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1 INTRODUCTION

The tracking modules of DRAGON are used to perform two successive tasks, namely:[1–4]

1. to analyze the geometry provided and generate the information required for the tracking procedure to take
place;

2. to generate, for a specific geometry, the integration lines resulting from a specific numerical quadrature.

The result of the first task is theTRACKING data structure where one can find the records that are essential for all
the other calculations in DRAGON involving the geometry, including the regional volumes, the mixture associated
with each region, the flux index cross referencing the elements in the flux/current array with elements in the volume
array and the boundary conditions in the form of an albedo array. Depending on the type of geometry and on the
specific tracking module considered, one can also find in thisdata structure additional records that can be used
to rebuilt the geometry or associate a graphical image with the geometry. The result of the second task is the
creation of the tracking file that contains all the information required to process the numerical quadrature specified
in the tracking module.[3] The format of this tracking file does not depend on the tracking module selected even if
the explicit contents of the file does. For example, theNXT: tracking file generated for a given geometry will in
general differ from the information generated using theEXCELT: module for the same geometry.

TheNXT: tracking module retains most of the properties of the tracking procedures already implemented in
DRAGON, namely it contains a geometry analysis procedure aswell as an integration line generation procedure.
However, these procedures are programmed in such a way that they can be called by other modules of DRAGON,
therefore making DRAGON more modular. TheNXT: module has also been developed using a structure parallel
to that used in theEXCELT: module (justifying the name NXT for New Excell Tracking). The main difference is
the rationalisation of the information stored in theTRACKING data structure. The new records in theTRACKING

data structure associated with theNXT: module are defined in such a way that they can accomodate new types of
geometry as well as additional geometry levels, thereby simplifying the process of code maintenance and updating.
In this report we will describe theNXT: tracking procedure which, in the long term, could replace theEXCELT:
tracking procedure that has been in use for the last 20 years.

The primary goal of this report is to describe theNXT: tracking procedure. This will include:

• the theory manual for theNXT: module.

• the programmer’s guide for theNXT: module;

• the user guide for theNXT: module;

• a description of theTRACKING data structure generated byNXT: including a presentation of the contents of
the /NewExcellTrk/ subdirectory included in this data structure;
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2 GEOMETRY CONSIDERATIONS

TheNXT: module, while being quite general, can only process a limited number of geometry out of the full
set that one can define using the DRAGONGEO: module. The main constraints on the geometries that can be
currently analyzed by this module are the following :

1. A maximum of three sub-levels of geometry will be processed (see Figure 1 for a 2-D exemple of such
a geometry construction). The levels are classified using the following hierarchy by theNXT: tracking
module:

C4

C1 C2

C3

Cell C2

Cell C3

Cell C4

Cell C1

P1

Pin P1

P2

Pin P2

P3

Pin P3

Figure 1: Example of a multilevel 2-D geometry. Explicit geometry (left) and description in terms of cells and pins
(right).

(a) Main assembly level that will be filled with cell and to which are associated the boundary conditions
(see Figure 2).

C4

C1 C2

C3

Figure 2: Global 2-D geometry.

(b) Intermediate level defining the cells that will be used tofill the assembly (see Figure 3). In the cur-
rent version ofNXT: the cells used to define these assemblies cannot themselves contain cell sub-
assemblies.

(c) Optional upper level that corresponds to the cell geometries added using theCLUSTER keyword (see
Figure 3). The cell geometry on this level covers the region defined by lower level geometries.

In the case where the global geometry is not an assembly (a sigle cell) it is automatically generated byNXT:
based on the cell properties.

2. Limited to 2-D and 3-D geometries having a rectangular boundary (see Figure 5). This means that each
geometry in 2-D must be located between 2 lines parallel to the y axis and two lines parallel to thex axis.



IGE–260 3

Cell C2

Cell C3 Cell C4

Cell C1

Figure 3: Cells inserted in global geometry.

