usual variable names. Parametric constant values can be called anywhere in the CLE-2000

field of the input source file.

CLE-2000 code distribution includes an example of a routine with many basic pre-defined

parametric constants (including π, e, γ). Some examples are:

$Pi_R = 3.14159265E0 (REAL)

$E_R = 2.71828183E0 (REAL)

$Euler_R = 0.577215665E0 (REAL)

$Pi_D = 3.141592653589793D0 (DOUBLE)

$E_D = 2.718281828459045D0 (DOUBLE)

$Euler_D = 0.577215664901533D0 (DOUBLE)

2.8 End of compilation

�
 �	QUIT string value
�
 �	.

optional

Figure 16: Statement for the end of compilation.

This optional statement is useful to mark the end of a CLE-2000 source file. First, we can

note that this is the only statement not followed by a semicolon, but by a period (character .);

moreover, all tokens of a QUIT statement must be on the same source line. The compiler will

just discard any line in the source file following the QUIT command. You quit compilation

at this statement which works as an end-of-file. The source file is supposed to be at the basic

logical level where all IF REPEAT and WHILE statements are now closed.

There is an optional string value (that must be enclosed in quotation mark) in the QUIT

statement. This string has two intents: firstly, it is a title that will be used on top of output

files; secondly, it can also contain a few compilation and execution options that are forwarded

to the CLE-2000 compiler. These options are:



IGE-163 The CLE-2000 Tool-box 17

• DEBUG/NODEBUG: if the string contains DEBUG, undefined and unused variables will be

tracked and all statements will be appended to the output file when executing (default

value is NODEBUG);

• XREF/NOXREF: if the string contains XREF, the compiler will append to the listing file cross

references for all variables (default value is NOXREF);

• LIST/NOLIST: if the string contains LIST, all statements outside CLE-2000 will be ap-

pended as is to the output file when executing (default value is NOLIST).

In cases where you are still investigating how to perform a calculation with a new source file

and/or finding some bugs in it, a good idea would be to use the option DEBUG. Moreover, when

executing a DEBUG source file, every CLE-2000 statement is echoed to the output file. Because

this usually means a lot of output, once the debugging process is over, you can switch back to

the standard statement QUIT . After having compiled and checked your original source file,

the XREF option is available to provide a cross-reference map of your variables. The LIST option

can be useful when statements outside CLE-2000 are to be kept on the output listing. This

completes the presentation of CLE-2000 statements.

2.9 Example of plain CLE-2000 source files

The CLE-2000 compiler can be installed in many codes to drive free-format inputs; these codes

can be compiled with several compilers and on various kinds of computer. The question is now:

how can we certify that CLE-2000 calculations are accurate enough ? A tentative solution to

this question is the plain CLE-2000 source file named xmachar.c2m. This routine tries to

diagnose machine parameters; on typical IEEE-compliant machines, there should be no problem

when executing that file. For such machines, results should be approximately equal to those

given in Table 1.

Be aware that xmachar.c2m can produce results which are different from those given in

Table 1 on nonstandard machines. Although results of CLE-2000 calculations are machine-

dependent, such results are most likely portable among IEEE-compliant machines.

Another plain CLE-2000 source file is provided by the xclecst.c2m file. This file simply list

all the possible parametric constants included in the routine CLECST .



IGE-163 The CLE-2000 Tool-box 18

Table 1: Results returned by xmachar.c2m

precision single double

ibeta 2 2

it 24 53

machep −23 −52

eps 1.19× 10−7 2.22× 10−16

negep −24 −53

epsneg 5.96× 10−8 1.11× 10−16

iexp 8 11

minexp −126 −1022

xmin 1.18× 10−38 2.23× 10−308

maxexp 128 1024

xmax 3.40× 1038 1.79× 10308

irnd 5 5

ngrd 0 0



IGE-163 The CLE-2000 Tool-box 19

3 CLE-2000 drivers (programmer’s guide)

In this section, we will describe the CLE-2000 compiler organization: which routines do what

and so forth. In order to gain insight into how to use the CLE-2000 compiler in an application,

a small driver is provided with the code distribution. This driver should help programmers to

set up an environment suitable to their needs.

3.1 Routines involved in the compilation process

For any application using CLE-2000, the first step is the compilation of the source file into

an object file. This work is done by the routine CLEPIL ; however, the routines called by

CLEPIL should not be called by the application. Here is a tree describing the calling sequence

of the compiler:

Table 2: Tree of routines called by CLEPIL

CLEPIL CLECST external

CLELOG

CLESTK

CLEXRF

Now, comes a brief description of these routines:

CLEPIL this main routine for compiling is a concatenation of 3 successive routine calls to

CLELOG , CLESTK and CLEXRF . Error codes from each of these subparts are

retrieved and sent back to the application.

CLECST this external routine should be defined by the application in order to have access

to specific parametric constants.

CLELOG this routine is responsible for making a copy of the source file to the direct-access

object file. Blank records and records starting with * are eliminated. Comments starting

in ! column are also eliminated. Unexpected characters (with ASCII codes less than the

blank one) are tracked. The consistency of strings is checked. In order to help further



IGE-163 The CLE-2000 Tool-box 20

steps in compiling the object file, some carriage returns are added after specific keywords

THEN , ELSE REPEAT DO and after a semicolon. Then, this routine performs

a first check of CLE-2000 syntax. For statements involving several keywords (WHILE

. . . DO . . . ENDWHILE or REPEAT . . . UNTIL ), it will track if a statement is

consistent. Moreover, some old features of CLE-2000 (version 1.0), namely the changes

from the obsolete CHARACTER keyword to STRING as well as PRINT to ECHO ,

will be corrected directly by renaming keywords on the object file. The levels of embedded

logic are numbered (user’s statements are at level 0), and the internal logic is checked by

level.

CLESTK this routine checks the validity of variables names and the unique declaration of their

type. At the end of the object file, a stack is constructed with space for all variables which

are supposed undefined (this is done by writing negative values for types). The values

of parametric constants are also pushed into the stack. Then, this routine checks the

consistency of types for all evaluation stacks. Remaining undefined/undeclared variables

are also tracked.

CLEXRF this routine will do cross-referencing for CLE-2000 variables in the source-file when

the XREF option is chosen; every variable is tracked and a list of input lines where variable

are used or defined is provided. When the DEBUG option is chosen, all undefined or unused

variables are reported and a global report on warnings and errors will be provided.

Let us now describe the arguments of the public routine CLEPIL .

3.1.1 CLEPIL arguments

The compiler CLEPIL is an integer function that has 4 input arguments (IN) and returns 1

output value (OUT):

IRETCD = CLEPIL( IREDIN, IWRITE, IUNITO, CLECST )



IGE-163 The CLE-2000 Tool-box 21

Name Type Intent Description

IREDIN integer IN unit number of the sequential formatted source file to be

compiled (the file is supposed to be opened)

IWRITE integer IN unit number of the sequential formatted output file to record

compiler comments (file supposed to be opened)

IUNITO integer IN unit number of the direct-access file that will contain the

result of the compilation, that is our object file (file supposed

to be opened)

CLECST integer IN external function containing the parametric constants pro-

vided by the application

IRETCD integer OUT value that contains any error code returned by the subparts

of compilation (a value of 0 indicates “no error during com-

pilation”)

3.2 Routines involved in the execution process

In order to grant access to CLE-2000 input, the application normally uses the REDGET

routine. The REDGET routine has 3 entry points (other than REDGET itself): REDOPN

REDPUT and REDCLS .

Table 3: The package of routines controlling IO

REDOPN entry point

REDGET

REDPUT entry point

REDCLS entry point

The first step for any application is to call the REDOPN entry point for initializing the

input/output process for an object file.



