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1 INTRODUCTION

The tracking modules of DRAGON are used to perform two sigicesasks, namell}

1. to analyze the geometry provided and generate the inf@meequired for the tracking procedure to take
place;

2. to generate, for a specific geometry, the integratiorslnesulting from a specific numerical quadrature.

The result of the first task is tHERACKING data structure where one can find the records that are esdentall

the other calculations in DRAGON involving the geometrgliding the regional volumes, the mixture associated
with each region, the flux index cross referencing the elésiarthe flux/current array with elements in the volume
array and the boundary conditions in the form of an albedayaiepending on the type of geometry and on the
specific tracking module considered, one can also find indata structure additional records that can be used
to rebuilt the geometry or associate a graphical image vhighgeometry. The result of the second task is the
creation of the tracking file that contains all the informatrequired to process the numerical quadrature specified
in the tracking modul&! The format of this tracking file does not depend on the tragkiodule selected even if
the explicit contents of the file does. For example,Nx&: tracking file generated for a given geometry will in
general differ from the information generated usingEX€ELT: module for the same geometry.

The NXT: tracking module retains most of the properties of the tnagldrocedures already implemented in
DRAGON, namely it contains a geometry analysis procedureedisas an integration line generation procedure.
However, these procedures are programmed in such a waytatan be called by other modules of DRAGON,
therefore making DRAGON more modular. TNXT: module has also been developed using a structure parallel
to that used in th&XCELT: module (justifying the name NXT for New Excell Tracking). @ main difference is
the rationalisation of the information stored in thRACKING data structure. The new records in tHRACKING
data structure associated with thET: module are defined in such a way that they can accomodate pes 6f
geometry as well as additional geometry levels, therebplfiying the process of code maintenance and updating.
In this report we will describe theIXT: tracking procedure which, in the long term, could replaceBKCELT:
tracking procedure that has been in use for the last 20 years.

The primary goal of this report is to describe tR&T: tracking procedure. This will include:

e the theory manual for thEXT: module.
e the programmer’s guide for théXT: module;
e the user guide for thBIXT: module;

e adescription of th&RACKING data structure generated BXT: including a presentation of the contents of
the /INewEXxcellTrk/ subdirectory included in this data sttue;
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2 GEOMETRY CONSIDERATIONS

The NXT: module, while being quite general, can only process a lunitember of geometry out of the full
set that one can define using the DRAG@EO module. The main constraints on the geometries that can be
currently analyzed by this module are the following :

1. A maximum of three sub-levels of geometry will be procesgee Figure 1 for a 2-D exemple of such
a geometry construction). The levels are classified usiegfdhowing hierarchy by theNXT: tracking

module:

Cell C4

Pin P2
Pin P3

Cell C3 r?
€ ol
Pin P1
< II Cc3| 4
"‘ = | ci|
7\

(©)

Celi CI
©) ¢ Cell C2

]

Figure 1: Example of a multilevel 2-D geometry. Explicit geetry (left) and description in terms of cells and pins
(right).

(a) Main assembly level that will be filled with cell and to whiare associated the boundary conditions
(see Figure 2).

C3| ¢4
Cl C2

Figure 2: Global 2-D geometry.

(b) Intermediate level defining the cells that will be usedilidche assembly (see Figure 3). In the cur-
rent version ofNXT: the cells used to define these assemblies cannot themselntsnccell sub-

assemblies.

(c) Optional upper level that corresponds to the cell gedeseadded using theLUSTER keyword (see
Figure 3). The cell geometry on this level covers the regiefingd by lower level geometries.

In the case where the global geometry is not an assemblyléacsitl) it is automatically generated INXT:
based on the cell properties.

2. Limited to 2-D and 3-D geometries having a rectangulamiiauy (see Figure 5). This means that each
geometry in 2-D must be located between 2 lines parallelaq thxis and two lines parallel to the axis.
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Figure 3: Cells inserted in global geometry.

e ¥ O

Pin P1 Pin P2 Pin P3

Figure 4: Pins superimposed on cells

In 3-D, the geometry must be locates between 2 plane norntlaétoaxis, 2 plane normal to thgaxis and
finally 2 plane normal to the axis .

Y2

Yi

XI Xy X

Figure 5: Geometry with 2-D (left) and 3-D (right) rectanguiboundaries.

3. The boundary conditions are applied on the external fatt®e geometry with three exceptions:

e SYME, a mirror symmetry applied at the center of the cell (singlk geometry) or at the center of the
cells closest to the direction specified for an assembly gtgnisee Figure 6).

e SSIME, a mirror symmetry applied at the boundary of the cell or theeanbly.

e DI AGwhich is applied on & = y diagonal passing through the center of the cell or the adygsde
Figure 6). The combinatioX- andY+ means that the regions under and to the right of the diagonal
are tracked while for the combinatiof+ andY- the regions over and to the left of the diagonal are
tracked.

The external surfaces associated with a geometry are atmraged assuming that the pin surfaces associ-
ated with an external boundary cover completely the extesundaces associated with the cell geometries.
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Figure 6: Central cell and diagonal symmetries. Symm8¥yE as applied for assembly of cells (top left) or for
individual cells (top right) symmetripl AGfor square cell or assembly (bottom).

Similarly, the cell surfaces associated with an externainoiary are superimposed over the assembly sur-
faces.

Typical 2-D and 3-D geometries that can be processed byW¥ie module are illustrated in Figure 7. For
the 2-D geometry, each color is associated with a diffetegion number. One can immediatly see the hierarchy
of region numbering with namely the pins hiding the cellsifgdthe assembly level. This hierarchy is also used
for 3-D geometry both for the region and external surface lmenmg. However, the cells and pins surfaces not in
contact with an external surface are never considered.

2.1 Assembly level

As already mentionned, at the main assembly level the gagmetst have a purely Cartesian structure. This
level can be built directly by the user using tBAR2D and CAR3D geometry types and filling each region in the
geometry with cells as proposed in the following 2-D and 3x@reples

Geo2DA := GEO :: CARRD 1 2
CELL C1 2
X- REFL X+ REFL Y- REFL Y+ REFL
Cl := GEO CAR2D 2 1
MESHX <<X1>> <<X2>> <<X3>> MESHY <<Y1>> <<Y2>>
MX 1 2;
o Q=GO CARCEL 2 11
MESHX <<X1>> <<X3>> MESHY <<Y2>> <<Y3>>
RADI US 0.0 <<Rl1>> <<R2>>
MX 3 45 ;
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Figure 7: 2-D (left) and 3-D (right) geometries that can becgissed by thBIXT: module.

Geo3DA := GEO :: CARID 2 2 2

CELL Cl1 C2 C3 ¢4 C5 C6 C7 C8

X- REFL X+ REFL Y- REFL Y+ REFL Z- REFL Z+ REFL

: Cl:=CGEC CARAID1 11
MESHX <<X1>> <<X2>> MESHY <<Y1>> <<Y2>> MESHZ <<Z1>> <<Z7Z2>>
MX 1 ;

10 G2 =GO CARCELZ 1111
MESHX <<X2>> <<X3>> MESHY <<Y1>> <<Y2>> MESHZ <<Z1>> <<Z2>>
RADI US 0.0 <<Rl1>>
MX 12 2 ;

[ ... ]

The exact dimensions of the assembly are extracted fromithensions of the individual cells, which must be
defined in such a way as to form a uniform Cartesian mesh iXthg andZ directions.
In the case where the assembly is made up of a single cell, as in

Geo2DC := GEO :: CARCEL 2 1 1
X- REFL X+ REFL Y- REFL Y+ REFL
MESHX <<X1>> <<X3>> MESHY <<Y2>> <<Y3>>
RADI US 0.0 <<R1>> <<R2>>
MX 3 45

Geo3DC := GEO :: CAR3D 2 2 2
X- REFL X+ REFL Y- REFL Y+ REFL Z- REFL Z+ REFL
MESHX <<X1>> <<X2>> <<X3>>
MESHY <<Y1>> <<Y2>> <<Y3>>
VESHZ <<Z1>> <<Z2>> <<Z3>>
MX 123456738

theNXT: module will automatically generate, using the informatssociated with the cell, the requir€dR2D
or CAR3D assembly that will be filled with the cell specified. For th®2nd 3-D cases abovBXT: will work
as if it was seeing the following equivalent geometries:
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Ge02DCR := GEO :: CARRD 1 1
X- REFL X+ REFL Y- REFL Y+ REFL
CELL Geo2DC
Geo2DC := GEO CARCEL 2 1 1
MESHX <<X1>> <<X3>> MESHY <<Y2>> <<Y3>>
RADI US 0.0 <<Rl>> <<R2>>

MX 3 45,
Geo3DCR := GEO :: CARBD 1 11
X- REFL X+ REFL Y- REFL Y+ REFL Z- REFL Z+ REFL
CELL Geo3DC

Geo3DC := GEO CAR3D 2 2 2
MESHX <<X1>> <<X2>> <<X3>>
MESHY <<Y1>> <<Y2>> <<Y3>>
MESHZ <<Z1>> <<Z2>> <<7Z3>>
MX12345678;
A consequence of this reconstruction featurd®f: is that in this case the cell geometry options are limited to
CAR2D or CARCEL in 2-D and toCAR3D, CARCEL X, CARCELY or CARCELZ in 3-D.

This procedure is straightforward for the cases where diyREFL, VO D and ALBE boundary conditions
are used. If the first level geometry is a cell, the reconsitngrocess described above remains valid and the
symmetry is applied directly to the cell of interest. On thbhes hand, if the first main level geometry is an
assembly, two problem arise when ®¥Mg, SYMV| andDl AGboundary are used:

1. These symmetries are used to simplify the input file andth@METRY data structure thereby created. This
means that theEOMETRY data structure does not explicitly represent the geomiatywill be treated.

2. The final geometry provided in tleEEOMETRY data structure does not necessarily have the purely Cantesi
mesh required by theXT: module (primarly when diagonal boundary conditions arected but also for
the SYME geometry which may be cutting cylindrical regions in half).

In order to illustrate this problem let us consider the 2-[raples of Figure 8 generated using the following
instructions in DRAGON:

Ge02DADSY = GEO :: CAR2D 2 2

CELL Cl1 C2 C3

X- DI AG X+ REFL Y- SYME Y+ DI AG

: Cl .= GO CAR2ZD 1 1
MESHX <<X1>> <<X2>> MESHY <<X1>> <<X2>>
MX1;

10 C2 = CGEO CARCEL 2 11
MESHX <<X1>> <<X3>> NESHY <<X1>> <<X2>>
RADI US 0.0 <<Rl>> <<R2>>
MX 3 45 ;

0 C3:= GO CARCEL 2 2 2
MESHX <<X1>> <<X2>> <<X3>> MESHY <<X1>> <<X2>> <<X3>>
RADI US 0.0 <<Rl>> <<R2>>
MX6 789 10 11 9 10 11 12 13 14 ;

Ge02DADSS = GEO :: CAR2D 2 2
CELL C1 C2 C3
X- DI AG X+ REFL Y- SYME Y+ DI AG
: Cl := GO CAR2D 1 1
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Figure 8: Example of a 2-D geometry with diagonal and mirggnmsetry. Here the mirror symmetry are taken
with respect to theX andY axis passing through the center (top figures VWiVE symmetry) or located at the
bottom (bottom figure witlBSYMsymmetry) of the geometry. The figure on the left is the exaohgetry and that

to the right is the geometry provided as input to DRAGON.
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(C3,E) (C2,F) (C3,A) (C3,E) (C2,D) | (C2F) (C3.4)

(C2,E) (CLE) | (CLA) (C2,A)
(C2,E) (C1.4) (C2,A)

(€2,c) (CLA) | (CLG) (C2,G)
(€3,C) (C2,B) (C3,G)

(€3,C) (C2,H) | (C2,B) (C3,G)

Figure 9: Unfolded assembly with cell contents 8RN option forGeo2DADSY (left) andGe02DADSS (right).

MESHX <<X1>> <<X2>> MESHY <<X1>> <<X2>>

MX 1 ;

0 Q2 =G0 CARCEL 2 11

MESHX <<X1>> <<X3>> NESHY <<X1>> <<X2>>

RADI US 0.0 <<Rl>> <<R2>>

MX 3 45 ;

0 C3:= GO CARCEL 2 2 2

MESHX <<X1>> <<X2>> <<X3>> MESHY <<X1>> <<X2>> <<X3>>
RADI US 0.0 <<Rl>> <<R2>>

MX6 789 10 11 9 10 11 12 13 14 ;

For such geometries, thdXT: module first unfolds the geometry according to the instamgtgenerating 8 x

3 assembly for geometrge02DADSY and a4 x 4 assembly for geometr¢&02DADSS and then fills these
assemblies with the adequatly rotated and reflected celts Rggure 9) where the rotation indices tp H) are
defined in the DRAGON users mantfllt also test if each cells possesses the intrinsic symmegly C1 for
example) required by the geometry description.

2.2 Celllevel
Two types of cells can be used to fill 2-D assemblies:

e CAR2D, that describes a rectangular cell.

e CARCEL, arectangular cell that contains an embedded set of camcantular regions. The center of these
annular region coincides with the center of the cell unlggesiied otherwise (keywor@FFCENTER). In
addition, the annular regions must all be located withintbendary of the rectangle.

The explicit rectangular submesh is provided using MESHX and MESHY keywords for both theCAR2D and
CARCEL. In addition the explicit radial submesh foCARCEL geometry is specified using tiRADI US keyword.
Implicit submeshing is also possible at the tracking levighwthe use of the keywordSPLI TX (X submesh),
SPLI TY (Y submesh) an8PLI TR (radial submesh).

The four types of cells that can be used to fill 3-D assemblies a

e CAR3D, that describes a rectangular parallelipiped.
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e CARCELX, that describes a rectangular parallelipiped that costairembedded set of concentric cylindrical
regions parallel to th& axis that extend over the ful range of the cell.

e CARCELY, that describes a rectangular parallelipiped that costairembedded set of concentric cylindrical
regions parallel to th& axis that extend over the full range of the cell.

e CARCELZ, that describes a rectangular parallelipiped that costairembedded set of concentric cylindrical
regions parallel to thel axis that extend over the full range of the cell.