Pin P1 Pin P2 Pin P3

Figure 4: Pins superimposed on cells

In 3-D, the geometry must be locates between 2 plane normal tothex axis, 2 plane normal to they axis and
finally 2 plane normal to thez axis .

x

y

x1

y1

x2

y2

x

y

z

z1

x2
y1

y2

x1

z2

Figure 5: Geometry with 2-D (left) and 3-D (right) rectangular boundaries.

3. The boundary conditions are applied on the external facesof the geometry with three exceptions:

• SYME, a mirror symmetry applied at the center of the cell (single cell geometry) or at the center of the
cells closest to the direction specified for an assembly geometry (see Figure 6).

• SSME, a mirror symmetry applied at the boundary of the cell or the assembly.

• DIAG which is applied on ax = y diagonal passing through the center of the cell or the assembly (see
Figure 6). The combinationX- andY+ means that the regions under and to the right of the diagonal
are tracked while for the combinationX+ andY- the regions over and to the left of the diagonal are
tracked.

The external surfaces associated with a geometry are also generated assuming that the pin surfaces associ-
ated with an external boundary cover completely the external surfaces associated with the cell geometries.
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Figure 6: Central cell and diagonal symmetries. SymmetrySYME as applied for assembly of cells (top left) or for
individual cells (top right) symmetryDIAG for square cell or assembly (bottom).

Similarly, the cell surfaces associated with an external boundary are superimposed over the assembly sur-
faces.

Typical 2-D and 3-D geometries that can be processed by theNXT: module are illustrated in Figure 7. For
the 2-D geometry, each color is associated with a diffetent region number. One can immediatly see the hierarchy
of region numbering with namely the pins hiding the cells hiding the assembly level. This hierarchy is also used
for 3-D geometry both for the region and external surface numbering. However, the cells and pins surfaces not in
contact with an external surface are never considered.

2.1 Assembly level

As already mentionned, at the main assembly level the geometry must have a purely Cartesian structure. This
level can be built directly by the user using theCAR2D andCAR3D geometry types and filling each region in the
geometry with cells as proposed in the following 2-D and 3-D examples

Geo2DA := GEO: :: CAR2D 1 2
CELL C1 C2
X- REFL X+ REFL Y- REFL Y+ REFL
::: C1 := GEO: CAR2D 2 1

MESHX <<X1>> <<X2>> <<X3>> MESHY <<Y1>> <<Y2>>
MIX 1 2 ;

::: C2 := GEO: CARCEL 2 1 1
MESHX <<X1>> <<X3>> MESHY <<Y2>> <<Y3>>
RADIUS 0.0 <<R1>> <<R2>>
MIX 3 4 5 ;

;
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x

y

z

Figure 7: 2-D (left) and 3-D (right) geometries that can be processed by theNXT: module.

Geo3DA := GEO: :: CAR3D 2 2 2
CELL C1 C2 C3 C4 C5 C6 C7 C8
X- REFL X+ REFL Y- REFL Y+ REFL Z- REFL Z+ REFL
::: C1 := GEO: CAR3D 1 1 1

MESHX <<X1>> <<X2>> MESHY <<Y1>> <<Y2>> MESHZ <<Z1>> <<Z2>>
MIX 1 ;

::: C2 := GEO: CARCELZ 1 1 1 1
MESHX <<X2>> <<X3>> MESHY <<Y1>> <<Y2>> MESHZ <<Z1>> <<Z2>>
RADIUS 0.0 <<R1>>
MIX 12 2 ;

[ ... ]
;

The exact dimensions of the assembly are extracted from the dimensions of the individual cells, which must be
defined in such a way as to form a uniform Cartesian mesh in theX , Y andZ directions.