IGE-163 The CLE-2000 Tool-box 22

3.2.1 REDOPN arguments

The routine REDOPN has 3 input arguments (IN) and no output:

CALL REDOPN( IINP1, IOUT1, NREC )

Name Type Intent Description

IINP1 integer IN unit number of the direct-access file that contains the object

file to be executed (file supposed to be opened and already

processed by CLEPIL)

IOUT1 integer IN unit number of the sequential formatted output file to echo

comments (file supposed to be opened; if IOUT1 is set to

0, there will be no comments); these comments include: an

echo of any non-CLE-2000 statement using the LIST option,

and an echo of every CLE-2000 statement using the DEBUG

option

NREC integer IN record number where execution must start; this is helpful

when the application wants to use several object files calling

each other: then, an object file can be closed temporary at

a specific record number

The normal value of NREC should be zero for a brand new object file that we want to execute.

Any other value of NREC is supposed to be issued after a call to REDPUT , as we will see below.

The routine REDOPN saves these 3 input values and these files will be used for all REDGET

or REDPUT calling.



IGE-163 The CLE-2000 Tool-box 23

3.2.2 REDGET arguments

Then, the application will recover input data in the free-formatted REDGET routine which

has no input and 5 output values:

CALL REDGET( ITYP, NITMA, FLOTT, TEXT, DFLOT )

Name Type Intent Description

ITYP integer OUT type of the next free-formatted non-CLE-2000 word (the

types are defined after this argument description)

NITMA integer OUT integer output data when ITYP = 1;

another use is: NITMA= +1 (or −1) if a true (or false) logical

value was encountered when ITYP = 5

FLOTT real OUT real output data when ITYP = 2

TEXT character OUT string output data when ITYP = 3; another use is: TEXT is

the name of the CLE-2000 variable when ITYP < 0

DFLOT double OUT double precision output data when ITYP = 4

The ITYP variable can take several values that describe the data mode:
Value Meaning

ITYP = −5 logical type (>> . << argument),

ITYP = −4 double precision type (>> . << argument),

ITYP = −3 string type (>> . << argument),

ITYP = −2 real (single precision) type (>> . << argument),

ITYP = −1 integer type (>> . << argument),

ITYP = +1 integer type,

ITYP = +2 real (single precision) type,

ITYP = +3 string type,

ITYP = +4 double precision type,

ITYP = +5 logical type,

ITYP = +9 end-of-file was encountered on the object file,

ITYP = +10 input/output is closed.



IGE-163 The CLE-2000 Tool-box 24

After a call to REDOPN , an application will generally use a sequence of REDGET calls

in order to get data from the CLE-2000 object file. In the routine REDGET , the only output

variable that changes each time the routine is called is the ITYP variable. Depending on the

type of the variable, only one of the 4 other output variables is overwritten; the value of the 3

others are protected. For the particular case of the string variable TEXT, the developer of the

application is responsible for providing a sufficient length in his CHARACTER*(*) declaration.

Although the maximum length of a string is 72, if TEXT has a shorter length, the string will be

truncated. If the next input data is the content of an undefined CLE-2000 variable, REDGET

will complain by calling a routine called XABORT ; there is no possible recovery from these

kinds of errors. This routine is intended to print the message sent by REDGET and then

to stop execution; it is the developer’s responsibility to write the XABORT routine so that

he preserves important files and deletes temporary ones before closing the program. The only

argument of the XABORT routine is a character string usually containing the error message.

For execution of a single input source deck, the use of CLEPIL , followed by a call to REDOPN

and a loop of calls to REDGET until ITYP = 9, provides a basis for driving simple programs

in a free-format environment.

However, this may not be sufficient if the developer would also like to interfere with the

content of CLE-2000 variables. The routine REDPUT is a kind of inverse for REDGET :

it can change the value of a CLE-2000 variable during execution. If an argument is of type

>> . <<, the REDGET call returns a negative ITYP value to signify the need for a new

value that should be provided by the application; to help the application, the name of the

variable is also given in the TEXT parameter (remember that variable names can contain up to

12 characters). Because CLE-2000 is expecting this value, the value of the TEXT variable is forced

as undefined and will stay undefined until a REDPUT call is performed. These variables are

kept on a LIFO stack and the REDPUT reply does not have to be immediate; however, it

should be remembered that the next REDPUT call will be applied to the last argument of

type >> . << encountered, and this process can go on until there are no other values to put

in the stack. It is therefore the developer’s responsibility that its application keep track of the

number of values to put and their types. The REDPUT routine is a developer-beware routine;

the side effects produced on the stream of CLE-2000 calculations by these external inputs can

be unpredictable.



IGE-163 The CLE-2000 Tool-box 25

3.2.3 REDPUT arguments

The REDPUT routine which has 5 input values (similar to the output values of REDGET ):

CALL REDPUT( ITYP, NITMA, FLOTT, TEXT, DFLOT )

Name Type Intent Description

ITYP integer IN type of the CLE-2000 variable whose value is to be changed;

these types are limited to positive values:

+1) integer type,

+2) real (single precision) type,

+3) string type,

+4) double precision type,

+5) logical type

NITMA integer IN integer input data when ITYP = 1;

another use is: NITMA = +1 (or −1) if a true (or false) logical

value was encountered when ITYP = 5

FLOTT real IN real input data when ITYP = 2

TEXT character IN string input data when ITYP = 3

DFLOT double IN double precision input data when ITYP = 4

When the developer calls REDPUT , he has to be sure that in the source file there was a

command >>variable<<. Moreover, he also has to be sure of the type of this variable in order

to correctly call the routine. There are situations where this routine may be an helpful shortcut

to circumvent extensive programming.

The last useful entry point is the routine REDCLS that allows the developer to stop ex-

ecution of an object file and still know the record where it stops. This closing process can be

helpful if CLE-2000 is to be used with several files that can call one another.



IGE-163 The CLE-2000 Tool-box 26

3.2.4 REDCLS arguments

The routine REDCLS has 3 output arguments (similar to input arguments of REDOPN ):

CALL REDCLS( IINP1, IOUT1, NREC )

Name Type Intent Description

IINP1 integer OUT unit number of the direct-access object file that is currently

executing

IOUT1 integer OUT unit number of the sequential formatted output file where

comments are currently echoed

NREC integer OUT record number where execution is stopped; this object file

can only be reopened consistently if this record number is

used as input for REDOPN

Using the REDGET package, even a recursive application can be driven. The only external

call of this package is the routine XABORT provided by the application, and this abort feature

is solely used in extreme cases of computation failures. We will now see some extensions that

are provided if further interference between the application and CLE-2000 is necessary.



IGE-163 The CLE-2000 Tool-box 27

3.3 Utility routines for CLE-2000 applications

Some applications could also want to have an access to the content of CLE-2000 variables by

their names. I call this indirect access. Let us look at a simple example to show the interest of

this indirect access and the difference between direct and indirect access. First, if an application

wants to read an integer with value 0, this CLE-2000 source file would do the job:

! example of direct access to CLE-2000 variables

INTEGER i := 0 ;

<<i>> ;

The first REDGET call of the application would result with ITYP = 1 and NITMA = 0; this is

direct access to the content of a CLE-2000 variable.

Second, if an application wants to put the integer 0 into a variable, this would do the job:

! example of direct access to CLE-2000 variables

INTEGER i ;

>>i<< ;

The first REDGET call of the application would result with ITYP = −1 and TEXT = i; then,

the application can call REDPUT with ITYP = +1 and NITMA = 0 to set the variable to 0.

This is still direct access to the variable content.