The explicit rectangular submesh is provided using MESHX, MESHY and MESHY keywords for both these
geometries while the radial submesh for the last three ge@ras specified using thRADI US keyword. As
for 2-D cells, implicit submeshing is also possible at tteeking level with the use of the keywor8®LI TX (X
submesh)SPLI TY (Y submesh)SPLI TZ (Z submesh) an&PLI TR (radial submesh).

2.3 Pinlevel

The only of pin geometry permitted for 2-D cells iST&BE that describes a cell with circular boundaries. In
3-D, TUBEX, TUBEY or TUBEZ pin geometry that represents cylindrical cells in tieY and Z directions are
generally permitted with the following restrictions:

e The direction of all the pins in a cell must be identical.

e The cylindrical regions associated with a cell, if any, mssidentical to that of the pins that are inserted in
this cell.

Finally all the pins (both in 2-D and 3-D) must be fully enaadsn the cell.

The radial mesh associated with a tube and specified usinABEUS can be refined implicitely at the
tracking level using th&PLI TR option. Similarly cylinders in theX, Y and Z directions will be defined using
the (VESHX, SPLI TX), (VESHY, SPLI TY) and (VESHZ, SPLI TZ) pairs of keywords. Note that is also possible
to superimposed a Cartesian mesh on the radial mesh usifgjltveing options

e \VESHX, SPLI TX, MESHY andSPLI TY for TUBE geometries.

e NVESHY, SPLI TY, MESHZ andSPLI TZ for TUBEX geometries.
e VESHZ, SPLI TZ, MESHX andSPLI TX for TUBEY geometries.
e IVESHX, SPLI TX, MESHY andSPLI TY for TUBEZ geometries.
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3 GEOMETRY ANALYSIS

Here, we will describe successively how DRAGON identifies tegion and surfaces associated with a mul-
tilevel geometry (an assembly) similar to those descrilbe8action 2. One may recall that such assemblies are
always based the superposition of geometries containithg @@yword CELL), pin clusters (keywordPl N) or
mixtures (keywordM X). Here we will consider the case of first pure geometriest{®e8.1) which are defined
as a geometry that is filled only with mixtures. These can limee using the following keywords:

e CAR2Dfor a 2-D Cartesian cell.

e CAR3Dfor a 3-D Cartesian cell.

e CARCEL for a 2-D Cartesian geometry with embedded annular regions,

e CARCELX for a 3-D Cartesian geometry with embedded cylindricaloagidirected along th& axis.

e CARCELY for a 3-D Cartesian geometry with embedded cylindricaloegidirected along thE axis.

e CARCELZ for a 3-D Cartesian geometry with embedded cylindricaloagidirected along th#& axis.

e TUBE for an annular 2-D geometry which may contain an embedded=&iesian mesh.

e TUBEXfor an X directed 3-D cylindrical geometry which may contain an eddssl 3-D Cartesian mesh.
e TUBEY for aY directed 3-D cylindrical geometry which may contain an eddesl 3-D Cartesian mesh

e TUBEZ for a Z directed 3-D cylindrical geometry which may contain an eddssl 3-D Cartesian mesh

In Section 3.2 we will study the effect of pin clusters supesiion on these geometries. Finally in Section 3.3
we will study how these pure geometry are combined to creatssembly.

3.1 Region and surface identification for pure geometries

3.1.1 Pure Cartesian cells

Pure Cartesian cells (see Figure 10) in 2-D and 3-D may beetesing the following DRAGON input data
structures

e 2-D Cartesian cell

Geonetry := GEO CAR2D n, ny
MESHX (x;, i = 0,n,)

MESHY (ij Jj= Ovny)

M X((mi+nz(j71)7 i=1,ng), j=1,ny);

e 3-D Cartesian cell

Geonetry := GEO CAR3D n,nyn.

MVESHX (x;, i = 0,n,)

MESHY (ij J= O,Tby)

VESHZ (2, k = 0,n.)

M X(((mi+nz(j71+ny(k71))a i= 17nm)7 Jj= 17ny) k= 17nz) )
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wherez;, y; andz;, are the local position of the lines (in 2-D) or planes (3-Dijimiag the subregions that can be
found in the cell along th&(, Y andZ direction,n, + 1, n, + 1 andn + 1 representing the number of such lines
or planes in each direction. Note that for simplicity we wiisume that the 2-D geometry is a 3-D geometry with
n, = 1and

20 = 0

zZ1 = 1
even though the 3-D extension is in principle fremo to co. This choice is in fact dictated by the fact that 2-D
volumes are in fact identical to 3-D volumes of regions witiegghtz; — zg = 1.

surface -7 surface -8

Y2

surface -2 region 3 region 4 surface -4

Vi

surface -/ region / region 2 surface -3

Yo
X0 surface -5 X surface -6 X, XZ

Figure 10: Example of pure Cartesian cells in 2-D (left) arid @ight).

Such a Cartesian cell should contain
N, =ngnyn,

subregions, the mixture associated with these subregieing Iprovided bymn;. In DRAGON, each subregion
I with volumeV; (see Appendix A.1) of a cell can be associated with a positiof k) in the Cartesian mesh
according to (see Figure 10 for an example in 2-D):

l=i+ng(j—1+ny(k—1)) (3.1)
Vi= (i —2i—1)(y; — yj—1)(2k — 2k-1) (3.2)

this notation being similar to that used in the input dataditrre to associate a mixture with a subregion.
The numbering (negative values) of the surfaces with afgdollows the following algorithm:
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1. ng s = nyn, surfaces at = x¢

L=—(+ny(k—1)) 3.3)
Se = (yj — yj—1)(zk — 2k-1) (3.4)
2. ng s surfaces at = z,,,
b=—G4+ny(k—1)) —ngs (3.5)
Se=(y; —yj—1)(zk — 2x—1) (3.6)
3. nys = n,n, surfaces ay = yo
C=—(k+n,(i—1)) —2ny (3.7)
Se = (2k — z6—1) (x5 — Ti—1) (3.8)
4. n, s surfaces ay = yy,
b=—(k+mn.(i—1)) —2ng s — ny.s (3.9)
Sg = (Zk - Zkfl)(xi - Iifl) (310)
5. n. s = nyn, surfaces at = zg
C=—(i+ny(j — 1)) —2ngs — 20y s (3.12)
Se=(zi —zi—1)(yj —yj—1) (3.12)
6. n, s surfaces at = z,,
t= _(Z + nm(.] - 1)) - 2nm,s - 2ny,s —MNzs (313)
Se = (xi — wi1)(y; — yj-1) (3.14)

for a total of

NS = 2n1)5 + 2ny,s + 2nz,s
= 2nyNn, + 2nn5 + 200y (3.15)

surfaces.

3.1.2 Pure annular and cylindrical cells

Pure annular (2-D) and cylindrical (3-D) cells (see Figut¢ may be created using the following DRAGON
input data structures

e 2-D annular cell

Ceonetry := GEO. TUBE n,
MESHR (rg, g = 0, n,)
M X(mgv g = 17”7“) '

containingV,- = n,. subregions.

e 3-D X directed cylinders cell
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Ceonetry = GEO TUBEX n, ng,
MESHR (1, g = 0, n,)

MVESHX (x;, i = 0,n,)

M X((mg-l—nT(i—l)v 9= 1anr)7 1= 1,”1) ;

that containsV,. = n,n, subregions.
e 3-DY directed cylinders cell

Geonetry := GEO TUBEY n, n,
MESHR (1, g = 0, n,)

MESHY (ij Jj= Ovny)

M X((mg+nT(,j—l)a g = 1,717«), Jj= 1’”.7!) ;

that containsV, = n,n, subregions.
e 3-D Z directed cylinders cell

Ceonetry := GEO. TUBEZ n, n,
MESHR (rg, g = 0, n,)

VESHZ (2, k = 0,n.)

M X((mg+nT(1€—l)a g = 17”7“), kE=1,n.);

that containsV,. = n,.n, subregions.

wherer; is the radius of they,. concentric annular or cylindrical regions in the cell sueatty = 0.0. For 3-D
cylinders,z;, y; andz;, are respectively the local position of the planes normahtodylindrical axis defining
the extent of thex,,, n, or n, cylinders. Note that for simplicity we will assume that th®2yeometry is a 3-D
geometry withn, = 1 and an extension

20:0

21:1

even though the 3-D extension is in principle fremo to co. The mixture associated with these subregions are
provided provided byn,.

For the 2-D annular cells, each subregionith volumeV; can be associated with a positigrin the radial
mesh according to (see Appendix A.2):

l=g (3.16)
Vy=7(ry —rg—1)? (3.17)
For 3-D cylindrical cells we will use

e X directed cylinders
l=g+n.(i—1) (3.18)
Vi=m(rg — Tg,l)Q(a:i — 1) (3.19)

e Y directed cylinders
l=g+n.(j—1) (3.20)

Vi=m(rg — Tg—l)Q(yj —Yj-1) (3.21)
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Figure 11: Examples of annular geomeffyJBE (top), TUBEX (bottom left), TUBEY (bottom center) antilUBEZ
(bottom right) geometries.
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e X directed cylinders
l=g+n.(k—-1)

Vi=m(rg —rg—1)*(2x — 2r-1)

The volume ordering being consistent with the mixture ardgr
In 2-D, a single outer surfacde= —1 will be considered with area

S1=27r,,
while for 3-D cylinders we will use
e X directed cylinders
1. n, surfaces at = z
l=—g

Se=m(rg — rg,l)Q
2. n, surfaces at = z,,,
{=—g—n,
Sy =m(ry —rg_1)?
3. n, radial surfaces (in th& — Z plane) arr = r,,,
{=—i—2n,
Se = 2mry, (x; — xi-1)
for a total of Ng = 2n,. + n, surfaces.
e Y directed cylinders
1. n, surfaces ay = yo
l=—g
Sy =m(ry —rg_1)*
2. n, surfaces ayy = y,,

{=—g—n,

Se=m(rg — rg_1)2

3. n, radial surfaces (in th& — X plane) ar =,
{=—j—2n,
Se =271y, (Y — Yj—1)
for a total of Ng y = 2n, + n, surfaces.
e 7 directed cylinders

1. n, surfaces at = zg

15

(3.22)
(3.23)

(3.24)

(3.25)
(3.26)

(3.27)
(3.28)

(3.29)
(3.30)

(3.31)
(3.32)

(3.33)
(3.34)

(3.35)
(3.36)

(3.37)
(3.38)
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2. n, surfaces at = z,,_

(=—g—n, (3.39)
Se=mn(ry — rg_1)2 (3.40)

3. n, radial surfaces (in th& — Y plane) arr = r,,,

(= —k—2n, (3.41)
Sg = 27T7‘n7‘ (Zk — Zk—l) (342)

for a total of Ng z = 2n, + n. surfaces.

3.1.3 Cartesian cell with annular subregions

Cartesian 2-D cells containing annular subregions andeSiart 3-D cells with cylindrical (3-D) subregions
(see Figure 12) may be created using the following DRAGONIimiata structures

e 2-D Cartesian cell with annular mesh

Geonetry := GEO CARCEL n, ngny

MESHR (rg, g = 0,n,)

MESHX (x;, i = 0,n,)

MESHY (ij Jj= Ovny)

M X ((Mgt(n,+1)(i—14na (i=1))s § = Ling +1), i =1,n,), j=1,ny);

containing a maximum oN,. = (n, + 1)n,n, subregions. Note that the a value(gf s, j) with g < n,
correspond to the part of an annular ring located betwgeandr,_; that is included in the Cartesian
region identified by(i, j) while a set(g, i, j) with ¢ = n,. + 1 corresponds to the part of a Cartesian region
identified by(¢, j) completely outside the annular ring of radiyys . Some of these regions may not exists
wheng < n, since the intersection of the ring and the Cartesian regiap wanish. In this case, the a
mixture number is still required on input even if it will no¢lused in the cell description.

e 3-D Cartesian cells containing directed cylinders

Geonetry := GEO CARCELX n,ngnyn,
MESHR (rg, g = 0,n,)
VESHX (x;, i = 0,n,)
MESHY (ij Jj= Ovny)
VESHZ (2, k = 0,n.)
M X((((mg+(7L7~+1)(j_1+7Ly(k_1+nz(i_1)))’ g=1n.+1),j= 15”74)5 k=1,n.),i=1n.);

that contains a maximum d¥,, = (n, + 1)nyny,n. subregions. Note that the a value(of 7, j, k) with

g < n, correspond to the part of an cylindrical ring located betweggandr,_; that is included in the
Cartesian region identified hy, j, ) while a set(g, 4, j, k) with ¢ = n,. + 1 corresponds to the part of the
Cartesian region identified by, j, k) completely outside the cylindrical ring of radius,. Some of these
regions may not exists when< n,. since the intersection of the ring and the Cartesian regiay vanish.
In this case, the a mixture number is still required on inpetaf it will not be used in the cell description.

e 3-D Cartesian cells containirig directed cylinders
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Geonetry := GEO CARCELY n, ngnyn;

MESHR (1, g = 0, n,)

MVESHX (x;, i = 0,n,)

MESHY (yj7 .] = Ovny)

MESHZ (2, k = 0,n.)

M X((((ngr(nT#»l)(kflJrnz(i71+nx(j71)))7 9= 17nT+1)7 k= 1anz)a i= 17nz)7 Jj= 17ny)a

that contains a maximum a@¥,. = (n, + 1)nyn,n. subregions. The same comment on mixtures input as
that provided for Cartesian cells witki directed cylinders remains valid here.

e 3-D Cartesian cells containing directed cylinders

Geonetry := GEQO CARCELZ n, ng ny n,

MESHR (rg, g = 0,n,)

MVESHX (x;, i = 0,n,)

MESHY (ij Jj= Ovny)

VESHZ (2, k = 0,n.)