In the case where the assembly is made up of a single cell, as in

Geo2DC := GEO: :: CARCEL 2 1 1
X- REFL X+ REFL Y- REFL Y+ REFL
MESHX <<X1>> <<X3>> MESHY <<Y2>> <<Y3>>
RADIUS 0.0 <<R1>> <<R2>>
MIX 3 4 5

;
Geo3DC := GEO: :: CAR3D 2 2 2
X- REFL X+ REFL Y- REFL Y+ REFL Z- REFL Z+ REFL
MESHX <<X1>> <<X2>> <<X3>>
MESHY <<Y1>> <<Y2>> <<Y3>>
MESHZ <<Z1>> <<Z2>> <<Z3>>
MIX 1 2 3 4 5 6 7 8

;

theNXT: module will automatically generate, using the informationassociated with the cell, the requiredCAR2D
or CAR3D assembly that will be filled with the cell specified. For the 2-D and 3-D cases above,NXT: will work
as if it was seeing the following equivalent geometries:
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Geo2DCR := GEO: :: CAR2D 1 1
X- REFL X+ REFL Y- REFL Y+ REFL
CELL Geo2DC
::: Geo2DC := GEO: CARCEL 2 1 1

MESHX <<X1>> <<X3>> MESHY <<Y2>> <<Y3>>
RADIUS 0.0 <<R1>> <<R2>>
MIX 3 4 5 ;

;
Geo3DCR := GEO: :: CAR3D 1 1 1
X- REFL X+ REFL Y- REFL Y+ REFL Z- REFL Z+ REFL
CELL Geo3DC
::: Geo3DC := GEO: CAR3D 2 2 2

MESHX <<X1>> <<X2>> <<X3>>
MESHY <<Y1>> <<Y2>> <<Y3>>
MESHZ <<Z1>> <<Z2>> <<Z3>>
MIX 1 2 3 4 5 6 7 8 ;

;

A consequence of this reconstruction feature ofNXT: is that in this case the cell geometry options are limited to
CAR2D or CARCEL in 2-D and toCAR3D, CARCELX, CARCELY or CARCELZ in 3-D.

This procedure is straightforward for the cases where only theREFL, VOID andALBE boundary conditions
are used. If the first level geometry is a cell, the reconstruction process described above remains valid and the
symmetry is applied directly to the cell of interest. On the other hand, if the first main level geometry is an
assembly, two problem arise when theSYME, SYMM, andDIAG boundary are used:

1. These symmetries are used to simplify the input file and theGEOMETRYdata structure thereby created. This
means that theGEOMETRY data structure does not explicitly represent the geometry that will be treated.

2. The final geometry provided in theGEOMETRYdata structure does not necessarily have the purely Cartesian
mesh required by theNXT: module (primarly when diagonal boundary conditions are selected but also for
theSYME geometry which may be cutting cylindrical regions in half).

In order to illustrate this problem let us consider the 2-D examples of Figure 8 generated using the following
instructions in DRAGON:

Geo2DADSY := GEO: :: CAR2D 2 2
CELL C1 C2 C3
X- DIAG X+ REFL Y- SYME Y+ DIAG
::: C1 := GEO: CAR2D 1 1

MESHX <<X1>> <<X2>> MESHY <<X1>> <<X2>>
MIX 1 ;

::: C2 := GEO: CARCEL 2 1 1
MESHX <<X1>> <<X3>> MESHY <<X1>> <<X2>>
RADIUS 0.0 <<R1>> <<R2>>
MIX 3 4 5 ;

::: C3 := GEO: CARCEL 2 2 2
MESHX <<X1>> <<X2>> <<X3>> MESHY <<X1>> <<X2>> <<X3>>
RADIUS 0.0 <<R1>> <<R2>>
MIX 6 7 8 9 10 11 9 10 11 12 13 14 ;

;
Geo2DADSS := GEO: :: CAR2D 2 2
CELL C1 C2 C3
X- DIAG X+ REFL Y- SYME Y+ DIAG
::: C1 := GEO: CAR2D 1 1
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Figure 8: Example of a 2-D geometry with diagonal and mirror symmetry. Here the mirror symmetry are taken
with respect to theX andY axis passing through the center (top figures withSYME symmetry) or located at the
bottom (bottom figure withSSYM symmetry) of the geometry. The figure on the left is the exact geometry and that
to the right is the geometry provided as input to DRAGON.
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(C1,A) (C2,A) 