Now, suppose that the CLE-2000 source file is:

! example of indirect access to CLE-2000 variables

INTEGER i := 0 ;

  i   ;

The first REDGET call of the application would then result with ITYP = 3 and TEXT=’i’; in

fact, we have read the name of a CLE-2000 variable. This does not give us direct access to the

variable content (we do not even know its type). If the application expects that this string is

the name a variable, it can be interesting to have utility functions to get or put values for this

variable.

The indirect access is described in the following routines. However, the developer of an

application should be aware that the indirect access is not forbidden, but must also be used



IGE-163 The CLE-2000 Tool-box 28

with care. With such indirect access, the CLE-2000 compiler would not anymore be able to

track the undefined or unused variables and would be partly neutralized. As a matter of fact,

the best programming for an application would imply to stay orthogonal to CLE-2000, without

knowing that there are any variables at all except in some specific cases.

Table 4: Indirect access to the CLE-2000 stack of variables

CLEOPN entry point

CLEGET

CLEPUT entry point

CLECLS entry point

To grant access to the variable content, the developer must use the CLEGET package that

is similar to the above REDGET package. The CLEGET routine has 3 entry points (other

than CLEGET itself): CLEOPN , CLEPUT and CLECLS .

3.3.1 CLEOPN arguments

First, the application has to initialize this access by calling the integer function CLEOPN

whose 2 input arguments are:

IRETCD= CLEOPN( IINP1, IOUT1 )

Name Type Intent Description

IINP1 integer IN unit number of the direct-access file that contains the object

file where the REDGET package is being executed (file

opened and already processed by CLEPIL)

IOUT1 integer IN unit number of the sequential formatted output file to echo

errors (file opened)

IRETCD integer OUT error code (0 if stack can be read)

After this CLEOPN call, the developer of an application can always use the CLEGET

routine for indirect access to the variable content.



IGE-163 The CLE-2000 Tool-box 29

3.3.2 CLEGET arguments

The CLEGET routine is an integer function that has 1 input argument and 5 output arguments:

IRETCD= CLEGET( CPARM, ITYP, NITMA, FLOTT, TEXT, DFLOT )

Name Type Intent Description

CPARM character IN string of length 12 (CHARACTER*12) containing the name

of the CLE-2000 variable

ITYP integer OUT type of the CLE-2000 variable (if found);

types are such that 0 < ABS(ITYP) < 6 and defined by:

−5) logical type, but undefined value,

−4) double precision type, but undefined value,

−3) string type, but undefined value,

−2) real (single precision) type, but undefined value,

−1) integer type, but undefined value,

+1) integer type,

+2) real (single precision) type,

+3) string type,

+4) double precision type,

+5) logical type

NITMA integer OUT integer output value when ITYP = 1;

another use is: NITMA= +1 (or −1) if a true (or false) logical

value was encountered when ITYP = 5

FLOTT real OUT real output value when ITYP = 2

TEXT character OUT string output value when ITYP = 3

DFLOT double OUT double precision output value when ITYP = 4

IRETCD integer OUT error code (0 if variable was found)

When calling CLEGET , many things can happen: the CPARM name may not exist in the

stack of variable; in that case, the value of CLEGET will be 1. The CPARM name can exist

(having be declared), but the value of the variable can still be undefined; in that case, the value

of the type ITYP should be negative. If CPARM name exists and the variable has a defined value,



IGE-163 The CLE-2000 Tool-box 30

its value is returned the same way it would be done by REDGET . This indirect processing is

called as a glue between the application and CLE-2000.

3.3.3 CLEPUT arguments

The integer function CLEPUT can be used by the application in order to store a value into a

CLE-2000 variable; input arguments are similar to CLEGET :

IRETCD= CLEPUT( CPARM, ITYP, NITMA, FLOTT, TEXT, DFLOT )

Name Type Intent Description

CPARM character IN string of length 12 (CHARACTER*12) containing the name

of the CLE-2000 variable

ITYP integer IN type of the CLE-2000 variable to be stored;

types have the same definition and meaning as in CLEGET

NITMA integer IN integer input value when ITYP = 1;

another use is: NITMA= +1 (or −1) if a true (or false) logical

value was encountered when ITYP = 5

FLOTT real IN real input value when ITYP = 2

TEXT character IN string input value when ITYP = 3

DFLOT double IN double precision input value when ITYP = 4

IRETCD integer OUT error code (0 if variable was found)

In the case ITYP is chosen negative, the variable becomes undefined after the CLEPUT

call. Note that the absolute value of ITYP must match with the variable one.

3.3.4 CLECLS arguments

To complete this package, there is a routine CLECLS that can be used to stop the indirect

access to the object file, arguments are:

IRETCD= CLECLS( IINP1, IOUT1 )



IGE-163 The CLE-2000 Tool-box 31

Name Type Intent Description

IINP1 integer OUT unit number of the direct-access file that contains the object

file where REDGET package is being executed (file opened

and already processed by CLEPIL)

IOUT1 integer OUT unit number of the sequential formatted output file to echo

errors (file opened)

IRETCD integer OUT error code (0 if stack can be read)

The last utility routine CLECOP is provided to help developers.

Table 5: Complementary routine

CLECOP

The routine CLECOP makes a copy of an object file. This can be useful when an application

would like to preserve an object file for further uses or in cases of recursivity.

3.3.5 CLECOP arguments

CLECOP is an integer function that has 2 input arguments:

IRETCD= CLECOP( IUNITI, IUNITO )

Name Type Intent Description

IUNITI integer IN unit number of the direct-access file that contains an ob-

ject file to be copied (file opened and already processed by

CLEPIL)

IUNITO integer IN unit number of the direct-access file that will contain the

new copy (file opened, but its content will be destroyed by

the copy process)

IRETCD integer OUT error code (0: no error found)



IGE-163 The CLE-2000 Tool-box 32

3.4 External routine for parametric constants

As stated above, the developer can define in his application an external function containing

relevant parametric constants. The format of this external function is now described.

3.4.1 CLECST arguments

The CLECST routine is an integer function that has 1 input argument and 5 output arguments

(with similar definitions as in CLEGET ):

IRETCD= CLECST( CPARM, ITYP, NITMA, FLOTT, TEXT, DFLOT )

Name Type Intent Description

CPARM character IN string of length 12 (CHARACTER*12) containing the name

of the parametric constant (name starting with $)

ITYP integer OUT type of the parametric constant (if found);

types are such that 0 < ITYP < 6 and defined by:

+1) integer type,

+2) real (single precision) type,

+3) string type,

+4) double precision type,

+5) logical type

NITMA integer OUT integer output value when ITYP = 1;

another use is: NITMA= +1 (or −1) if a true (or false) logical

value was encountered when ITYP = 5

FLOTT real OUT real output value when ITYP = 2

TEXT character OUT string output value when ITYP = 3

DFLOT double OUT double precision output value when ITYP = 4

IRETCD integer OUT error code (0 if constant was found)



IGE-163 The CLE-2000 Tool-box 33

3.5 Example of a simplified DRIVER

The CLE-2000 source code distribution contains a simplified driver in order to present the

features presented above. This driver named PL2000 has very limited options: compilation of

CLE-2000 source files and execution of the produced object files with some stacking features

to pass arguments between files. However, it can be used to perform an impressive set of

calculations, as will be seen in the following application section.

3.5.1 Execution of CLE-2000 procedures

A declaration statement allowed in the PL2000 driver is the procedure statement:

PROC files

With this statement, you can compile CLE-2000 source files that will be needed for your

main program. If the command PROC file has been issued by the user, three files with different

extensions are involved in the compilation process:

• file.c2m is the name of the source file to be compiled;

• file.o2m is the name of the object file resulting from the compilation;

• file.l2m is the name of the output file used for comments and errors.