M X ((((mg+(nr+1)(i71+nm(jfl+ny(kfl)))7 g=1n.+1),i=1mn,), j= 1,ny), k= 1,nz)

that contains a maximum a@¥,, = (n, + 1)n,n,n. subregions. Again some mixtures may not be used in
the calculations as described for Cartesian cells wittlirected cylinders.

Herer; is the again radius of the,. concentric annular or cylindrical regions in the cell sulchtty = 0.0. For
3-D cylinders,z;, y; andz;, are respectively the local position of the planes normétéoclylindrical axis defining
the extent of thex,,, n, or n. cylinders. Note that for simplicity we will again assumetttiee 2-D geometry is a
3-D geometry withn, = 1 andz, = 0 andz; = 1 even though the 3-D extension is in principle fremo to co.

For the 2-DCARCEL geometries, each possible subrediofithe cell can be associated with a positign, ;)
according to (see Appendix A.2):

l=g+ e+ 1)(i—1+n.(j—1)) (3.43)

for a maximum ofN,. regions. The volumé&] of these regions can be evaluated using the procedureshbascr
in Appendix A. Note that some of these volumes may turn ougtash since not all the radial regions will have
an intersection with each of the Cartesian region. Thusfitfzé region identification will correspond t0.}, a

compressed version of the g that containgVy terms where the elements with vanishing volume have been
removed:

I c=0
DO I=1,N{r}
IF(V_{l} .NE. 0) THEN
I c=lc+l
V {lc}=v_ {I}
m{lc}=m{l}
ENDI F
ENDDO
N {V}=lc

where the mixture identification vector is compressed irshifan similar toV.
For the 3-DCARCEL X, CARCELY and CARCELZ geometries, a similar process is used where each possible
subregior of the cell can be now associated with a positign, j, k). Here we use:

l=g+n, +1)({—1+n,(j —1+n,(k—1))) (3.44)
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R
N

Figure 12: Examples of Cartesian geometry with annularesyibns: CARCEL (top), CARCELX (bottom left),
CARCELY (bottom center) an@ARCEL Z (bottom right) geometries.
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for a maximum ofN,. regions. The global ordering here is different from thatduga the mixture ordering.
The volumesV; can again be evaluated using the procedures described ianélppA. As for the CARCEL
geometry, some of the volumes may turn out to vanish. Thsfitfal region identification will correspond to
{l.}, a compressed version of the §&} that containsVy, terms where the elements with vanishing volume can
be removed using the procedure described above.

In 2-D, the outer surfacelare numbered according to the following procedure

1. n, surfaces at = xg

(= (3.45)
Se=(y; —yj-1) (3:49)
2. ny surfaces at = z,,,
P (3.47)
Se = (y; = yj-1) (349)
3. n, surfaces ay = yg
(=i, (3.49)
Sy = (s — 1) (3.50)
4. n, surfaces ay = y,,,
(= —i—on, —n, (3.51)
Se = (21— 211) (3.52)
for a total of
N = 2, + 2, (3.53)

surfaces.
For 3-D Cartesian geometries with embedded cylindricabregy the surfaces are numbered according to the
following procedure

e CARCELX
1. Amaximum ofn, , = (n, + 1)nyn. surfaces at = xg
b=—g—(n,+1)(j—1+ny(k—1)) (3.54)

with S, evaluated using the procedure of Appendix A.
2. A maximum ofn, , surfaces at = z,,,

b=—g—(nr+1)(j—1+ny(k—1)) —nyq (3.55)

with S, evaluated using the procedure of Appendix A.
3. ngn, surfaces afy = yo

{=—k—n,(i—1)—2n,, (3.56)
S[ = (SCZ - Iifl)(zk - Zkfl) (357)
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4. ngn surfaces ay = y,,,,

C=—k—n,(i—1)—2n; 4 —ngn,

Se = (xi —xi—1) (26 — Zk—1)
5. ngn, surfaces at = z

C=—i—ng(j—1) = 2n,p — 2ngn,

Se = (vi —wi—1)(y; — yj-1)
6. nyn, surfaces at = z,

C=—i—ny(j —1) = 2n, 5 — 2nyn, — Ngny

Se = (@i — xi—1)(y; — Yj—1)
for a maximum of
Ng = 2(nr,w +nz(n, + ny))
surfaces.

e CARCELY
1. nyn, surfaces at = xg

l=—j—ny(k—-1)
Se=(y; —yj—1)(2k — 2x—1)

2. nyn, surfaces at: =

l=—j—ny(k—1)—nyn,
Se=(y; — yj—1)(zk — 2-1)

3. A maximum ofn, , = (n, + 1)n,n, surfaces afy = yo
b=—g—(n,+1)(k—1+n.(i—1)) —2nyn,

with S, evaluated using the procedure of Appendix A.
4. A maximum ofn,., surfaces ay = v,

b=—g—(n,+1)(k—1+n.(i—1)) —2nyn, —n,y

with S, evaluated using the procedure of Appendix A.

5. ngn, surfaces at = z

l=—i—ng(j—1)—2n,,y — 2nyn,

Se = (vi —wi—1)(y; — yj-1)
6. nyn, surfaces at = z,

0= —i—ngy(j —1) —2n,, — 2nyn, — nyn,

Se = (i —xi—1)(Yj — yj—1)

20

(3.58)
(3.59)

(3.60)
(3.61)

(3.62)
(3.63)

(3.64)

(3.65)
(3.66)

(3.67)
(3.68)

(3.69)

(3.70)

(3.71)
(3.72)

(3.73)
(3.74)
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for a maximum of

Ng =2(ny, +ny(n. +ng)) (3.75)
surfaces.
e CARCELZ
1. nyn, surfaces at = xg
l=—j—ny(k—1) (3.76)
Se=(yj —yj—1)(2k — 2k-1) (3.77)
2. nyn surfaces at = z,,,
l=—j—ny(k—1)—nyn, (3.78)
Se=(y; —yj—1)(zk — 2x—1) (3.79)
3. ngn, surfaces afy = yo
l=—k—n.(i—1)—2nyn, (3.80)
Se = (z; —xi—1) (2 — 21-1) (3.81)
4. ngn_ surfaces ay = y,,,,
l=—k—n,(i—1)—2nyn, —ngyn, (3.82)
Sg = (:Z?l - :Ci,l)(zk - Zkfl) (383)

5. A maximum ofn, , = (n, + 1)n,n, surfaces at = zg
b=—g—(n,+1)(i —1+n,(j —1)) = 2nyn, — 2nyn, (3.84)

with S, evaluated using the procedure of Appendix A.
6. A maximum ofn, . surfaces at = z,,

l=—g—(nr+1)(i —14+n,(j —1)) —2nyn, —2nzn. —n, . (3.85)
with S, evaluated using the procedure of Appendix A.
The maximum number of surfaces in this case is

Ngs =2(nye + n.(ng +ny)) (3.86)

Again some of these surfaces will vanish and the final inder@ated with the surfaces will be compressed
using a procedure similar to that used for the volumes.

3.1.4 Annular cell with Cartesian subregions
Annular (2-D) and cylindrical (3-D) cells (see Figure 13}w{Cartesian subregions may be created using the

following DRAGON input data structures

e 2-D annular cell
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Geonetry := GEQ TUBE n, ngn,

MESHR (rg, g = 0, n,)

MVESHX (x;, i = 0,n,)

MESHY (y;, i = 0,ny)

OFFCENTER . 1y M X (((Mgpn, (i—14n.(i—1))s 9 = Ling), i =1,n5), j=1,n,);

containing a maximum aV,. = n,n,n, subregions. Here the conditions:

By < —T, + 2T Ine gx"” + .
Tp, > T, + 0 zxn’” + xc
Yo < —Tp, + Yo ;yny + Ye
Yn, > Tn, + Yo —;yny + Ye

must be satisfied.
e 3-D X directed cylinders cell

Geonetry := GEQ TUBEX n, ng nyn.

MESHR (rg, g = 0,n,)

MVESHX (x;, i = 0,n;)

MVESHY (y;, i = 0,ny)

VESHZ (2, k = 0,n.)

OFFCENTER Te Yy Zc M X ((((mg(nr(j,prny(k,lJrnz(i,l))), g = l,nr), j = l,ny), k =

1n,), i=1,n,);

that contains a maximum o¥,. = n,n,nyn. subregions. Here the conditions:

Yo < —7Tp,. + W% + Ye
Yny > Tn, + W%%—yc
2 < —r, 4 2 e +22" + zc
P S . J;Z" + zc

must be satisfied.
e 3-DY directed cylinders cell

Geonetry := GEQO TUBEY n,ngnyn.

MESHR (rg, g = 0,n,)

MVESHX (x;, i = 0,n,)

MESHY (y;, i = 0,ny)

MVESHZ (2, k = 0,n.)

OFFCENTER . 4y ze M X (Mg, (k—14n. (i—14na(Gi—1)))s 9 = Ling), b = 1,n.), i =
1,n), j=1,ny);

22
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that contains a maximum ¥, = n,n,n,n. subregions. Here the conditions:

Ty + Tn,
Ty < —Tp, + ———— +x¢

must be satisfied.
e 3-D Z directed cylinders cell

Geonetry := GEQ TUBEZ n, ng nyn.

MESHR (rg, g = 0, n,)

MESHX (x;, i = 0,n,)

MESHY (y;, i = 0,ny)

MESHZ (2, k = 0,n.)

OFFCENTER . yy 2¢ M X (((Mgtn, (i—14n0 (G—14n, (k—1)))s 9 = Ling), @ = 1,ng), j =
1,ny), k=1,n,);

that contains a maximum o¥,, = n,n,n,n. subregions. Here the conditions:

_+ To + Tn, + z.
2

To + T,
2

Yo ";yny Ty

y0+yny
2

To < —Tnp

Tp, > Tn, + + 2.

Yo < —Tn, +

Yn, > Tn, + + Ye

must be satisfied.

Only the part of each Cartesian region totally inside theudamror cindrical region will be considered. The mixture
associated with these subregions are provided provided;by

For the 2-DTUBE geometries, each possible subregiai the cell can be associated with a positigni, j)
according to:

l=g+n.(i—1+n.(j—1)) (3.87)

for a maximum ofN,. regions. The volumé&] of these regions can be evaluated using the procedureshbascr

in Appendix A. Note that some of these volumes may turn ougtaish since not all the radial regions will have
an intersection with each of the Cartesian region. Thusfitfz¢ region identification will correspond t.}, a
compressed version of the sgt that containsVy terms where the elements with vanishing volume have been
removed:

| c=0
DO =1, N{r}
IF(V_{l} .NE. 0) THEN
lc=lc+l
V {lct=V {l}
m{lc}=m{l}



IGE-260 24

Figure 13: Examples of annular geometry with Cartesianesgibns: TUBE (top), TUBEX (bottom left), TUBEY
(bottom center) an@UBEZ (bottom right).
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ENDI F
ENDDO

N {V}=lc

where the mixture identification vector is compressed irshitan similar toV;.
For the 3-DTUBEX, TUBEY andTUBEZ geometries, a similar process is used where each possliriegson
[ of the cell can be now associated with a positign, j, k). Here we use:

l=g+n.(i—14+n,(j —1+ny(k—1))) (3.88)

for a maximum ofN,. regions. The global ordering here is different from thatdufee the mixture ordering. The
volumesV; can again be evaluated using the procedures described enflppA. As for theTUBE geometry, some
of the volumes may turn out to vanish. Thus, the final regi@midication will correspond t¢l.}, a compressed
version of the sefl} that containsVy terms where the elements with vanishing volume can be redasiag the
procedure described above.

In 2-D, the outer surfacesare numbered according to the following procedure

(= —i—ny(j—1) (3.89)

for a maximum ofn,n, radial surfaces at,, (for example in Figure 13, there is no outer surface assetiaith
the Cartesian regiofi, j) = (2, 2)).

For 3-D Cylindrical geometries with embedded Cartesiaioreg the surfaces are numbered according to the
following procedure

e TUBEX
1. Amaximum ofn, , = n,nyn, surfaces at = xg
b=—g—n.(j —14+ny(k—1)) (3.90)

with S, evaluated using the procedure of Appendix A.
2. A maximum ofn, , surfaces at = x,,,

b=—g—n.(j—14+ny(k—1)) —nyy (3.92)

with S, evaluated using the procedure of Appendix A.
3. A maximum ofn,n,n, radial surfaces at = r,,,

C=—i—ny(j—1+ny(k—1))—2n,, (3.92)
for a maximum of
Ng =20, 4 +ngnyn, (3.93)
surfaces.
e TUBEY

1. Amaximum ofn, , = n,nzn, surfaces ay = yo
b=—g—n,(i—14+n,(k—-1)) (3.94)
2. A maximum ofn,., surfaces ay = y,,

{=—g—n,(i—1+ny(k—1)) —n,, (3.95)
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3. A maximum ofn,n,n, radial surfaces at = r,,

0=—i—ny(j —1+ny(k—1))—2n,, (3.96)
for a maximum of
Ng = 2n,, +nanyn. (3.97)
surfaces.
e TUBEZ

1. Amaximum ofn, . = n,nzn, surfaces at = z
b=—g—n.(i—14+n.(j—1)) (3.98)
2. A maximum ofn, . surfaces at = z,,
b=—g—np(i—14+n(j—1)) —n2 (3.99)
3. A maximum ofn,n,n, radial surfaces at = r,,
0=—i—ny(j—1+ny(k—1))—2n,, (3.100)
for a maximum of
Ns = 2n, . +nznyn. (3.101)
surfaces.

Again some of these surfaces will vanish and the final inder@ated with the surfaces will be compressed
using a procedure similar to that used for the volumes.