(C2,F) 

(C2,B) 

(C3,A) 

(C2,E) 

(C3,E) 

(C3,G) (C3,C) 

(C1,A) 

(C1,G) 

(C2,A) 

(C2,F) 

(C2,B) (C2,H) 

(C1,E) 

(C1,A) 

(C2,D) 

(C2,G) 

(C3,A) 

(C2,E) 

(C2,C) 

(C3,E) 

(C3,G) (C3,C) 

Figure 9: Unfolded assembly with cell contents andTURN option forGeo2DADSY (left) andGeo2DADSS (right).

MESHX <<X1>> <<X2>> MESHY <<X1>> <<X2>>
MIX 1 ;

::: C2 := GEO: CARCEL 2 1 1
MESHX <<X1>> <<X3>> MESHY <<X1>> <<X2>>
RADIUS 0.0 <<R1>> <<R2>>
MIX 3 4 5 ;

::: C3 := GEO: CARCEL 2 2 2
MESHX <<X1>> <<X2>> <<X3>> MESHY <<X1>> <<X2>> <<X3>>
RADIUS 0.0 <<R1>> <<R2>>
MIX 6 7 8 9 10 11 9 10 11 12 13 14 ;

;

For such geometries, theNXT: module first unfolds the geometry according to the instruction, generating a3 ×
3 assembly for geometryGeo2DADSY and a4 × 4 assembly for geometryGeo2DADSS and then fills these
assemblies with the adequatly rotated and reflected cells (see Figure 9) where the rotation indices (A to H) are
defined in the DRAGON users manual.[2] It also test if each cells possesses the intrinsic symmetry (cell C1 for
example) required by the geometry description.

2.2 Cell level

Two types of cells can be used to fill 2-D assemblies:

• CAR2D, that describes a rectangular cell.

• CARCEL, a rectangular cell that contains an embedded set of concentric annular regions. The center of these
annular region coincides with the center of the cell unless specified otherwise (keywordOFFCENTER). In
addition, the annular regions must all be located within theboundary of the rectangle.

The explicit rectangular submesh is provided using theMESHX andMESHY keywords for both theCAR2D and
CARCEL. In addition the explicit radial submesh for aCARCEL geometry is specified using theRADIUS keyword.
Implicit submeshing is also possible at the tracking level with the use of the keywordsSPLITX (X submesh),
SPLITY (Y submesh) andSPLITR (radial submesh).

The four types of cells that can be used to fill 3-D assemblies are:

• CAR3D, that describes a rectangular parallelipiped.
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• CARCELX, that describes a rectangular parallelipiped that contains an embedded set of concentric cylindrical
regions parallel to theX axis that extend over the fullX range of the cell.

• CARCELY, that describes a rectangular parallelipiped that contains an embedded set of concentric cylindrical
regions parallel to theY axis that extend over the fullY range of the cell.

• CARCELZ, that describes a rectangular parallelipiped that contains an embedded set of concentric cylindrical
regions parallel to theZ axis that extend over the fullZ range of the cell.

The explicit rectangular submesh is provided using theMESHX, MESHY andMESHY keywords for both these
geometries while the radial submesh for the last three geometries is specified using theRADIUS keyword. As
for 2-D cells, implicit submeshing is also possible at the tracking level with the use of the keywordsSPLITX (X
submesh),SPLITY (Y submesh),SPLITZ (Z submesh) andSPLITR (radial submesh).

2.3 Pin level

The only of pin geometry permitted for 2-D cells is aTUBE that describes a cell with circular boundaries. In
3-D, TUBEX, TUBEY or TUBEZ pin geometry that represents cylindrical cells in theX , Y andZ directions are
generally permitted with the following restrictions:

• The direction of all the pins in a cell must be identical.