If you look in the PL2000 source file, you will see how the compiler routine CLEPIL is

called to perform such a compilation. Note that the object file is be destroyed, so that it can

be used in several calculations. Once the file has been compiled, it is possible to execute the

object file using a one-argument statement:

EXEC file

Note that only one object file can be executed; it is supposed that this file has already been

compiled. If the command EXEC file has been issued by the user, the program will look for a

file named file.o2m, then makes a copy of it and executes the CLE-2000 instructions contained

in this copy. In this simplified driver, the output of all these procedures (except the main file)

has been eliminated.



IGE-163 The CLE-2000 Tool-box 34

3.5.2 Passing arguments between CLE-2000 procedures

The driver thus allows users to compile and execute CLE-2000 source files. However, in order to

define a more extended programming environment, the driver can also be used to pass arguments

between source files. Two statements can be used to interface between actual and dummy

arguments. The first one is the PUSH statement:

PUSH values

When using PUSH statements, the user constructs a stack of values (content of the variables

listed) to be used for subsequent calculations. The opposite of the PUSH statement is the POP

statement defined by:

POP into-variables

When using POP statements, the user takes the values which were put into the stack by

previous PUSH statements. The infinite stack is programmed through a direct access file that

will contain values and their type; this file acts as a LAST-IN/FIRST-OUT (LIFO) device.

For example, suppose that the user input is:

PUSH <<x>> <<y>> <<z>> ;

POP  >>c<< >>b<< >>a<< ;

The value of variable c will be the same as the value of z ( also b = y and a = x ). The

user can put any value into the stack; however, when he gets a value, it has to be into a variable

whose type exactly corresponds with the last value that was put into the stack. When looking

into the PL2000 source code, the developer can see how the package REDGET can be used to

transfer values between source files. Using the statements contained in this simplified driver, it

is possible to define explicit calculations with great similarity to other programming languages.

However, you must remember that the CLE-2000 process is not optimized, so that the use of

the CLE-2000 programming language for extensive calculations is not realistic.



IGE-163 The CLE-2000 Tool-box 35

4 CLE-2000 examples (validation)

The restrictive CLE-2000 syntax enables users not familiar with code development to perform

simple computational tasks. A number of examples will now be provided in the context of the

simplified driver presented in the previous section. Most of these examples are translated from

Numerical Recipes.[1] It is assumed that the users are familiar with an RPN calculator.

4.1 Example of recursivity: 8!

The following procedure is contained in a file named fact.c2m. Its intent is to be used for

calculation of n!.

!

! Example of a recursive procedure.

!

! input to "fact": *n*

! output from "fact": *n_fact*

!

INTEGER n n_fact prev_fact ;

POP >>n<< ;

IF n 1 = THEN

EVALUATE n_fact := 1 ;

ELSE

EVALUATE n := n 1 - ;

PUSH <<n>> ;

! Here, "fact" calls itself

EXEC fact ;

POP >>prev_fact<< ;

EVALUATE n_fact := n 1 + prev_fact * ;

ENDIF ;

PUSH <<n_fact>> ;

QUIT " Recursive function *fact* " .

This procedure shows some interesting features of the simplified driver. Note that there is

no  PROC fact ; statement in the file fact.c2m, because we do not want the procedure call

itself as a main program (when reaching the  EXEC  fact  ; statement). Thus, this procedure

has to be compiled by another. The following main file named xfact.c2m will calculate 8! :

*

* Calling the recursive "fact" procedure:

*

* input to "fact": *n*

* output from "fact": *n_fact*

*

* use to compute n!

*

PROC fact ;

INTEGER n := 8 ;

PUSH <<n>> ;



IGE-163 The CLE-2000 Tool-box 36

EXEC fact ;

INTEGER n_fact ;

POP >>n_fact<< ;

ECHO "FACTORIAL:" n $Bang_S "=" + n_fact ;

QUIT " Program *xfact* " .

Note the use of the parametric constant $Bang S that contains the exclamation mark; be-

cause the exclamation mark is used as a delimiter for comments, this symbol cannot be directly

put into a string. We will now show the versatility of the simplified driver for more common

computing usage.

4.2 Values of the Bessel function J0(x)

To understand CLE-2000 syntax, we will now present a simple example using the Bessel function

J0(x). In Numerical Recipes FORTRAN V2.06h, this function is defined by:

FUNCTION bessj0(x)

REAL bessj0,x

REAL ax,xx,z

DOUBLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,r5,r6,

*s1,s2,s3,s4,s5,s6,y

SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,r5,r6,s1,s2,s3,s4,

*s5,s6

DATA p1,p2,p3,p4,p5/1.d0,-.1098628627d-2,.2734510407d-4,

*-.2073370639d-5,.2093887211d-6/, q1,q2,q3,q4,q5/-.1562499995d-1,

*.1430488765d-3,-.6911147651d-5,.7621095161d-6,-.934945152d-7/

DATA r1,r2,r3,r4,r5,r6/57568490574.d0,-13362590354.d0,

*651619640.7d0,-11214424.18d0,77392.33017d0,-184.9052456d0/,s1,s2,

*s3,s4,s5,s6/57568490411.d0,1029532985.d0,9494680.718d0,

*59272.64853d0,267.8532712d0,1.d0/

if(abs(x).lt.8.)then

y=x**2

bessj0=(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))/(s1+y*(s2+y*(s3+y*

*(s4+y*(s5+y*s6)))))

else

ax=abs(x)

z=8./ax

y=z**2

xx=ax-.785398164

bessj0=sqrt(.636619772/ax)*(cos(xx)*(p1+y*(p2+y*(p3+y*(p4+y*

*p5))))-z*sin(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5)))))

endif

return

END

Translation of the same function in CLE-2000 would look like (using a dummy input argu-
ment x):

REAL bessj0 x ;

REAL ax xx z ;

DOUBLE p1 p2 p3 p4 p5 := 1.D0 -.1098628627D-2 .2734510407D-4

-.2073370639D-5 .2093887211D-6 ;

DOUBLE q1 q2 q3 q4 q5 := -.1562499995D-1 .1430488765D-3 -.6911147651D-5

.7621095161D-6 -.934945152D-7 ;



IGE-163 The CLE-2000 Tool-box 37

DOUBLE r1 r2 r3 r4 r5 r6 := 57568490574.D0 -13362590354.D0

651619640.7D0 -11214424.18D0 77392.33017D0 -184.9052456D0 ;

DOUBLE s1 s2 s3 s4 s5 s6 := 57568490411.D0 1029532985.D0

9494680.718D0 59272.64853D0 267.8532712D0 1.D0 ;

DOUBLE y ;

POP >>x<< ;

IF x ABS 8. < THEN

EVALUATE y := x x * R_TO_D ;

EVALUATE bessj0 := r6 y * r5 + y * r4 + y * r3 + y * r2 + y * r1 +

s6 y * s5 + y * s4 + y * s3 + y * s2 + y * s1 + /

D_TO_R ;

ELSE

EVALUATE ax := x ABS ;

EVALUATE z xx := 8. ax / ax .785398164 - ;

EVALUATE y := z z * R_TO_D ;

EVALUATE bessj0 := p5 y * p4 + y * p3 + y * p2 + y * p1 +

xx COS R_TO_D *

q5 y * q4 + y * q3 + y * q2 + y * q1 +

xx SIN z * R_TO_D * -

.636619772 ax / SQRT R_TO_D *

D_TO_R ;

ENDIF ;

PUSH <<bessj0>> ;

QUIT " Function *bessj0* " .