3.2 Pinsincells

Pin cells can be inserted in a pure geometry using the com@RWSTER. A 2-D example can be found in
Figure 14 corresponding to

Geonetry := GEQO CARCEL n, ngny
MESHR (rg, g =0, n,)
VESHX (x;, i = 0,n,)
MESHY (ij J= Ovny)
M X (((ngr(nTJrl)(i,lJrnz(j,l)), g=1n,+ 1), 1= 1,7%), j = 1,ny)
CLUSTER GeoPin
110 GeoPini = GEQ TUBE n, ng nyy
MESHR (rg,1, g = 0,1,.1)
MESHX (xiyl, 1= O,nmyl)
MESHY (y;.1 i = 0,7,,.)
M X (((ngrnr(iflJrnI(jfl))a 9= 17nr,l)7 i= 1anw,l)7 Jj= 17ny,l)
NPI N2 RPI N7, API N6, ;

where two pin geometr@zeoPi n are inserted in the celeon®et r y at positions

(1, 91) (rp cos(bp) + %7 7psin(6,) %)
(v2,12) = (rp cos(f, +m) + M7 rpsin(6, + ) %)

Similarly, the 3-D example illustrated in Figure 15 corresgs to
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Figure 14: Annular pins iICARCEL geometries.

Geonetry := GEQ CARCELX n,ngnyn,
MESHR (rg, g = 0,n,)
MVESHX (x;, i = 0,n,)
MESHY (y]7 j = O,TLU)
VESHZ (21, k = 0,n.)
M X((((mg-l-(n,\-l—l)(j—l-i-ny(k—l-i—nz(i—l)))a g=1Ln,+ 1)7 J= 1any)a k= 17nz)7 L= 17”96)
CLUSTER GeoPin
11 GeoPin: = GEO TUBEX nyp Nap Ny.p Nz p
MESHR (7¢ ., g = 0,7, p)
MESHX (25,5, @ = 0,74 .p)
MESHY (y;.p, @ = 0,1y p)
MESHZ (2, k = 0,1, )

M X (Mg (n) G 14ny (k—14n. (i—1)))> 9 = Ling), G =1,ny), k=1,n.), i =1,n,)
NPI N2 RPI N7, ;

The main feature of the pure geometry that are inserted il asiag this command is the fact that the pins

hide completely the part of the cell geometry that is locat@upletely inside the limits of the pins (see Figure 14
for a 2-D example)

3.3 Cellsin assemblies
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Figure 15:X directed cylindrical pins itCARCEL X geometries.

28
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4 TRACKING IN THE NXT MODULE OF DRAGON

4.1 Region Volume and Surface Area Evaluation

4.1.1 Cartesian Region

The subroutine that is used to evaluate the region volumeiaridce area in this caseNXTVCA. Depending
on the value of main direction parametddl RC specified, the locat, y andy ordering of axis may differ form
the referenceX, Y andZ axis. In fact we will have:

e v =X,y =Y,z= Zwhenl Dl RC=1;
e x=Y,y=7, 2= X whenl DI RC=2;
e v =/7,y=X,z=Y whenl DI RC=3.

The region numbet < n < N, N, N, associated with positiof j, & in thez, y, = mesh will be computed using

n=1i+(j+kN,)N, (4.1)
and will have a volume given by
Vi = DA A, (4.2)
where for a 3—-D geometry we have
Ay = (v —xi-1) (4.3)
Ay = (y; — yj-1) (4.4)
Az = (Zk — Zkfl) (45)

For a 2-Dx — y geometry we will assume thadt, = 1 while fory — z andz — x geometries we will usé\, = 1
andA, = 1 respectively. Finally for 1-Dx, y andz geometries we will select successively, = A, = 1,
A=A, =1landA, = A, =1

Note that we will use a similar definition &, A, andA , for surface area calculation:

S = AgAyA. (4.6)

For example, in 1-D geometry we will uge, = A, = A, = 1. For a 2-Dz — y geometry we will consider
A, = A, =1landA, = A, = 1 respectively for surfaces parallel to theandz axis. Similar relations will
also be used for 2-p — z andz — x geometries. Finally, for 3—D geometries we will use sudeess A, = 1,

A, = landA, = 1 for surfaces parallel to thg — z, = — = andz — y planes. The surface are then numbered
according to:

e m = j + N,k for location(j, k) in they — z plane located at, (i = —1);
e m = j+ Nyk + N,N, for location(j, k) in they — z plane located aty, (i = —2);

e m =k + N.i+ 2N, N, for location(k, i) in thez — z plane located aj, (j = —1);

m =k + N.i+ N.N, + 2N, N for location(k, i) in thez — = plane located aj, (j = —2);

m =1+ Nyj+ 2(N,N, + N, N,) for location(7, j) in thez — y plane located at, (k = —1);

m =i+ Ngj+2(N,N, + N.N,) +2N,N, for location(s, j) in thex — y plane located aty, (k = —2).
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4.1.2 Cylindrical Region

4.1.3 Mixed Cartesian/Cylindrical Region

4.2 Geometry Description

Here we will describe the various procedures in the NXT medaltrack multilevel geometries. The notation
we will use is the following:

e 2] is thez-directed spatial mesh for subgeometryThis vector containg = 0, N elements classified in
increasing value of and stored in recordmeshxf).

. yj is they-directed spatial mesh for subgeometryThis vector containg = 0, N, elements classified in
increasing value of and stored in recordmeshyf).

e 2, is thez-directed spatial mesh for subgeometryThis vector containg = 0, N elements classified in
increasing value of and stored in recordmeshz{).

e 1/ is the radial mesh for subgeometyy This vector containé = 1, N, elements classified in increasing
value ofr. For 3—-D geometries, one must also specify the directiaf the axis of the cylinder with
d = z for az-directed cylinderd = y for a y-directed cylinder and = = for a z-directed cylinder. For
2-D geometries, the circles are assumed to lie inithey plane (direction! = z). This vector contains
[ =1, N} elements classified in increasing value-@nd stored in recordmeshry).

e (r’,,77,) is the position of the center of the cylinders in a plane mdnmahe directiond. In the case
whered = z, the point(r”,,7",) = (y, z) represents a position in thé — Z plane. Ford = y, the point
(r’,,77,) = (2, z) represents a position in t#e— X plane while ford = z, the point(r” ,,r7,) = (z,y)
represents a position in thé— Y plane. This information corresponds to the eleménts—1, —2 of record
dmeshr).

e I}, identifies the region located in
] | <z<uz] Yyl <y<y] 2 <2<z o <r<r]
Note that the regions associated with a position such that
iy <z<z] oyl <y<y zH_<z<z 1y <r

is identified by}, , wherel’ = NY + 1. This region is located inside the Cartesian mesh but ceitsie
annular region. This is the case of regif}jj,, in Figure 12. Similarly,

x <z} y]_l <y< y; Z)  <z<z o <r<r] = Lo
x?v; <z y]_l <y< y;’ 2 <z<zl o <r<r] = Iy,
x| <x<a) Yy <vyg Z)  <z<z o <r<r] = Lok
z] <z <uz] yj'([; <y 2l <z<z] o <r<r] = Ik
x] <z <a) Yyl <y<y] z <z o <r<r] = Ijjio
z] <z <uz] Yyl <y<y] zX[; <z o <r<r] — I

with i’ = NY +1,j' = NJ + 1andk’ = N} + 1 as illustrated in Figure 16.
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"'7% Pou=3 | P3u=3 |Psu=3 %li?
Pusi=13| Pyps=13 | Prog=14| Prsz=15 | Prsi=13
P1221=9 | P1pp;=9 | Pyppp=t0| Pigpp=11 | P1221=9
Prou=8 | Pyy=s | Pray=6 | Prsy=7 | P1ur=s
Proor=1 | Pror=2 | 1013 | P1z01=4 | I'1491=5

S~ |

-

Figure 16: Numbering a multiregion geometry in DRAGON.

9,9 9,Y
Xj_1 <y < Xj
X <z< X7

RV <r < RPY

9,9 9,y
Xj_1 <y < Xj
X <z< X7

RI < r < RO

X9 <z < X9
X <z< X7

RV <r < RPY

X9 <z < X9
X <z< X7

RV < r < RO

X9 <ax < XP"
X <y< X7

RV < r < RO

S .x identify the region located on the plame= X§" with (recordl NDX- X):

ST ;i identify the region located on the plame= XJ{;;;” with (recordl NDX+X):

SY 1, identify the region located on the plape= X"* with (recordl NDX- Y):

S ;1 identify the region located on the plape= ng\fg with (recordl NDX+Y):

S# 5 identify the region located on the plane= X§** with (recordl NDX- Z):
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e S7 ., identify the region located on the plane= X;{,j with (recordl NDX+2):
X <z < X9
X <y< X7

RV < r < RO

e S' i identify the region located on the plane= X]gv’? with (recordl NDX+R):

X7 <w< X7
9,9 9,y

Xj_1 <y < Xj

X <z< X7

Note that for one can extract from geomegry= 1, the maximum extension of the geometry in all the directjons
namely:

Xg" <z < levf
Xp¥<y< X}ij
Xy <z< X}Vf
Ry™ <1< R}V?

Note that for the case whetk= z, the external boundary will be cylindrical and the limitingndition onr will
be

(@ = CP*P 4+ (= CF)* = 7 < (RY))®

for a z directed cylinder and with a similar logic farandy directed cylinders.
Similarly, the maximum extension of each sub-geometwjll be:

X§* <z < XYy
Xg <y < X3y
X§*<z< X}{,j
Ry <r < RYS

Now each tracking line in DRAGON is represented by a positiectorio = (rZ, r¥, rZ) throught which the
tracking line passes{, r* andr? are thex, y, andz components ofo) and a direction vectql = (u”, u¥, u*)
wherep”, ¥ andp® are the cosine of the angle between the track and thyeand > axes respectively. Any point
on this line can then be described in the following pararadtim:

P =1t Ui

where—oo < [ < oo.

Since each region in space can be specified by a series of ingusutfaces, determining if a line crosses
a region is equivalent to determining if a line intersect sowh the surfaces bounding the region. In fact, for
Cartesian, hexagonal and cylindrical regions either zetao (one for the line entering the region and one for the
line leaving the region) intersection between the trackimgand the bounding surfaces can be found. Now let us
see how one can determine the location of these intersqmbioits for various type of geometries.
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4.3 Volume Evaluation
In the new version of DRAGON we have tackle these problemiérfallowing way.
e For an assembly of Cartesian 3-D cells dendgted k) and located at:
Tio1 <@ <@y Yji—1 <Y < yj Zp—1 <2 < 2
the regional volumes are given by
Vije = (zi — zi—1)(yj — yj-1) (26 — 2r-1)
These volumes are computed using routix@ VCA.

e For sets oft, y or z directed concentric 3-D cylinders centeredat z.), (2, z.) and(z., y.) respectively
and denoted byi, 1), (4,1) or (k, 1) we will have :

(i,0) =1 <r<m rig <z <uw
G —=rna<r<rn  y-1<y<y;
(k1) =11 <r<mn 2p—1 <2 <z

the volumes are given by

Vie=m(ry —ri—1)(r + m—1) (@ — xi-1)
Vii=mn(r —ri—1)(re+ =) (y; — yj—1)
Vie = m(ry —r—1)(re +ri—1) (26 — 26—1)

This volume is computed using routinXTVCY.

e For sets of, y or z directed concentric 3-D cylinders centered@t z.), (z¢, x.) and(z., y.) respectively
and denoted byi, 1), (4,1) or (k, 1) overlapping a Cartesian mesh denoted by, k) the following volume
evaluation procedure is considered in rout\r'vVCC:

1. Call the routineNXTVCA to compute the volumes of the Cartesian regions.

2. For each concentric cylinddrstarting with the outermost, find the volume of intersectian between
a projection of the cylinder and of the 3-D Cartesfary, k) in a 2-D plane normal to the cylinder axis.
This volume intersection is computed using rouf\}T| RA.

3. RemoveAwy; from V41 and store inV;.
4. Returnto 2 and repeat the process uftif = 0 orl = 1.

The volumes should satisfy:

L1
Vijk = E Vijki
=1

e Foran annular pin covering a set of concentric 3-D cylindergered aty., z.), (z¢, ) and(z., y.) respec-
tively and denoted byi, 1), (j,1) or (k,1) overlapping a Cartesian mesh denoted by, k) the following
volume evaluation procedure is considered in rouliXxéPCC:

A 3-D Cartesian cell containingy concentric cylinders of radiug® was first projected on a plane perpendicular
to these cylinders. Then the resulting 2-D Cartesian cedldvscretized according to the users specification and to
each Cartesian sub-céll, j, k) located at

sy <az<al oyl <y<yh
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were associatelV + 1) 2-D regions of identical volum&™*! = (2§ — 25)(y! — 4}), region1 to N represent-
ing respectively theV concentric cylinders centered @t., y.). Then starting with the most outer cylinder one
determines whether the Cartesian regibn) is located totally outside or inside the specific cylindeintersects
it.

In the case where the Cartesian region is located outsideytimeler of outer radius,,, the volume of region
1 to n vanishes identically. In the case where it is located infi@éeegion of radius,, then the volume of region
n+ 1to N + 1 vanishes identically.

Finally when the Cartesian cell intersects tti& cylinder, one can compute the volume of intersectioif’-!
between the mestk, [),, and the cylinder using the relation:

kil 1okl k1 k1 kel
AV =Voy = Vo1 = Vig + Vi

where the volumé/i'f]?l represents the intersection between the cylinder and #reepbcated to the left of surface
; and belowy?.