This function, named bessj0.c2m given with the CLE-2000 source files distribution, can

be tested using the program xbessj0.c2m. This program is just a loop for calling J0(x) for x

from −5.0 to +15.0 incremented in steps of 1. Calculations done in the CLE-2000 routine are

equivalent to those done in the FORTRAN function; all results should therefore agree.

4.3 Calculations based on the Julian day

You can use the program xjulian.c2m in order to compute the Julian days corresponding to

a set of given dates. It is an transcription of a similar example taken from Numerical Recipes.

Results are given in Table 6.

The julian day routine can also be used in conjunction with the routine flmoon.c2m (which

computes the phases of the moon) in order to find every occurence of Friday the 13th when the

moon is full. This is the program badluk.c2m in which we try to find such occurences between

1970 and 2000. Using the Eastern Standard Time (GMT-5), there are only three such cases:

11/13/1970 at 2:00, 2/13/1987 at 16:00 (was it visible at all?) and 10/13/2000 at 4:00.



IGE-163 The CLE-2000 Tool-box 38

Table 6: Unforgettable julian days

Month Day Year Julian Day Event

December 31 -1 1721423 End of millennium

January 1 1 1721424 One day later

October 14 1582 2299170 Day before Gregorian calendar

October 15 1582 2299161 Gregorian calendar adopted

January 17 1706 2344180 Benjamin Franklin born

April 14 1865 2402341 Abraham Lincoln shot

April 18 1906 2417319 San Francisco earthquake

May 7 1915 2420625 Sinking of the Lusitania

July 20 1923 2423621 Pancho Villa assassinated

May 23 1934 2427581 Bonnie and Clyde eliminated

July 22 1934 2427641 John Dillinger shot

April 3 1936 2428262 Bruno Hauptman electrocuted

May 6 1937 2428660 Hindenburg disaster

July 26 1956 2435681 Sinking of the Andrea Doria

June 5 1976 2442935 Teton dam collapse

May 23 1968 2440000 Julian Day 2440000

4.4 Gauss-Legendre integration

The routine gauleg.c2m computes the abscissas and weights for the Gaussian formula

∫ x2

x1

f(x)dx =
N∑
j=1

wjf(xj)

This routine can be checked using the main program xgauleg.c2m which computes for

N = 10 the abscissas and weights, and then performs the numerical integration of

I =
∫ 10

0
xe−xdx



IGE-163 The CLE-2000 Tool-box 39

4.5 Finding zeros of a function

In this last example, we use the Van Wijngaarden-Dekker-Brent method for finding zeros

of a function; this method has been included as a standard numerical recipe (here called

zbrent.c2m) and can be programmed in any high-level language. The method is a combi-

nation of the bisection, root bracketing and inverse quadratic interpolation. The main program,

called xzbrent.c2m, will compute roots of the Bessel J0 function. This program works in two

steps: first there is an inward search for brackets on roots that is performed by the routine

zbrak.c2m, then each root is found using its specific bracket interval. On the interval [1,50],

sixteen roots of J0(x) = 0 are found.



IGE-163 The CLE-2000 Tool-box 40

5 Conclusion

The language CLE-2000 has no use by itself. However, its use when embedded into large codes

can lead to a significant increase in functionality for a great many applications. The whole idea

is to pre-process the input (reader) file in order to make dynamic calls to routines that would

be normally accessed only sequentially. You will find the first application of CLE-2000 in the

generalized driver, originally devised to use object-oriented programming.[2] This generalized

driver has been used to drive the two main codes used at the Institute:

DRAGON a collection of modules that includes all the functions of a lattice-cell code: resonance

self-shielding and multidimensional transport calculations;[3]

DONJON a collection of modules for static and kinetics reactor core calculations.[4]

Several aspects of the language CLE-2000 currently available in the generalized driver have

been presented. The fact that parametric studies can be done consistently with the framework

of the original sequential code is of particular interest in the context of defining an integrated

reactor model using control algorithms. In the coming years, it is expected that all our codes

may benefit from the dynamic access to the input file as generated with CLE-2000. This way

of doing things should also improve our computations in the sense that without doing any

file editing, we can generate a whole library of nuclear properties and carry out sensitivity

analysis. This approach will permit the treatment of complex simulations and the debugging

of modular parts of our codes will be easier. The modular calculation strategy will also ensure

that subsequent developments can be easily implemented in a fully-integrated computational

environment. The fact that students can learn and be involved in developing codes in a more

user-friendly environment is also an important benefit.

The new CLE-2000 standard has been defined in such a way that, at compile time, most of

the constraints of the language can be verified. The new compiler is able to report the reasons

for rejecting a source file and, provided that the machines are IEEE-compliant, the source files

producing correct results should also be portable.



IGE-163 The CLE-2000 Tool-box 41

I will end this conclusion by listing some crucial arguments that could help to convince

people to use the CLE-2000 compiler:

1. the consistent treatment of types for variables is more severe than in most high-level

modern programming languages;

2. the exact order in which operations are performed is strictly determined by the user’s

input;

3. the undefined/unused variables can be tracked and suppressed to improve user’s template

source files and to insure that such input files contain only what was intended to be

computed;

4. the static memory required by CLE-2000 computations when executing an object file is

minimal (in fact, less than 8KB are needed), so that an application’s developer does not

have to care about it;

5. the compiler itself is so small (the sum of all coding lines is about 4K including comments)

that its quality assurance can be easily managed over the coming years.



IGE-163 The CLE-2000 Tool-box 42

Acknowledgements

This work has been carried out partly with the help of grants from Hydro-Québec and the

Natural Sciences and Engineering Research Council of Canada. I would like to thank my two

β-testers, Elisabeth Varin and Siamak Kaveh; they have greatly helped me in clarifying error

messages issued by the compiler. I would also like to thank Peter Tye for his help in reviewing

the documentation.

References

[1] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical Recipes in

FORTRAN: The Art of Scientific Computing, Second Edition,” Cambridge U. P., Cambridge,

ISBN 0-521-43064-X (1994).

[2] A. Hébert and R. Roy, A Programmer’s Guide for the GAN Generalized Driver, Report

IGE-158, École Polytechnique de Montréal, December 1994.

[3] G. Marleau, A. Hébert and R. Roy, A User’s Guide for DRAGON, Report IGE-174 Rev.3,

École Polytechnique de Montréal, December 1997.

[4] E. Varin, A. Hébert, R. Roy and J. Koclas, A User’s Guide for DONJON, Report IGE-208,

École Polytechnique de Montréal, November 1996.



IGE-163 The CLE-2000 Tool-box 43

A Appendices

A.1 Glossary of CLE-2000 keywords

In this version of the CLE-2000 language, the following 36 keywords are used:

ABS Unary operator, returns the absolute value

ARCCOS Unary operator, returns the arc-cosine in radians

ARCSIN Unary operator, returns the arcsine in radians

ARCTAN Unary operator, returns the arctangent in radians

CHS Unary operator, changes the sign of any value

COS Unary operator, returns cosine of radians

D TO I Type conversion from double to integer

D TO R Type conversion from double to real

DO Mandatory keyword after the condition of a WHILE statement

DOUBLE Starts declaration of double precision variables

ECHO Starts printing to the output file

ELSE Where it goes when the IF and all ELSEIF conditions are not met

ELSEIF Optional conditional

ENDIF Closes the IF/ELSEIF/ELSE conditional sequence

ENDWHILE Closes the WHILE/DO sequence

EXP Unary operator, returns the exponential

EVALUATE Executable statement used for calculations

I TO D Type conversion from integer to double

I TO R Type conversion from integer to real



IGE-163 The CLE-2000 Tool-box 44

IF Starts a conditional statement

INTEGER Starts declaration of integer variables

LOGICAL Starts declaration of logical variables

LN Unary operator, returns the natural logarithm

NOT Unary operator, returns the logical negation

QUIT End compilation there

R TO D Type conversion from real to double

R TO I Type conversion from real to integer

REAL Starts declaration of real variables

REPEAT Starts a REPEAT/UNTIL loop

SIN Unary operator, returns the sine of radians

SQRT Unary operator, returns the square root

STRING Starts declaration of string variables

TAN Unary operator, returns the tangent of radians

THEN Mandatory keyword after the condition of a IF or ELSEIF statement

UNTIL Closes the REPEAT loop

WHILE Starts a WHILE/DO/ENDWHILE loop



IGE-163 The CLE-2000 Tool-box 45

A.2 New syntactical features of version 2

Differences with version 1 of CLE-2000 are:

1. The old form of comments (* ... *) was replaced by ! comments.

2. The keyword CHARACTER was replaced by STRING .

3. The user-defined strings MUST now be enclosed in double quotes ””.

4. The keyword PRINT was replaced by ECHO .

5. The keyword TRUE and FALSE are replaced by $True L and $False L.

6. Extension of conditional statements with ELSEIF .

7. New unary operation: SQRT .

8. New binary operation: **.

9. New type conversion operators I TO R , I TO D , R TO D , R TO I , D TO I ,

D TO R .

10. New ending statements: QUIT .

11. New capability to define parametric constants.

The compilation process now tries to analyze the source file as much as possible to detect

internal CLE-2000 hazards (or errors). One of the main improvement in version 2 is that all

non-CLE-2000 statements can now be echoed (using the LIST option) in the output listing.



IGE-163 The CLE-2000 Tool-box 46

A.3 Record definitions on object files

The direct-access object file is an executable file in the CLE-2000 system. In this appendix, the

structure of records after compilation is described. There are 3 types of records: the top-of-file

record, the input-stream records and the variable-stack records.

The first record (REC=1) contains the main values needed to extract information from the

object file. The arrangement of further records is: from (REC=2) to (REC=NINPUT), the image of

the source file; from (REC=NINPUT+1) to (REC=NINPUT+NSTACK), the variable-stack records sorted

by ascending order of names.

In order to store all these records, the record length must normally be at least 120 bytes

(exactly on most 32-bit machines). On some systems, it may be better to allocate a multiple of 2,

so that 128 would then be an appropriate record length. Even assuming a regular 32-bit machine

(with 1-byte characters, 4-byte integers and 8-byte doubles), the records do not have exactly

the same length: there are 2 integer slots left in (REC=1) and 1 integer slot left in variable-stack

records. These slots can be used if needed.

An example of that may be the case where a developer would like to store supplementary data

in the object file. If the developer of an application adds records for his own use at the end-of-file

(and this may be a good idea), the top-of-file record parameters needs to be changed (or some

may be added). The CLECOP routine must also be upgraded if this routine is to be used for

also copying these new records. The best way to code such applications is to first pass through

the CLEPIL process and only then write other records at the end (after REC=NINPUT+NSTACK).

A.3.1 Top-of-file record

The first record (REC=1) contains:

CL2000,MYTITL,NRECOR,NINPUT,MAXLVL,NSTACK,IXRLST,IOULST,IDBLST



IGE-163 The CLE-2000 Tool-box 47

Name Type Description

CL2000 character string of length 12 (CHARACTER*12) containing (used for vali-

dation of object file, exact content is ”CLE2000(V21)” )

MYTITL character string of length 72 (CHARACTER*72) containing the title and

options given in the QUIT statement (blanks when no ending

statement)

NRECOR integer total number of records in the object file (it has to be changed if

an application needs to use the heap of the object file)

NINPUT integer number of records used for statements (pre-processed copy of the

input-stream records from the source file) in the object file plus

one (myself as the top-of-file record)

MAXLVL integer maximum number of logical levels used in the object file

NSTACK integer number of records used for keeping variable names and contents

(called variable-stack records)

IXRLST integer number controlling the access to the cross-reference in compiling

mode

(−1 means no cross referencing of the variables;

+1 means cross referencing of the variables on the output unit)

IOULST integer number controlling the access to the output listing mode

(−1 means no output for non-CLE-2000 statements;

+1 means that all non-CLE-2000 statements are listed on the out-

put unit)

IDBLST integer number controlling the access to the debugger in executing mode

(−1 means no debugging on the output unit;

+1 means debugging and output of all statements on the output

unit)

The values of CL2000, NINPUT,MAXLVL and NSTACK must not be changed by any application.

At the end of the compilation process, we have that NRECOR=NINPUT+NSTACK.



IGE-163 The CLE-2000 Tool-box 48

A.3.2 Input-stream records

From REC=2 to REC=NINPUT, the input-stream records (image of the user’s source file) have the

following description:

CPARIN,MYRECO,ILINES,ILEVEL,JRECOR,MASKCK,IPACKI

Name Type Description

CPARIN character string of length 12 (CHARACTER*12) containing the names for

CLE-2000 statements or blanks

MYRECO character string of length 72 (CHARACTER*72) containing the image of

a record that was read from the source file (all-blank and all-

comment records are withdrawn)

ILINES integer corresponding line in the input source deck

ILEVEL integer logical level of this record (statements outside CLE-2000 are at

0-level, declarations are at 1-level, conditional statements are at

higher level depending on the number of previous conditions)

JRECOR integer branching record for conditional statements ( this value must range

between 2 and NINPUT)

MASKCK integer vector of 3 integers containing a mask of the record

IPACKI integer vector of 3 integers containing the list of types for words in the

record

The input-stream records have a greater length than the top-of-file record. None of these

values should be changed.



IGE-163 The CLE-2000 Tool-box 49

A.3.3 Variable-stack records

From REC=NINPUT+1 to REC=NINPUT+NSTACK, the variable-stack records have the fol-

lowing description:

CPARAV,CDATAV,INDLEC,IDATAV,ADATAV,DDATAV,IDCLIN,IDEFIN,IUSEIN

Name Type Description

CPARAV character string of length 12 (CHARACTER*12) containing the name of a

CLE-2000 variable (or a parametric constant)

CDATAV character string of length 72 (CHARACTER*72) containing the value of a

CLE-2000 string variable when INDLEC = 3

INDLEC integer integer that gives the kind of this (still undefined) variable,

INDLEC<0 and kind -INDLEC is 1 for integer, 2 for real, etc. INDLEC

is positive for parametric constants and will become positive when

executing the object file

IDATAV integer integer data that gives the value of a CLE-2000 integer (INDLEC =

1) or logical (INDLEC = 5 with −1:false, +1:true) variable; when

INDLEC = 3, then IDATAV gives the length for the string contained

in CDATAV

ADATAV real real data that gives the value of a CLE-2000 real variable when

INDLEC = 2

DDATAV double double precision data that gives the value of a CLE-2000 double

variable when INDLEC = 4

IDCLIN integer line number in the input source file where the variable has been

declared

IDEFIN integer line number in the input source file where the variable was first

defined (where a value is given to it)

IUSEIN integer line number in the input source file where the variable was first

needed for calculation or output

The IDCLIN, IDEFIN and IUSEIN values are no longer used after compilation.