Here for simplicity we will computé/i'fjfl in terms oﬂ/jk which represents the cylinder surface located to the
left of the plane defined by.’; andel which represents the cylinder surface located below theeptiefined by
surfaceyé-. These can be obtained using the relation

0 foru; < —ry,
Vi = 2 foru; > r,
a;r +ujy/r2 — (u;)?> otherwise

whereV = V; when

is selected, whilé/! =V if
L1
U; =Y; = Yr
is used.
In the case where the point of intersection of Iizrfeandyg- is located inside the cylinder of radiug, namely

k.l
Wiy = \/(xf —x0)2 4 (Y —yr)? <

Vi’;’l is given by:
1 1
‘/'kvl _ k l k1 2
ij T 9 (Vi = Vj) +uiuj + 1"

In all the other cases, depending on the location of the uanxanes with respect to the center of the cylinder we
will use:

0 if uf < 0andul <0
kal - ‘/jl if uf <0 andu{- >0
i ) VK if u® >0 andul <0

RVl if ub > 0andul > 0

3 n [ 7

OnceAV¥! has been computed, we can redefine the volume of regian$ andn as:
n p gl

Vg1 = Vag — AVP!
Vi = AVK!

and proceed to cylinder — 1.
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Once all the Cartesian regions associated with a specifiav#&apping of the 3-D cell have been processed in
the same way, the next step will consists in extracting froendet of’ x L x (IV + 1) regions those which will
have a non-vanishing 2-D volume. Then the explicit volumeanth region in a 3-D plane will be obtained using:
Vit = V(2" —21")

n

assuming this plane is located at
2t <z <z

We also associate to each region a 4 dimensional poliiter, z, ) which identifies the location of this region
inside the(z, y, z, ) mesh assuming that for regions located inside a Cartesiah me outside the cylinders the
radial pointer will be set to 0.

After each region has been identified in this fashion, theliexgracking procedure can begin. Because
DRAGON already embodied a quite general tracking proceth@@nplementation of the new geometric options
was quite simple. Each tracking line is first defined by a dioec(? and a starting pointzs, ys, zs) located out-
side the 3-D assembly. Then for each of the Cartesian diregtone locates the 3-D intersection pding, y;, 2;)
between the integration line and the various Cartesiaregl@erpendicular to the specific direction the line may
encounter. Similarly, for each possible cylinder in thesasisly one determines if it can intersect the integration
line and the two locations at which this intersection ocdutrs, v+, z1 ). The distance between the starting point
and each intersection point is then computed using

Di = \/(wi = ws)* + (i — ys)? + (2 — 25)?

and theD; are classified by increasing value. It is then simple to ifgpich track segment with a specific region
number using the 4 dimensional poinfér;, y, z, ) and to generate a DRAGON integration line.

4.4 Generation of the Integration Lines

4.4.1 Cartesian Geometry

We will first consider the 3-D case where each region is defineithe following 6 surfaces:

rf= X0 with X§Y <orf <XFg and  XPT <] <X 4.7)
ry =X{e  owith  X§¥Y <ry <XTg o and  X{T <rj < X7 (4.8)
ry =Xg?  with X" <ry <Xy and  X§7 <ri < XJ (4.9)
ri=Xg%s  with  X§T<ri <XTy  oand  XPT < < XQ (4.10)
ri = X§* with X§" <ri < X]‘{,If and XJY <r! < X]‘{,jj (4.11)
rg=X3s  with  X§T<rg <Xy and  X§Y <rg < XY (4.12)

The first step is to find the value bassociated with each face using:

=] - = (- )
1§ =g —r)/u U= 0g—rd)/u’

=05 —rd)/w* = (5 —r5)/1w
The next step is to locate the other two components of theweetssociated with the distancésdefined above:
=0ty = lp g =l ri=lipt 4 g
ry=lpt g rs=Lpt g ri=hpt g ri= et g

T __ 1z,,T €T Yy__ j1z,,Yy Y xr __ ]z,,T €T y__ 1z,,Y Yy
r5 = l5ut £y ry=Ilzp’ +rg rg = lgu" + 15 re=lgpn’ + 18
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and to test if these points can be located can be located onfdahe six faces of the parallelipiped. In order
for a line to cross a region, or two surfaces, at least two efsilt set of relations (Eqgs. (4.7) to (4.12)) must be
satisfied. One can also classify the surfaces by lookingeatlistance travelled along thedirection, namely?,
and ordering them in a monotonically increasing order.

For the 2-D case, we will consider only the following 4 redais

ri =X with  X§Y < < X3 (4.13)
ry =Xy with XY <rf < X]‘(;g (4.14)
rg=XgY  with  X§¥ <ry < X5 (4.15)
rY = ng\fg with Xg* <ri <X (4.16)

which are required to delimit a region. The first step is to fimel value of associated with each face using:

=7 =)/ B= 5 =)
W=y = ==

The next step is to evaluate the other component of the ve¢®D vector) associated with the distana;és

Yy _jz,y y Y__ T,y y
ri =pY +rf ro=lopY +rY

T __ 1Y, x T r__ 1Yy, x T
T3_Z3M +To T4_Z4M +To

In order for a line to cross a region, or 2 surfaces, at leastafithe four relations (Eqgs. (4.13) to (4.16)) must be
satisfied. Finally, one can classify the surfaces by lookihthe distance travelled along thedirection, namely
l;-i, and ordering them in a monotonically increasing order.

4.4.2 Cylindrical Geometry

Here we will consider independently the three types of 3-Ihdgrs that are permitted in DRAGON:
1. Acylinder with axis in ther direction and bounding surfaces:
(rf = CP")? + (rf = C$7)* = (Ry9)® with X§T < < X% (4.17)
s = X3 with (1) = CPT)? 4 (i — C97)2 < (RYY)? (4.18)
ry = X% with (] =P+ (r5 — C97) < (RyY)® (4.19)

x
1
r
x
1
r

First we will evaluate the distanég along the cylinder axis from our starting point to one of tioé&dm (3)
ot top (3) faces of the cylinder.

5= 05— r)/u B= (- D)

which can be used to locate completely the intersection d&twhe tracking line with an infinite plane
perpendicular to this direction.

(T%, Tgv T;) = (T%, l%:uy + Tgv l%:uz + 7’5)
(rg, T‘g, r3) = (r3, 5pY + 18, 50" +17)
The line will cross the bottomi (= 2) or the top ¢ = 3) of the cylinder if:

(1 = CP")? + (rF = C37)? < (BYD)?
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The second step consist in locating, if possible, an inttiee between the tracking line and a cylinder of
infinite extension in the: direction. The problem can be simplified if one considery @né projection of
the cylinder in they, = plane. If one defineg, as the angle between a projection of the line ingtheplane
and they axis we will have:

o1 = arccos(jiy /\/1T— (12 )?)

and we can now defing, andji. as follows:

fry = iy /1 = (pz)?
ﬂz = Mz/ V 1- (Mm)2

Now we need to determine if a line with direction cosiligg, /i) passing by the poir{t?, »Z) can cross the
circle of radiusk centered atC{"*, C§'*). The simplest way to deal with this problem is to use 2 sudeess
change of coordinates:

e Translate the axis in such a way that the origin of our systeooordinates is the center of the circle:
(7Y, 75) = (rg,r5) — (CY*,C37)

(C’1g7I7 6291) = (Ov O)

Rotate the axis in such a way that the tracking line is pdrallthe second axis:

f“é’ _ ﬂy _/lz Fg
75 fiz fy T

The line will intersect the circle only iR < 72 < R, in which case

i =R = (55 )

Rotate and translate back to the original system of cootelna

N (A e\ (), (O
r B _llz lly fﬁ Cg’m

Find the value of-¥ associated with this point:

S S

The cylinder is crossed in the cases where:

X3¢ <ri < X33
2. A cylinder with axis in they direction and bounding surfaces:
(ri —CP¥)2 + (rf — C$Y)2 = (RyY)*  with XV <rl < X% (4.20)
™ Y
ry = X3 with (15 - CfY)? 4 (5 — CFY)’ < (RYY)? (4.21)
&

= X470 with (5 - CfY)? 4 (] - CFY)? < (BRYY)® (4.22)

First we will evaluate the distanég along the cylinder axis from our starting point to one of tio#todm ¢-3)
ot top (3) faces of the cylinder.

5= 05— r)/u B= (- )
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which can be used to locate completely the intersection d&twhe tracking line with an infinite plane
perpendicular to direction this direction.

(r5,r3,r3) = (r5, l5p¥ + 78, l3p" +17)

(rg,r3,73) = (r3, l5p¥ + 18,1507 +17)
The line will cross the bottomi (= 2) or the top ¢ = 3) of the cylinder if:

(rf = CP7) 4 (1 = CF)? < (RRD)?

3. Acylinder with axis in the: direction and bounding surfaces:
(rf — CY)2 4 (1) — C9*)? = (Ry:)*  with X§* <ri < X% (4.23)
ry=Xg7  with (15 — Cf*)2 + (rd — C7)? < (Ry1)?  (4.24)

r

r;=X%  with (5 — O+ () — CFF)? < (Ry7)*  (4.25)

T

First we will evaluate the distanég along the cylinder axis from our starting point to one of tio&dm (¢3)
ot top (3) faces of the cylinder.

I3 =y —rg)/u®  l5=(r5 —r5)/p*

which can be used to locate completely the intersection d&twhe tracking line with an infinite plane
perpendicular to direction this direction.

(r3, 7“12}’ r3) = (r3, G’ + 08, 5p" +17)
(r5, 74, 75) = (5, 1Y + 74, 50" +77)
The line will cross the bottomi (= 2) or the top { = 3) of the cylinder if:

(rf = CP™) + (1 = C47)* < (RYD)?

The first step consist of evaluating the distatfbalong the cylinder axis with directiopfrom our starting point
to one of the bottomv{)) ot top (}) faces of the cylinder.

x

= 03—/ = 03 =)
= =)/ =0 )
=05 = 05—/

which can be used to locate completely the intersectionrtieking line with an infinite plane perpendicular to
directionj.

(50507 457 05) (I e )
(0 o B 475 Q" 402 e +72)
(507 o5t +7r5) (Gt 4 o Gt k)
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APPENDIX A
ANALYTICAL VOLUME EVALUATION

figures/ Here we will only be dealing with combinations of 3datangles and 3-D cylinders or 2-D rectangles
and circles. One restriction in DRAGON is that only 3-D cyérs within a cell can intersect and that these
cylinders must all have parallel axes that are co-lineah whe x, y or z directions. One consequence of this
observation is that all the volume for 3-D geometry can be ppated using the surfaces associated with a 2-D
projection of the cell along the axis of the cylinders mui&d by the height of the cell or cylinder. Accordingly,
we will concentrate on the problem of evaluating the sudassociated with each region possible when rectangles
and circles intersect with a maximum of 2 non-concentricles being permitted in DRAGON.

A.1 Rectangle
A 2-D Cartesian cell is identified by a poifit, y) that satisfies (see Figure 17):

1 S <12 1 <y <y (A.1)

wherex; andx, are the locations with respect to the origin of the left agthtboundary while); andy, are the
locations with respect to the origin of the bottom and toprimtary. The 2-D volume (3-D surface) of this rectangle
is given by:

VO = (zg —21)(y2 — 11)

Y2-----

\%e

Yrp------

Figure 17: Volume of a rectangle

A.2 Concentric Circles

Concentric annular rings are identified by the position efitcenter( R, #) with respect to the origin and the
innerr,; and outer radius, of the rings (see Figure 18)

e ST
The 2-D volume of this ring is:
VE =7}~ 1)

The volume of a circle of radiuscan be obtained from the above using= r andr; = 0.
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r; r

VR

> X

Figure 18: Volume of concentric annular circles

A.3 Overlapping Circles

The 2-D volumeV 4 associated with the intersection of two non-concentricles overlapping is somewhat
more difficult to obtain. Here we will assume for simplicityat each circlé (i = 1, 2) is identified by(R;, 0;, ;)
as illustrated in Figure 19. The first step is then to locagecnter(x; ., y; ) of each circle

(Ti,es Yie) = (Ricos Oy, R;sin6;)
the equation for the line delimiting each circle being

(z — xi,C)z +(y— yi,0)2 = 7«1.2

r
y2,c ,,,,,,,,, 2 VA

i
|

y],zr ******** ; *****
}
]
i
\
|

Figure 19: Volume of overlapping circles

The first step in evaluating the surface of intersection betwcircle 1 and 2 is to find the intersection points,
if any between the two lines defining the circle. This can telilg obtained in the following way. First, one
displaces the system origin in such a way that it is locatdleatenter of circle 1{ — x4+ 1 . andy — y+y1.¢)
(see Figure 20). The equations for the line defining eacledinche translated system of reference is

2ty = T%
(z —22.4)* + (¥ — y2.0)° = (r2)”
with
T2,d = (:CQ,C - Il,c)
Y2,d = (yz,c - yl,c)
Every point on the first circle must then satisfy:

y? =ri —2? (A.2)
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Y Y
W
-
VA
Translation Rotation

Figure 20: Translation and rotation of overlapping circles

this equation being invariant under rotation of the axishwitspect to the origin of circle 1. The second step
consists in rotating the axis in such a way that the centehetircle 2 is located on the axis (see Figure 20).
Since circle 2 is located at positidn: 4, y2,4) With respect to the origin of circle 1, we will have:

Roq=1/(22,0)? + (y2,4)?

02 4 = arctan (M>

X2.d

Note that forly2 4/x2.4| > 1, one generally uses

T2.d
02,4 = arccotan (—)
Y2,d

for increased precision when, ; becomes small with respectie 4.
After a rotation of the axis by-6; 4, the equation for circle 2 becomes:

(x — Ro.q)* +y* =13 (A.3)
Circles 1 and 2 then intersect only if
Rog<ri+rs
Using Eq. (A.2) in Eq. (A.3) one obtains
(x — Ro.q)® +71} —2* =713
which has for solution:

2 2_ .2
Ry 4 —r3 — 1)

A.4
2Ry q A4

Tg =

The intersection points are then given(y, —y,) and(zs, ys) with

ys = \/77 — 22 (A.5)
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Now for circle 1, these two points cover an angular sectoridfhv

o = 2 arctan (£>
Ts

while for circle 2 the angular sector covered is

Ys
oy = 2 arctan (7>
Ts — R2,d

still being careful to use therccotan instead when either, or zs — Rs 4 are much smaller thag.
Using this information, the 2-D volume of the intersecti@gion can be computed in the following way. It is
the sum the part of the angular sector of circle 1 to the lethefline define byt given by:
VLl a1 o

= 7T1 — TsYs

and the part of the angular sector of circle 2 to the right eflihe define byz,:
for a total of

A.4 Circles Overlapping a Rectangle

First let us consider the intersection of a rectangle defaseih Eq. (A.1) and a circle defined bR, 0, ) or
(Ze, ye, ) as illustrated in Figure 21:

(Ze,ye) = (Reos, Rsin0)

The first step here consists of determining whether the mgigds located totally outside or inside the circle or
intersects it.