IGE-163 The CLE-2000 Tool-box 50

A.4 Fortran-77 and Fortran-90 implementations

The FORTRAN-77 version is straightforward and standard. The record length can be different
on some machines, so that you may have to correct some file parameters in the main PL2000.f.
You normally just need to compile the 11 routines:

CLECOP.f

CLECST.f

CLEGET.f

CLELOG.f

CLEPIL.f

CLESTK.f

CLEXRF.f

PL2000.f

PL2CPU.f

REDGET.f

XABORT.f

The FORTRAN-90 implementation is standard and fully portable. It contains a certain
number of modules and routines. The following order of compilation will ensure that USE
statement are correctly sequenced:

C2MTYP.f

C2MPIL.f

C2MRED.f

C2MVAR.f

CLECOP.f

CLECST.f

PL2CPU.f

PL2000.f

XABORT.f

The module C2MTYP.f contains general type definitions, all keywords of the CLE-2000

language and some constant parameters. The module C2MPIL.f contains the public routine

CLEPIL . The module C2MRED.f contains the four public routines: REDOPN REDGET

REDPUT and REDCLS . The module C2MVAR.f contains the four public routines: CLEOPN

CLEGET CLEPUT and CLECLS .

Note that the main routine PL2000.f is the simplified driver. The routine PL2CPU.f contains

an implementation for calculating the CPU time in FORTRAN-90 (it returns 0.0 in FORTRAN-

77).



IGE-163 The CLE-2000 Tool-box 51

A.5 Listing examples

Let us consider the following source file (using some obsolete version-1 features):

(* this example will compute odd prime numbers up to 100 *)

LOGICAL lprime ;

INTEGER div pmax prime := 0 99 3 ;

PRINT prime ’is a prime number’ ;

REPEAT

EVALUATE prime := prime 2 + ;

EVALUATE div lprime := 1 FALSE ;

REPEAT

EVALUATE div := div 2 + ;

EVALUATE lprime := lprime prime prime div / div * = + ;

UNTIL div div * prime > ;

IF lprime NOT THEN

PRINT prime ’is a prime number’ ;

ENDIF ;

UNTIL prime pmax >= ;

Calling the CLEPIL routine will produce the following listing:

* CLE-2000 VERS 2.1 * R.ROY, EPM COPYRIGHT 1999 * LINE

(* this example will compute odd prime numbers up to 100 *) 0001

?? ??

! WARNING: (* ... *) OBSOLETE COMMENTS (USE ! INSTEAD)

LOGICAL lprime ; 0002

INTEGER div pmax prime := 0 99 3 ; 0003

PRINT prime ’is a prime number’ ; 0004

! WARNING: *PRINT* => *ECHO* (REPLACED)

? ?

! WARNING: INSIDE CLE-2000, ENCLOSE STRINGS IN "..." (REPLACED)

REPEAT 0005

EVALUATE prime := prime 2 + ; 0006

EVALUATE div lprime := 1 FALSE ; 0007

REPEAT 0008

EVALUATE div := div 2 + ; 0009

EVALUATE lprime := lprime prime prime div / div * = + ; 0010

UNTIL div div * prime > ; 0011

IF lprime NOT THEN 0012

PRINT prime ’is a prime number’ ; 0013

! WARNING: *PRINT* => *ECHO* (REPLACED)

? ?

! WARNING: INSIDE CLE-2000, ENCLOSE STRINGS IN "..." (REPLACED)

ENDIF ; 0014

UNTIL prime pmax >= ; 0015

QUIT . IMPLICIT

! CLESTK: VARIABLE NOT YET DECLARED *FALSE *

* CLE-2000 VERS 2.1 * ERROR FOUND FOR THIS LINE * LINE

EVALUATE div lprime := 1 FALSE ; 0007

! CLEPIL: ERROR CODE IN >> CLESTK << ERROR NUMBER ( 5004 )

* PL2000: COMPILING _MAIN.c2 FILE (ERROR CODE) IRC=5004

PL2000: CLE-2000 COMPILER ERROR(1).

Some warnings are given by the CLE-2000 compiler, but only one error was found: the obsolete

use of FALSE (no longer a keyword). Now, let us correct this mistake by defining the variable

FALSE. Then, compilation ends with no error, so execution will produce the following listing:



IGE-163 The CLE-2000 Tool-box 52

* PL2000: COMPILING _MAIN.c2 FILE

* CLE-2000 VERS 2.1 * R.ROY, EPM COPYRIGHT 1999 * LINE

LOGICAL FALSE := $False_L ; 0001

(* this example will compute odd prime numbers up to 100 *) 0002

?? ??

! WARNING: (* ... *) OBSOLETE COMMENTS (USE ! INSTEAD)

LOGICAL lprime ; 0003

INTEGER div pmax prime := 0 99 3 ; 0004

PRINT prime ’is a prime number’ ; 0005

! WARNING: *PRINT* => *ECHO* (REPLACED)

? ?

! WARNING: INSIDE CLE-2000, ENCLOSE STRINGS IN "..." (REPLACED)

REPEAT 0006

EVALUATE prime := prime 2 + ; 0007

EVALUATE div lprime := 1 FALSE ; 0008

REPEAT 0009

EVALUATE div := div 2 + ; 0010

EVALUATE lprime := lprime prime prime div / div * = + ; 0011

UNTIL div div * prime > ; 0012

IF lprime NOT THEN 0013

PRINT prime ’is a prime number’ ; 0014

! WARNING: *PRINT* => *ECHO* (REPLACED)

? ?

! WARNING: INSIDE CLE-2000, ENCLOSE STRINGS IN "..." (REPLACED)

ENDIF ; 0015

UNTIL prime pmax >= ; 0016

QUIT . IMPLICIT

* PL2000: EXECUTING _MAIN.o2 FILE

.------------------------------------------------------------------------.

>|3 is a prime number |>0005

>|5 is a prime number |>0014

>|7 is a prime number |>0014

>|11 is a prime number |>0014

>|13 is a prime number |>0014

>|17 is a prime number |>0014

>|19 is a prime number |>0014

>|23 is a prime number |>0014

>|29 is a prime number |>0014

>|31 is a prime number |>0014

>|37 is a prime number |>0014

>|41 is a prime number |>0014

>|43 is a prime number |>0014

>|47 is a prime number |>0014

>|53 is a prime number |>0014

>|59 is a prime number |>0014

>|61 is a prime number |>0014

>|67 is a prime number |>0014

>|71 is a prime number |>0014

>|73 is a prime number |>0014

>|79 is a prime number |>0014

>|83 is a prime number |>0014

>|89 is a prime number |>0014

>|97 is a prime number |>0014

.------------------------------------------------------------------------.

*

* PL2000: EXECUTION HAS ENDED WELL.

* PL2000: TIMING => 0.22 SECONDS.

* PL2000: END.

However, suppressing obsolete features and adding the XREF option produces a nicer listing:



IGE-163 The CLE-2000 Tool-box 53

* PL2000: COMPILING _MAIN.c2 FILE

* CLE-2000 VERS 2.1 * R.ROY, EPM COPYRIGHT 1999 * LINE

! this example will compute odd prime numbers up to 100 0001

LOGICAL lprime ; 0002

INTEGER div pmax prime := 0 99 3 ; 0003

ECHO prime "is a prime number" ; 0004

REPEAT 0005

EVALUATE prime := prime 2 + ; 0006

EVALUATE div lprime := 1 $False_L ; 0007

REPEAT 0008

EVALUATE div := div 2 + ; 0009

EVALUATE lprime := lprime prime prime div / div * = + ; 0010

UNTIL div div * prime > ; 0011

IF lprime NOT THEN 0012

ECHO prime "is a prime number" ; 0013

ENDIF ; 0014

UNTIL prime pmax >= ; 0015

QUIT " program *prime* NODEBUG/XREF/NOLIST " . 0016

* CLE-2000 VERS 2.1 * CROSS REFERENCE LISTING

VARIABLE TYPE LIN_DCL **** FOUND IN LINES (- MEANS NEW EVALUATION) ****

$False_L _L 0007_ 0007

div _I 0003_ -0003 -0007 -0009 0010 0011

lprime _L 0002_ -0007 -0010 0012

pmax _I 0003_ -0003 0015

prime _I 0003_ -0003 0004 -0006 0010 0011 0013 0015

* PL2000: EXECUTING _MAIN.o2 FILE

.------------------------------------------------------------------------.