In the case where the rectangle is totally located outsideytinder the volume of intersection of these two
regions vanishes identically. If the Cartesian region isater cell, the surface area of each face is just the lenght
of the lines composing the sides of the Cartesian cell. Incds® where the rectangle is located totally inside
the circle, the volume of intersection 1§ while if the circle is located totally inside the circle thelume of
intersection isV’* and the surface area is the lenght of the circle, nar2ely(for a circle corresponding to an
outer boundary). Finally when some of the faces defining élegangle intersect the circle, one can compute the
volume of intersectio’ © between the rectangle and the circle using

VO =Vao— Va1 —Via+ Vi

where the volumé’; ; represents the intersection between the cylinder and mepbcated to the left of surface
x; and belowy; (see Figure 22 for example).

Here for simplicity we will computé’; ; in terms ofV; which represents either the cylinder surface located to
the left of the plane defined hy; or the cylinder surface located below the plane defined biasey;. These can
be obtained using the relation

0 foru; < —r
V= 2 foru; > r

2 /2 32 i
a;r* +uj\/1? — (u;)?  otherwise

uj
oj = arccos | ——
r
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Y2l------

Yip------

| } X
X X2

Figure 21: Volume for the overlapp of a rectangle with an dantegion

Vofpmmm ey - Y2l-----

Yip----1---- - Y ====

Figure 22: Decomposition of a rectangle circle region aerl
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where
Uj = Tj — e
for the surface to the left of; or
Uj =Yj — Ye
for the surface belowy;.
In the case where the point of intersection of linggndy; is located inside the cylinder of radiusnamely

Ujj = \/(Il — SCC)Q + (yj — yc)2 <r
Vi; is given by:

1 1
Vig =5 (Vi = V3) + wguy + g

For all the other cases, depending on the location of thewamlanes with respect to the center of the cylinder we
will use:

0 if ui<0ande <0
Vo Vj if u; < 0andu; >0
R I 72 if u; > 0andu; <0

Vi+V;—ar? if u; > 0andu; >0
When Cartesian regions intersect annular cell, only thiases associated with the annular boundary can be
outer boundariesiUBE). In this case, the area correspond to
Sradial = r(emax - emin)

wheref,,.. is the maximum angle covered by the circular arc &g the minimum angle.

Finally, for the case where a rectangle is intersected wittor2 concentric annular regions as illustrated in
Figure 23 the volume evaluation process to be consideredasrdination of rectangle/circles intersections (see
above) and circle/circle intersections (see Appendix A.3)

Y

A

Y2 |-

VO

> X
X] XZ

Figure 23: Volume for the overlapp of a rectangle with two woncentric annular regions
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APPENDIX B

PROGRAMMING GUIDE FOR THE NXT MODULE

B.1 Structure of the program

Structure of the NXT tracking drive BTRNXT. t ex

47
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XELTSA
XELTSW
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EXCELP

[------ NXTTGC

[ [------ NXTLCA
[ [------ NXTTCR
[------ NXTTGS

[ [------ NXTLCA
[ [------ NXTTCR

B.2 Use of each routine

TheNXT: routines perform the following tasks:

NXT is the main subroutine of the module NXT.

NXTACGis the main routine to analyze a geometry.

NXTAGMapplies general merge vector to geometry and creatdd¥F€O0D, VOL UMVE andKEYFL X vectors.
NXTAVS adds current cell information to global surfaces and volsifoegeometry.

NXTBCGreads boundary conditions and symmetries and verify fosistancy.

NXTBRT builts surface reflection/transmission coupling array.

NXTCUA creates the array for testing the geometry in a Cartesisgndsy for internal symmetries and
unfolding the assembly according to these symmetries.

NXTCVMcompresses array$OL SUR andMATALB according tcKEYMRG and save on tracking file.
NXTCVS computes final volumes and surfaces.

NXTEQ extracts cell or pin geometry information.

NXTETH builts equivalent surface array for translational symmatitriangular hexagons.
NXTETS builts equivalent surface array for translational symmatiCartesian geometries.
NXTGET readsNXT: input data.

NXTGVD evaluates global mesh for assembly.

NXTHCL locate spatial position of hexagon in assembly of cells.

NXTHUA creates the array for testing the geometry in an hexagoeahasdy for internal symmetries and
unfolding the assembly according to these symmetries.

NXTI AA computes the volume of intersection between TBE.
NXTI HAfinds the intersection between an hexagonal region and ariarpin.
NXTI RA finds the intersection between a rectangular region and mumamnpin.

NXTI RRfinds intersection between a rectangular region and a Gamtps.
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e NXTI TA compute the volume of intersection between a 2D trianglesamannular pin.
e NXTLCAtracks a Cartesian 2-D or 3-D geometry.

e NXTLCUmerges two sets of tracks.

e NXTLCY tracks an annular geometry.

e NXTLHA tracks an hexagonal assembly in 2-D or 3-D geometry.

e NXTLHT track a triangular hexagon in 2-D or 3-D geometry.

e NXTLRH stores line segments in tracking vector for hexagonal géyméth global region and surface
identification.

e NXTLRS stores line segments in tracking vector with global regiot surface identification.
e NXTLSNdefines level-symmetric (type 2) quadrature angles.

e NXTMCD creates a multicell description for the geometry.

e NXTPCA removes volumes or surfaces of the overlapping pins.

e NXTPCC removes from the volumes or surfaces associated with anafimexagonal 2-D or 3-D geome-
trythe volumes or surfaces of the overlapping pins.

e NXTPHC removes from the volumes or surfaces associated with arlanfimexagonal 2-D or 3-D geometry
the volumes or surfaces of the overlapping pins.

e NXTPHT Remove from the volumes or surfaces associated with a heghgb or 3D geometry the volumes
or surfaces of the overlapping pins.

e NXTPRA compute the volume of intersection betwee®RCEL and aTUBE centered at the origin.
e NXTPRRfinds rectangle representing the intersection of two regtéan

e NXTQACdefines quadrature angles for cyclic tracking.

o NXTQAS defines quadrature angles for a given standard trackingrapti

o NXTQEWdefinesE'Q x quadrature angles.

e NXTQLCdefines Legendre-Chebyshev quadrature angles.

e NXTQLT defines Sanchez-Mao-Santandrea (Legendre-Trapezoigaljature angles.
o NXTQPS generates directions defining the planes normal to a sojttan

o NXTQRNdefines quadruple range (QR) quadrature angles.

o NXTQSCdefines spatial quadrature for cyclic tracking.

o NXTQSS defines standard spatial quadrature.

e NXTRCS renumbers cell surfaces.

e NXTRI Srotates geometry according to reference turn.

e NXTRPS renumbers pin cluster surfaces.

o NXTRTSrotate hexagon with triangles according to reference tndtest, and verify that it satisfies intrinsic
symmetries.
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e NXTRTL rotates tracking line according to reference turn.

e NXTSG discretizes geometry according to splitting options fort€sian geometries.
e NXTSGT discretizes geometry according to splitting options fordgonal geometries.
e NXTSQDsaves double precision quadrature parameters on tracleng fi

e NXTTCGis the main routine to track a geometry.

e NXTTCRtracks a cell rotated according to its explicit positiontie assembly.

e NXTTLCgenerates the cyclic tracking lines for a geometry.

e NXTTLOIlocate triangle position for hexagons with triangles.

e NXTTLS generates the standard tracking lines for a geometry

e NXTTNS normalizes tracking lines and save on tracking data strectu

e NXTTPOtests that cluster pins do not overlapp.

o NXTTPStests if pins satisfy required symmetry.

e NXTTRMdetermines the final mesh of a cell after turn.

e NXTTRS applies Cartesians symmetry to TURN factors.

e NXTVCA computes volume and surfaces for Cartesian geometry.

e NXTVCC computes volumes for a mix€€ARCEL geometry.

e NXTVHC computes the volume and area associated with each regiamfacs for a annular/hexagon with
triangular mesh in 2D or 3D geometry.

e NXTVOL computes regional volumes.

e NXTXYZ finds the global cell limits.

In addition the following lines are called by tlEXCEL P routine when inline tracking is requested:
e NXTTGC generate a specific cyclic tracking line for a geometry ialiracking).

e NXTTGS generate a specific standard tracking line for a geometiinéitracking).
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APPENDIX C

CONTENTS OF THE DRAGON BINARY TRACKING FILE

The tracking file generated by ttXT module is compatible witEEXCELT and stored in a sequential binary
format. It contain the information required to evaluate ¢b#ision probabilities associated with a geometry or to
solve the transport equation using the method of charatiti It can be decoded using the following FORTRAN
instructions:

SUBROUTI NE RDTRAK( | UNI T)

*mm - =

* |UNIT is fortran file unit nunber

k===

* Di mensi oni ng of variables
K= - - -
I MPLICI T NONE
I NTEGER | UNI T, NCOWNT, NBTR, | FMT
CHARACTER CHEAD+ 4, COVNT* 80
I NTEGER  NDI M LTRK, NREG, NSOUT, NALBG, NCOR, NANGL, MAXSUB, MXSEG
| NTEGER  NSUB, NSEG | A
DOUBLE PRECI SI ON  WEI GHT
INTEGER ICOM I I,JJ,1DLI NE(4)

k- - - =

* Al ocatabl e arrays

k===

REAL, ALLOCATABLE, DI MENSION(:) :: VOLSUR
REAL, ALLOCATABLE, DI MENSION(:) :: GALBED, DENSTY
REAL, ALLOCATABLE, DI MENSION(:,:) :: ANGLE
| NTEGER, ALLOCATABLE, DI MENSI ON(:) :: MATALB, | CODE,

> I ANGL, NRSEG
DOUBLE PRECI SI ON, ALLOCATABLE, DI MENSION(:) :: SEGLEN
DOUBLE PRECI SI ON, ALLOCATABLE, DI MENSION(:,:) :: BOLINE

k- - - =

* Read header and conments
K= - - -
READ( | UNI T) CHEAD, NCOWNT, NBTR, | FMT
DO | COMEL, NCOVNT
READ( | UNI T) COWNT
ENDDO

k===

* Read general information
READ( | UNI T) NDI M LTRK, NREG, NSOUT, NALBG, NCOR, NANGL, MAXSUB, MXSEG
ALLOCATE( VOLSUR( - NSOUT: NREG) , MATALB( - NSOUT: NREGQ) , | CODE( NALBG) ,

> GALBED( NALBG) , ANGLE( NDI M NANGL) , DENSTY( NANGL) )
READ(| UNI T) (VOLSUR(11), I1=- NSOUT, NREG)
READ(| UNI T) ( MATALB(I1), I | =- NSOUT, NREG)

READ(1 UNI T) (1 CODE(I1),11=1, NALBG)
READ(1 UNI T) (GALBED(I1),11=1, NALBG)
READ(1 UNIT) ((ANGLE(I1,JJ),11=1, NDIM, JJ=1, NANGL)
READ(| UNI T) (DENSTY(JJ), JJ=1, NANGL)
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*mm - =

Read tracks information

k===

*

100

105

where

[UNIT
CHEAD

NBTR
| FMT

NDI M
LTRK

NREG
NSOUT

V V.V VYV

>
>
>

53

ALLOCATE( | ANGL( MAXSUB) , NRSEG( NSEG) )
ALLOCATE( SEGLEN( NSEG) )
ALLOCATE( BOLI NE( NDI M MAXSUB) )
CONTI NUE
IF(1 FMI .EQ 1) THEN
READ( | UNI T, END=105) NSUB, NSEG, VEI GHT,
(1 ANGLE(1 A), | A=1, NSUB)
(NRSEG(11),I1=1, NSEG) ,
(SEGLEN(11),11=1, NSEG),
(1 DLI NE(1 RA), | RA=1, 4) ,
((BOLINE(1RA, 1), 1 RA=1, NDI M, | | =1, NSUB)
ELSE
READ( | UNI T, END=105) NSUB, NSEG, WEI GHT,
(1 ANGLE(1 A), | A=1, NSUB)
(NRSEG(11),11=1, NSEG) ,
(SEGLEN(11), 11=1, NSEG)
ENDI F
GO TO 100
CONTI NUE
DEALLOCATE( BOLI NE, SEGLEN, NRSEG, | ANGL)
DEALLOCATE( DENSTY, ANGLE, GALBED, | CODE, MATALB, VOLSUR)
RETURN
END

FORTRAN unit associated with this file.

keyword to identify the tracking file. The file is a valid DRA®Qracking file if CHEAD=$TRK
Number of comment records.

Total number of tracks if known, otherwi§8TRK=0.

track format where

e | FMT=0 for a short file where only the line segments are saved.

e | FMTI=1 for a long file where the starting location of each line seghis saved (useful for
drawing purposes).

comment lines.
Dimension of problem (2 for 2-D geometry and 3 for 3-D geomyetr
Type of tracking:

e LTRK=0 or isotropic tracking.
e LTRK=1 for cyclic (specular) tracking.

Number of regions.

Number of outer surfaces.



IGE-260

NALBG
NCOR
NANGL
VAXSUB

MXSEG
VOLSUR
MATALB
| CODE

GALBED
ANGLE

DENSTY

NSUB
NSEG
VAEI GHT
I ANGL
NRSEG

SEGLEN

| DLI NE
BCLI NE

54

Number of geometric albedos.
Number of initial and final surfaces that can be crossed baickir
Number of track direction angles considered in the intégnat

Maximum number of subtracks in a line. A subtrack correspgdondhe line segments associated
with an inner and an outer surface. For isotropic trackingingle subtrack is associated with
each line. For cyclic (specular) tracking a new subtrackaged after a line intersects a face.