. program *prime* NODEBUG/XREF/NOLIST .

.------------------------------------------------------------------------.

>|3 is a prime number |>0004

>|5 is a prime number |>0013

>|7 is a prime number |>0013

>|11 is a prime number |>0013

>|13 is a prime number |>0013

>|17 is a prime number |>0013

>|19 is a prime number |>0013

>|23 is a prime number |>0013

>|29 is a prime number |>0013

>|31 is a prime number |>0013

>|37 is a prime number |>0013

>|41 is a prime number |>0013

>|43 is a prime number |>0013

>|47 is a prime number |>0013

>|53 is a prime number |>0013

>|59 is a prime number |>0013

>|61 is a prime number |>0013

>|67 is a prime number |>0013

>|71 is a prime number |>0013

>|73 is a prime number |>0013

>|79 is a prime number |>0013

>|83 is a prime number |>0013

>|89 is a prime number |>0013

>|97 is a prime number |>0013

.------------------------------------------------------------------------.

*

* PL2000: EXECUTION HAS ENDED WELL.

* PL2000: TIMING => 0.24 SECONDS.

* PL2000: END.



IGE-163 The CLE-2000 Tool-box 54

A.6 List of all compilation errors

Warnings and errors reported by CLELOG , CLESTK and CLEXRF :

! WARNING: (* ... *) OBSOLETE COMMENTS (USE ! INSTEAD)

! WARNING: *CHARACTER* => *STRING* (REPLACED)

! WARNING: *PRINT* => *ECHO* (REPLACED)

! WARNING: OUTSIDE CLE-2000, ENCLOSE STRINGS IN ’’...’’ (REPLACED)

! WARNING: INSIDE CLE-2000, ENCLOSE STRINGS IN "..." (REPLACED)

! CLELOG: UNEXPECTED CHARACTERS REPLACED WITH BLANKS

! CLELOG: UNBALANCED OPENING OR CLOSING STRINGS

! CLELOG: MISPLACED SEMICOLON ...; OR ;... OR ...;...

! CLELOG: CHARACTERS SUPPRESSED OUTSIDE COLUMN RANGE 1:72

! CLELOG: << AND >> NOT ALLOWED IN STRINGS (SUPPRESSED)

! CLELOG: (* ... *) INVALID COMMENTS (USE ! INSTEAD)

! CLELOG: QUIT "..." . SHOULD APPEAR ALONE A SINGLE LINE

! CLELOG: INVALID 1-CHARACTER WORD IN CLE-2000

! CLELOG: MORE THAN 12-CHARACTER WORD IN CLE-2000

! CLELOG: KEYWORD= *...*, BUT MAXIMUM NUMBER OF LEVELS IS ACHIEVED

! CLELOG: REVISE YOUR LOGIC

! CLELOG: AFTER *...*, NOT EXPECTING KEYWORD= *...*

! CLELOG: KEYWORD= *...*, BUT NOTHING LEFT FOR THIS LEVEL

! CLELOG: KEYWORD= *...*, BUT THE NUMBER OF EQUALS *:=* IS ...

! CLELOG: KEYWORD= *...*, BUT THE NUMBER OF WORDS IS ...

! CLELOG: INVALID <<.>> OR >>.<< INSTRUCTION

! CLELOG: DECLARATION AS *...* MUST APPEAR AT LOGIC LEVEL 1

! CLELOG: INCONSISTENT END-OF-FILE, LOGIC LEVEL IS ...> 1

! CLELOG: EXPECTING *...* AT THE END OF STATEMENT *...*

! CLELOG: WRITING RETURN CODE =...

! CLELOG: READING RETURN CODE =...

! CLESTK: INVALID VARIABLE NAME IN RECORD

! CLESTK: *...* CANNOT BE DECLARED

! CLESTK: VARIABLE DECLARED TWICE *...*’

! CLESTK: VARIABLE NOT YET DECLARED *...*

! CLESTK: INVALID PARAMETER *’,CPARAV,’*’

! CLESTK: INVALID VARIABLE FOR >>.<< OR <<.>>

! CLESTK: VARIABLE EVALUATED TWICE *...*’

! CLESTK: INVALID TYPE_TO_TYPE CONVERSION

! CLESTK: INVALID *NOT* OR *ABS*

! CLESTK: INVALID TYPE FOR REAL/DOUBLE FUNCTION

! CLESTK: INVALID TYPE FOR +,-,*,/ OR **

! CLESTK: INVALID TYPE FOR <,>,=,<=,>= OR <>

! CLESTK: WRITING RETURN CODE =...

! CLESTK: READING RETURN CODE =...

! CLESTK: *STACK* MEMORY IS FULL

! CLESTK: *STACK* MEMORY IS EMPTY

! CLESTK: ERROR ON THE NUMBER OF EVALUATIONS

! CLESTK: LEFT=... VS. RIGHT=...

! CLESTK: ERROR ON THE TYPE OF AN EVALUATION

! CLESTK: UNEXPECTED END OF STATEMENT

! CLESTK: IOSTAT RETURN CODE =...

! CLESTK: IMPOSSIBLE TO USE THIS *OBJECT* FILE

! CLESTK: IMPOSSIBLE TO USE OLD *OBJECT* FILE

! CLEXRF: IOSTAT RETURN CODE =...

! CLEXRF: IMPOSSIBLE TO USE THIS *OBJECT* FILE

! CLEXRF: IMPOSSIBLE TO USE OLD *OBJECT* FILE



Index

Keyword

ABS, 9, 10, 43

ARCCOS, 10, 43

ARCSIN, 10, 43

ARCTAN, 10, 43

CHS, 10, 43

COS, 10, 43

D TO I, 15, 43, 45

D TO R, 15, 43, 45

DO, 14, 20, 43

DOUBLE, 6, 8, 9, 43

ECHO, 6, 12, 20, 43, 45

ELSE, 6, 13, 20, 43

ELSEIF, 6, 13, 43, 45

ENDIF, 6, 13, 43

ENDWHILE, 6, 13, 14, 20, 43

EVALUATE, 6, 11, 43

EXP, 10, 43

I TO D, 15, 43, 45

I TO R, 15, 43, 45

IF, 6, 8, 13, 16, 44

INTEGER, 6, 8, 9, 44

LN, 10, 44

LOGICAL, 6, 8, 44

NOT, 9, 10, 44

QUIT , 6, 16, 17, 44, 45, 47

R TO D, 15, 44, 45

R TO I, 15, 44, 45

REAL, 6, 8, 9, 44

REPEAT, 6, 8, 13, 14, 16, 20, 44

SIN, 10, 44

SQRT, 10, 44, 45

STRING, 6, 8, 20, 44, 45

TAN, 10, 44

THEN, 13, 20, 44

UNTIL, 6, 13, 14, 20, 44

WHILE, 6, 8, 13, 14, 16, 20, 44

Routine

CLECLS, 28, 30, 50

CLECOP, 31, 46

CLECST, 17, 19

CLEGET, 28–30, 32, 50

CLELOG, 19, 54

CLEOPN, 28, 50

CLEPIL, 19, 20, 24, 33, 46, 50, 51

CLEPUT, 28, 30, 50

CLESTK, 19, 20, 54

CLEXRF, 19, 20, 54

REDCLS, 21, 25, 26, 50

REDGET, 21–28, 30, 31, 34, 50

REDOPN, 21, 22, 24, 26, 50

REDPUT, 21, 22, 24, 25, 27, 50

XABORT, 24, 26

55