Maximum number of line segments per track.
Surface-volume vector.
Surface direction and region material identification vecto

Albedo number associated with a face. Negative valueb ®DE refers to a geometric albedo
while positive values refers to a physical albedo.

Geometric albedos.

Tracking angle directions. For 2-D geometry they repretfemtosine and sine of the tracking
angles respectively while for 3-D geometries, they represiee 3 director cosines associated
with the track direction.

Density associated with each tracking angle. For 2-D geoesethis is a linear density while
for 3-D geometries it is a surface track density.

Number of subtracks for this line.

Number of segments for this line.

Integration weight factor associated with this track.
Angle number for subtracks.

Surface (negative) and region (positive) numbers crosgédbk. When SPEC=0, the first and
the last elements of this vector are associated with theredtsurfaces, all the other elements
being associated with region numbers. Wh&®PEC=1, NRSEGstarts and finishes with a surface
number. In addition the surface numbers will be mixed withridgion numbers in the remaining
elements of the vect™MRSEG.

Length of segment crossing a region. Elements of the v&E@ EN associated with surfaces
are set to 1.0 for isotropic scattering and 0.5 for specudaking.

line type identifier.

begining of subtrack origin.
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APPENDIX D

CONTENTS OF A /TRACKING/ DIRECTORY

This directory contains the information generated afterghometry has been analyzed by M¥T tracking
module of DRAGON.

D.1 The main directory

The records presents in Table 1 are always present in theCKRAG/ directory.

Table 1: Main records in /TRACKING/

Name Type  Units Comment

SI GNATURE , ., Cx12 parameterSIGNA containing the signature of the data
structure.

STATE- VECTOR  1(40) arrayS! containing various parameters that are required
to describe the data structure.

TRACK- TYPE, , Cxl12 parametefrTRKT containing the name of the tracking
model used to create the structure.

TITLE . .. Cx72 parametefl ITLE containing the title associated with the
tracking structure.

MATCOD_ ... I(S)) array M; containing the physical (real) mixture numbers
associated with flux regions in the geometry.

HOWATCOD,, ., I(SY) array H; containing the virtual (homogenization) mixture
numbers associated with flux regions in the geometry

KEYFLX , . . ... I(S?) array; containing the index positions, for the array cgn-
taining the transport unknowns, where the volume aver-
aged flux are stored.

VOLUME_ . ... RS cm? arrayV; containing the volumes of flux regions in the ge-
ometry.

The signature for this data structureSEGNA=L_TRACK , .. ... The tracking modelTRKT can take the
following values:

EXCELL for tracking by theEXCELT: , EXCELL: or NXT: modules;
TRKT = ¢ SYBI L fortracking by theSYBI LT: module;
JPM for tracking by theJ PMT: module.

The arrayS! contains the following information:
e S! = N, is the number of independent flux regions in the problem.

e St = N, is the number of independent transport unknowns in the probl
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e S = I isthe leakage flag where:

[ 0 indicates that leakage is present;
“7 )1 indicates that no leakage is present.

o St = 8% = M, is the maximum number of mixtures (physical and virtual)disethe problem.
e St = N is the number of independent external surfaces in the pmable

e St is the anisotropy level for flux calculations in the probletmese:

St 0 only the isotropic flux components are considered;
711 the isotropic and linearly anisotropic flux components anesidered.

In addition to the above records, the main /TRACKING/ dioggtalso contains information that is specific to each
tracking module. The contents of % vector fori > 7 will also depend on the specific tracking module selected.
This information will be described in Section D.2.

D.2 TheEXCELL records and sub-directories
WhenTRKT=EXCELL the following elements of! are also defined.

e Stisthe specifi©XCELL tracking procedure considered where:

for tracking Cartesian assemblies usECELT: or EXCELL: ;

for tracking hexagonal assemblies usECELT: ;

for tracking 2-D cluster cells usingXCELT: ;

for tracking 2-D and 3-D Cartesian and hexagonal assemiltbsclusters usingNXT: .

St =

N

e Sl is the track normalization flag where:

—1 direction dependent track normalization to merged volumes
St=1<{0 globaltrack normalization to merged volumes;
1 nonormalization.

The default isS{ = 0. The optionS{ = —1 can only be activated using tfRRENO keyword in theNXT: ,
EXCELT: andEXCELL: modules.

e S} is the tracking type where:

St 0 means that a standard tracking procedure was considered,
7 ]1 meansthata cyclic tracking procedure was considered.

e St is the type of boundary conditions to be used for the coltigicobability calculations where:

St 0 isotropic (white) boundary conditions are considered;
71 mirror-like (specular) boundary conditions are considere

Mirror-like boundary conditionsg}, = 1) can be used only if a cyclic tracking procedure is considere
(S5 =1).
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e St = Ng isthe order of the azimuthal (2-D) or solid (3-D) angularduzdure. For 2-D geometry, the order
of the azimuthal quadrature represents:

— Ng equal sectors (trapezoidal quadrature) in[ther] range when th&XCELT: module is used for
Cartesian assemblies;

— Ng equal sectors (trapezoidal quadrature) in[ther] range when th&XCELT: module is used for
hexagonal geometries;

— Ngq equal sectors (trapezoidal quadrature) in[thenax(S?,, 2)7] range when th&XCELT: module
is used for cluster geometries;

— Nq equal sectors in th®, /2] range andVy, equal sectors in ther/2, 7] range (trapezoidal quadra-
ture) when theNXT: module is used.

For 3-D geometry, the order of the solid angle quadratureesemt
— 8l = No(Nq + 2)/8 directions in each quadrant € ¢ < /2 and0 < § < 7/2) for the EQ
quadratureNIXT: , EXCELT: andEXCELL: modules for Cartesian assemblies);
— 8iy = 3 x No(Ng +2)/8 directions in each quadrarit € ¢ < 7/2 and0 < 6 < 7/2) forthe LCy,,
quadratureN)XT: module for Cartesian assemblies);
— Sts = 3 x N3 /2 directions in each quadrarit € ¢ < 7/2 and0 < 0 < 7/2) for the LT,, quadrature
(NXT: module for Cartesian assemblies);

— Ng equal sectors (trapezoidal quadrature) in[th@r] range when th&XCELT: module is used for
hexagonal geometries;

Si, is the angular symmetry factor.

Si, is the polar angle quadrature type where:

1 for a Gauss quadrature;

for a CACTUS type A quadrature;
for a CACTUS type B quadrature;
for an optimized Bickley quadrature.

t
813_

=W N

81, is the polar angle quadrature order.

Si5 is the azimuthal (2-D) or solid (3-D) angle quadrature tyiere:

fora EQn, (3-D) or trapezoidal (2-D) quadrature;

for a Gauss quadrature (2-D hexagonal geometri&XCELT: );
for a median angle quadrature;

for a LCyn,, 3-D quadrature;

for a LTn,, 3-D quadrature.

¢ _
Sis =

T W N

Sl is the number of directions for the azimuthal (2-D) or soBel¥) angle quadrature.

81, is the maximum number of tracking points on a line.
e Sig is the maximum length of a track.

e Si, is the total number of tracks generated.

e SI, is the total number of track directions processed.

The records presented in Table 2 will also be present on thie leael of a /TRACKING/ directory when the
EXCELT: , EXCELL: or NXT: tracking modules are used.
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Table 2: Additional records fdEXCELL tracking

Name Type Units Comment
EXCELTRACKOP  R(40) arrayR; containing additional tracking parameters.
| CODE_ . ..., 1(6) arrayls j containing the surface albedo index (geometric

albedos are used ifs , < 0 while physical albedos (see
IMACROLIB/ directory) are used whefy ;, > 0).

(YR TR TR T T

ALBEDO R(6) arrayf, ; containing the geometric surface albedo (used

EXCELL Dir directory containing addition&XCELT: andEXCELL:

NXTRecords_,, Dir directory containing addition®IXT: records.

onlyif Iz > 0).

[ T T T T

records for the cases whe$é = 1 or St = 3.
Present only if St < 4.

Present only if St = 4.

The recordR,; contains the following information:

R, is the maximum error allowed on the exponential function.
R, is the user requested tracking density inénand in cnt? respectively for 2-D and 3-D geometries.
R3 is the maximum distance in cm between an integration linesasutface.

R, is the computed tracking density in crhand in cnm 2 respectively for 2—D and 3—D D geometries (used
only if St = 4).

Rs is the computed line spacing in cm (used onlgif= 4).
R is the weight of the spatial quadrature (used onl§lif= 4).
R is the minimal radius of the circle (2-D) or sphere (3-D) @ning the geometry (used only§t = 4).

Rs is thex position of the center of the minimal circle (2-D) or sphe3el}) containing the geometry (used
only if St = 4).

Ry is they position of the center of the minimal circle (2-D) or sphe3el}) containing the geometry (used
only if St = 4).

R10 is thez position of the center of the minimal circle (2-D) or sphe3dX) containing the geometry (used
only if St = 4).

The/ NXTRecor ds/ directory contains the information required to track thergetry using th&\XT: mod-
ule module once it has been analyzed. The contents of thdstdity is presented in Table 3.
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Table 3: Global geometry records/itNXTRecor ds/

Name

Type

Units

Comment

G00000001DI M

G00000001CUF

@00000001CI S

G00000001CFE

G00000001SMX

&00000001SMY

&00000001SMz2

G00000001SMR

[ I T TR P T

MATALB

(R VI TS TR P T}

HOVMATALB, .,

SAreaRvol ume D(—NEE: N$C

1(40)

(2, N$9)

(4, N7©)

10 : 10, NE©)

D(0: N&P)

D(0: NE°)

D(0: N&°®

D(0:1)

I(—NGS: NS©

I(—N5 : N5P°)

I(—NGS: NS©

cm

cm

cm

cm

arrayNC containing the dimensioning information r¢
quired to rebuilt the assembly.

arranyf‘ containing the assembly description of t
geometry in terms of cells and rotations. The first g
ment ¢ = 1) identifies the cell number while the se
ond element identifies the cell rotation.

arraySGG containing the cell intrinsic symmetry proy
erties. A value ofl indicates that a center cell reflexid
symmetry is present while a value 6findicates that|
the symmetry is not considered (see below for a m
complete description of this array).

array FGG containing the assembly external surfg
|dent|f|cat|0n index (see below for a more complete
scription of this array).

arrayz®® containing thez-directed mesh for the ce
assembly in a Cartesian or Cylindrical geometry 4
the x position of the cell center for an hexagonal
sembly (see below for more explanations).
arrayy®® containing they-directed mesh for the ce
assembly in a Cartesian or Cylindrical geometry 4
the y position of the cell center for an hexagonal
sembly (see below for more explanations).
arrayz®® containing thez-directed mesh for the ce
assembly (see below for more explanations).
Present only if N°¢ = 3.

the radius®C of the outer assembly boundary (see
low for more explanations).

Present only if N$© = 1.

array MRG containing the merged surface and regi
number associated with each individual surfaces
regions in this geometry.

array containing the albedo number associated
each surface and the physical mixture number asg
ated with each region in this geometry.
array containing the albedo number associated V
each surface and the virtual (homogenization) mixt
number associated with each region in this geomet
array containing the are&y in cm for 2-D and cr for
3-D problems) and voluméZf cm? for 2-D and cni for
3-D problems) associated with each surface and re
in this geometry.

17
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The dimensioning vector for the global geometry contaiestiowing information:
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e NSC number of dimensions for the problem.

e NSC type of boundary. A value of indicates a Cartesian geometry, a valuel dhdicates a cylindrical
geometry and a value of 2 an hexagonal geometry.

e N$Cfirst direction to process in the analysis. For cylindess ikithe direction of the first axis of the plane
normal to the cylinder axis. For Cartesian and hexagonaingedes a value of laf-axis) is selected by
default.

e NS number of cells in the original geometry (before unfolding)
e NEC number of cells in the geometry after the original geometnyrifolded according to the symmetries.

e NEC diagonal symmetry flag. A value 6findicates that this symmetry is not used. A value-dfindicates
that the symmetry is used for the = y, plane and a value df that the symmetry is used for the = y
plane.

e NEC flag to identify symmetries with respect to theaxis (r— or z;). A value of0 indicates that no
symmetry is presenty$¢ = 41 is for a SYME symmetry at thery. plane, NS¢ = +2 represents 8SYM
symmetry at the:, plane andV$© = 3 implies a translation symmetry is thedirection o = ).

e NEC flag to identify symmetries with respect to theaxis (/— or y.). A value of 0 indicates that no
symmetry is presentySC = +1 is for aSYME symmetry at they,. plane,N¥¢ = +2 represents 8SYM
symmetry at they,. plane andVE® = 3 implies a translation symmetry is thedirection ¢— = y.;).

e N&C flag to identify symmetries with respect to theaxis (z— or z;). A value of 0 indicates that no
symmetry is presentfy$¢ = +1 is for aSYME symmetry at the... plane,N¥€ = +2 represents 8SYM
symmetry at the,. plane andVE® = 3 implies a translation symmetry is thedirection ¢_ = z.).

e NSC number ofx mesh subdivisions or hexagons in the original geometry.
e NSC number ofy mesh subdivisions or hexagons in the original geometry.
e NSC number of: mesh subdivisions in the original geometry.

e NEC number ofr mesh subdivisions or hexagons in the unfolded geometry.
e NEE number ofy mesh subdivisions or hexagons in the unfolded geometry.
e NE® number ofz mesh subdivisions in the unfolded geometry.

e NEC maximum number cells required to represent this geometry.

e NE° maximum number of region for this geometry.

e NEE total number of clusters in this geometry.

e NEE maximum number of pins in this geometry.

e N$G maximum dimensions of any mesh array for a cell in this gegmet

e N$E maximum dimensions of any mesh array for a pin in this geometr

e N$E number of external surfaces for this geometry.

e NEE number of regions for this geometry.

e NG maximum number of external surfaces in a sub-geometrydean this geometry.

e NEC maximum number of regions in a sub-geometry included ingbismetry.
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The indexing of arra)é‘fje for the axis of symmetry is as follows
1. Cartesian assemblies:

e i = 1 refers to a reflexion of the geometry on a plane normaktagis;
e i = 2 refers to a reflexion of the geometry on a plane normal thais;
e | = 3 refers to a reflexion of the geometry on the plane y;

e i = 4 refers to a reflexion of the geometry on a plane normakthaeis.

2. Hexagonal assemblies (symmetries not yet programmed).

1 = 1 refers to a reflexion of the geometry on a plane normakttasis;
1 = 2 refers to a reflexion of the geometry on a plane normattheis;
1 = 3 refers to a reflexion of the geometry on the plane

1 = 4 refers to a reflexion of the geometry on a plane normakthgis.

Face=2 or -4 Face=1 or -5
Face=3 or -3 I;i:;: 0
U=1 -

Face=4 or -2 Face=5or -1
=1 V=2

Figure 24: Example of an assembly of hexagons (left) andeakéaces identification for an hexagon

The indexing of arrayl«“i‘fjG for external surface identification is as follows. Flfﬁf represents the number of
times the cell appears in the geometry after it has beendedolFori > 0, Fij can take the following values

ce _ J 1 surface associated with directionf cell j is an external boundary of the assembly
J 0 surface associated with directionf cell j is not an external boundary of the assembly

with the following planes associated with different valoés:
1. Cartesian assemblies:

e | = 1 surfaces on the_ plane for celly;
e | = 2 surfaces on the plane for celly;

1 = 3 surfaces on thg_ plane for cellj;

1 = 4 surfaces on thg, plane for cellj;
1 = 5 surfaces on the_ plane for cellj;

1 = 6 surfaces on the, plane for cell;.

2. Hexagonal assemblies (see Figure 24):
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1 = 1 surfaces on tha_ plane for cellj;

1 = 2 surfaces on the . plane for celly;

1 = 3 surfaces on the_ plane for cellj;

1 = 4 surfaces on the,. plane for celly;
e i = 5 surfaces on the_ plane for cellj;
e | = 6 surfaces on the, plane for celly;
e | = 9 surfaces on the_ plane for cellj;
e | = 10 surfaces on the . plane for cellj.

The arrays:©©, 46, 266 andr®C contain the following information:
1. Cartesian assemblies:

e 28C andz$C are the lower and upperlimits of mesh element (i = 1, n?®);
° yJG,Gl andyJGG are the lower and upperlimits of mesh element (j = 1, n¥);

e 256 and:SC are the lower and upperlimits of mesh element (k = 1, n?).
2. Hexagonal assemblies (see Figure 24):

e 25¢ = his the width of one face of the hexagon arftf® is the position inz of the center of cell in
the assembly;

e yS¢ = I is the width of one face of the hexagon ayfl? is the position iny of the center of celj in
the assembly;

e 256 and:Z¢ are the lower and upperlimits of mesh element (k = 1, n?).

As we noted above, the global geometry is always an asseroblgioing cells. For each cellin this as-
sembly, several records will be generated in/tiNXTRecor ds/ directory. These records are identified using a
FORTRAN CHARACTER* 12 variable as follows

| NTEGER |
CHARACTERx 12 NAVREC

CHARACTER:3 NREC

WRI TE( NAMREC, ’ (A1, 18.8,A3)’) ' C, 1, NREC

where the variabl®REC can take the following values:
e DIM for dimensioning information;
e SMR for the radial mesh description;
e SMX for thez-directed mesh description;
e SMY for they-directed mesh description;
e SMZ for thez-directed mesh description;
e MIX for physical mixture description;
e HOM for virtual mixture description;
e VSE for areas and volumes results;
e VSl for local surfaces and regions identification;

e RID for final region numbering;
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e SID for final surface numbering

e PNT for pin contents description;

e PIN for pins location.

63

In Table 4, a description of the additiondNXTRecor ds/ records associated with cél= 1 can be found.

Table 4: Cell; = 1 records i/ NXTRecor ds/

Name Type Units Comment

C00000001DI M 1(40) arrayNjGC containing the dimensioning information re-
quired to rebuilt the cell.

CO0000001SMR  D(N$©) cm arrayr$© containing the cell radial mesh description.

C00000001SMX  D(N$©) cm array:cGC containing the celk-directed mesh descrip-
tion.

C00000001SMY  D(N$©) cm arrayy$© containing the celj-directed mesh description.

C00000001SMZ  D(NEC) cm arrayz > containing the celt-directed mesh description.

C00000001M X  I(NE©) arrayMGC containing the cell physical mixture for eagh
region.

CO0000001HOM I(NEC) array HSC containing the cell virtual mixture for each
region.

CO0000001VSE D(—N$C: N§O) array SVP© containing surface area(SV®S = S$C in
cm for 2-D and cr for 3-D problems) and regional vol-
umes; (SVS© = VE€in cm? for 2-D and cnf for 3-D
problems).

C00000001VSI  I(5, —NSC: N§O) array VSES containing the location of a surfacg € 0)
and a reglong( > 0). See below for a more complete
description of this array.

CO0000001RI D I(NEC) index array RII?C associating local and global regign
numbering.

C00000001SI D I(N&C) index array suﬁf associating local and global outer sur-
face numbering.

COO000001PNT I(3, NEO) array P(fC containing the cell pin contents.

CO0000001PI N D(—1:4, NG array [£$ containing the location of the pins in cell.

Note that the record names above are built using the follgwW@RTRAN instructions:

WRI TE( NAMREC, ’

(AL, 18.8,A3)")

C , i, NAMEXT

The cell dimensioning array/ ¢ for cell i contains the following information:

e NECcell geometry type;

e N$Cdimensions of the radial mesh array;
e N$Cdimensions of the-directed mesh array;

e NEC dimensions of theg-directed mesh array;
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e NECdimensions of the-directed mesh array;

e NEC dimensions of the mixture record,;

e NEC geometry level (1 for cell);

e NEC number of regions in the cell before symmetry consideration
e NEC number of surfaces in the cell before symmetry consideratio
e NEC number of regions in the cell after symmetry considerations
e NE€ number of surfaces in the cell after symmetry consideration
o NEC first global region number for cell;

e NSClast global region number for cell;

o NECfirst global surface number for cell;

e NSC last global surface number for cell;

e NSC number of pin cluster geometries in cell;

e NEEfirst pin cluster geometry associated with cell;

e NG total number of pins in cell;

e NGC number of times this cell is used in the global cell.

while the remaining elements are not used.
The array:cJGC contains the following information:

¢ 2%¢ contains the displacement of the center of the cylindriegion with respect to the center of the Carte-
sian mesh in direction. This center is located at:

Gc GC
Te = Lz + IO
2
where we have used® = N$C.
e 2§¢, andz§° are the lower and upperlimits of mesh element (j = 1,7%).
The arrayy$© contains the following information:

¢ S contains the displacement of the center of the cylindrieglan with respect to the center of the Carte-
sian mesh in directiop. This center is located at:

 ySE+ ¢S
Vo=

where we have used = NC.
e y°¢ andy$© are the lower and upperlimits of mesh element (j = 1,nY).
The array-$¢ contains the following information:

e 2S¢ contains the displacement of the center of the cylindriegion with respect to the center of the Carte-

sian mesh in direction. This center is located at:
sz? + zgc
2

Ze =

where we have used® = NEC.
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e 2$C and:$¢ are the lower and upperlimits of mesh element (j = 1,7°).

The arrayr$© contains the following information:

° TG? C =0.

. rffl < r < r$° describes the position inof mesh element (j = 1, N5©).
The arrayp?C contains the following information:

e p®$ is the angular position of-, x- or y-directed pin with respect to the y or » axis.

e pSCis the radial position of-, z- or y-directed pin with respect to the— y, y — z or z — z center of the
cell where the pin is located.

e p$Cis the height of a-directed pin.
e pS$Cis the height of a/-directed pin.
e p$Cis the height of a-directed pin.
e p$Cis the outer radius of the pin.

The surface and volume identification array ﬁ?bontains the following information

° VSIGC identify thez or » mesh position of the region or volume. Fora or —u surface, a value of 1 is
used Wh|Ie for at-x or +u surface, a value of 2 is specified.

° VSIS‘; identify they or v mesh position of the region or volume. For-g or —v surface, a value of 1 is
used while for at-y or +v surface, a value of 2 is specified.

. VSI?‘; identify thez mesh position of the region or volume. Fora, a value of—1 is used while for atz
surface, a value of 2 is specified.

° VSI4G§- identify the radial mesh position of the region or volumegRes outside the external boundary are
assigned the valuN$'© + 1.

° VSI?S- identify thew mesh position of the region or volume. Fora surface, a value of 1 is used while
for a+w surface, a value of 2 is specified.

In Table 5, a description of the additionaNXTRecor ds/ records associated with pin= 1 can be found.
These records are identified using a procedure similar tasged for cell records, namely

| NTEGER |

CHARACTER+ 12 NAMVREC

CHARACTER:3 NREC

VRl TE( NAMREC, * (AL, 18.8,A3)") 'P, 1, NREC

where the variabl®&REC can take the same values as for cell records, excefdREC=PNT and NREC=PI N
which are now forbidden.
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Table 5: Pini = 1 records iy NXTRecor ds/

Name Type Units Comment

PO0O000001DI M 1(40) arrayNJGP containing the dimensioning information re
quired to rebuilt the pin.

POO000001SMR D(NEP) cm arrayr$” containing the pin radial mesh description.

PO0000001SMX D(NEP) cm array:cGP containing the pin:-directed mesh description.

PO0000001SMY D(NEP) cm arrayy; P containing the piny-directed mesh description.

P0O0000001SMZ  D(NEP) cm arrayz " containing the pirc-directed mesh description.

PO0000001M X I(NEP) arrayMGP containing the pin physical mixture for eagh
region.

PO0000001HOM I(NEP) array ¥ containing the pin virtual mixture for each re

POO0O00001VSE

POO000001VSI

POOO0O0001RI D

PO0000001SI D

D(—NSP : N&P)

I(5, — NG : NSP)

I((NEP)
I(NgP)

gion.

array S\P” containing surface area(SV®" = S in
cm for 2-D and cr for 3-D problems) and regional vol
umes; (SV5” = Ve in cn? for 2-D and cnf for 3-D
problems).

array VSE" containing the location of a surfacg € 0)
and a regiong > 0). The notation used here is similar to
thst selected for V§I-.
index array RII?P associating local and global regign
numbering.

index array Sllj'; associating local and global outer su
face numbering.

=
1

The pin dimensioning arrajy/ P contains the following information:

e NPP pin geometry type;

e N$P dimensions of the radial mesh array;

o N$P dimensions of the-directed mesh array;
o N¢F dimensions of thg-directed mesh array;

o ng dimensions of the-directed mesh array;

e NEP dimensions of the mixture record;

o NEP geometry level (2 for pins);

° ng number of regions in the pin before symmetry consideraions

° N&P number of surfaces in the pin before symmetry considerstion

e NP number of regions in the pin after symmetry considerations;

e NSP number of surfaces in the pin after symmetry considerations
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e NSPfirst global region number for pins in cluster;

NSP last global region number for pins in cluster;

NSPfirst global surface number for pins in cluster;

NSP last global surface number for pins in cluster;

NEPfirst pin cluster geometry for pins in cluster.
e NGPtotal number of pins in cluster.

while the remaining elements are not used. The acﬁszontains the following information:

¢ 2% contains the displacement of the center of the cylindriegion with respect to the center of the Carte-
sian mesh in direction. This center is located at:

Tt + 25"
Tem Ty

where we have used” = N$P.

e 257, andz$P re the lower and upper limits of mesh element (j = 1, n").

The arrayyfp contains the following information:

¢ yCF contains the displacement of the center of the cylindrieglan with respect to the center of the Carte-
sian mesh in directiop. This center is located at:

_ySP S
b=

where we have used = NP,
e y$7, andy$* are the lower and upperlimits of mesh element (j = 1,n¥).
The array-$” contains the following information:

e 2P contains the displacement of the center of the cylindriegion with respect to the center of the Carte-
sian mesh in direction. This center is located at:

- 280+ 25P
2
where we have used® = NS,
e 2$F, and:FP are the lower and upperlimits of mesh element (j = 1,77).
The arrayr§-3P contains the following information:

° T(_BT = T&P: 0.

e 7P <r <r$P describes the position inof mesh element with j = 1, N5".

Finally the/ NXTRecor ds/ directory also contains records associated with globaititieation of the sur-
faces and volumes as illustrated in Table 6.
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Table 6: Global geometry records/itNXTRecor ds/

Name Type Units Comment

Tracki ngDnsA  D(S%,) cm arrayD; containing the spatial spacing for each track
rection.

TrackingDirc D(NFEC, Sh) array «;,; containing the director cosine for axjsfor
each track direction.

TrackingOrig D(NPCG N,,S%) cm arrayLy, ;.; containing the origin in spacé (= 1, N¢)

Tracki ngWjt D
VTNor nal i ze_,

VTNor nal i zeD

[ I T TR P T

(R I TS TR P T}

L

SAr eaRvol une

D(S50)
D(VZ)

D(NZ, Sho)

I(—NSG, NS®
I(~N$P, N5°)

(= NG, N5°)

D(—N$E, NSC

and the direction of the normal plan for each plarend
track direction.

arrayW; containing the integration weight for each tra
direction.

array R; containing the ratio of the analytical and numg
ical volume for each region.
arrayR; containing the ratio of the analytical and numg¢
ical volume for region for each track direction.
Present only if S§ = —1.

array MRG containing the global merging index.
array containing the albedo number associated with €
surface and the physical mixture number associated
each region.

array containing the albedo number associated with &
surface and the virtual mixture number associated
each region.

array containing the are® in cm for 2-D and cr for
3-D problems) and volumed/( cm? for 2-D and cmi for
3-D problems) of each external surface and region in
geometry.
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