• The cylindrical regions associated with a cell, if any, mustbe identical to that of the pins that are inserted in
this cell.

Finally all the pins (both in 2-D and 3-D) must be fully enclosed in the cell.
The radial mesh associated with a tube and specified using theRADIUS can be refined implicitely at the

tracking level using theSPLITR option. Similarly cylinders in theX , Y andZ directions will be defined using
the (MESHX, SPLITX), (MESHY, SPLITY) and (MESHZ, SPLITZ) pairs of keywords. Note that is also possible
to superimposed a Cartesian mesh on the radial mesh using thefollowing options

• MESHX, SPLITX, MESHY andSPLITY for TUBE geometries.

• MESHY, SPLITY, MESHZ andSPLITZ for TUBEX geometries.

• MESHZ, SPLITZ, MESHX andSPLITX for TUBEY geometries.

• MESHX, SPLITX, MESHY andSPLITY for TUBEZ geometries.
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3 GEOMETRY ANALYSIS

Here, we will describe successively how DRAGON identifies the region and surfaces associated with a mul-
tilevel geometry (an assembly) similar to those described in Section 2. One may recall that such assemblies are
always based the superposition of geometries containing cells (keywordCELL), pin clusters (keywordPIN) or
mixtures (keywordMIX). Here we will consider the case of first pure geometries (Section 3.1) which are defined
as a geometry that is filled only with mixtures. These can be defined using the following keywords:

• CAR2D for a 2-D Cartesian cell.

• CAR3D for a 3-D Cartesian cell.

• CARCEL for a 2-D Cartesian geometry with embedded annular regions,

• CARCELX for a 3-D Cartesian geometry with embedded cylindrical regions directed along theX axis.

• CARCELY for a 3-D Cartesian geometry with embedded cylindrical regions directed along theY axis.

• CARCELZ for a 3-D Cartesian geometry with embedded cylindrical regions directed along theZ axis.

• TUBE for an annular 2-D geometry which may contain an embedded 2-DCartesian mesh.

• TUBEX for anX directed 3-D cylindrical geometry which may contain an embedded 3-D Cartesian mesh.

• TUBEY for aY directed 3-D cylindrical geometry which may contain an embedded 3-D Cartesian mesh

• TUBEZ for aZ directed 3-D cylindrical geometry which may contain an embedded 3-D Cartesian mesh

In Section 3.2 we will study the effect of pin clusters superposition on these geometries. Finally in Section 3.3
we will study how these pure geometry are combined to create an assembly.

3.1 Region and surface identification for pure geometries

3.1.1 Pure Cartesian cells

Pure Cartesian cells (see Figure 10) in 2-D and 3-D may be created using the following DRAGON input data
structures

• 2-D Cartesian cell

Geometry := GEO: CAR2D nx ny

MESHX (xi, i = 0, nx)
MESHY (yj, j = 0, ny)
MIX ((mi+nx(j−1), i = 1, nx), j = 1, ny) ;

• 3-D Cartesian cell

Geometry := GEO: CAR3D nx ny nz

MESHX (xi, i = 0, nx)
MESHY (yj, j = 0, ny)
MESHZ (zk, k = 0, nz)
MIX (((mi+nx(j−1+ny(k−1)), i = 1, nx), j = 1, ny) k = 1, nz) ;
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wherexi, yj andzk are the local position of the lines (in 2-D) or planes (3-D) defining the subregions that can be
found in the cell along theX , Y andZ direction,nx +1, ny +1 andnz +1 representing the number of such lines
or planes in each direction. Note that for simplicity we willassume that the 2-D geometry is a 3-D geometry with
nz = 1 and

z0 = 0

z1 = 1

even though the 3-D extension is in principle from−∞ to ∞. This choice is in fact dictated by the fact that 2-D
volumes are in fact identical to 3-D volumes of regions with aheightz1 − z0 = 1.

x0 x2x1

y2

y1

y0

region 1 region 2

surface -5 surface -6

surface -7 surface -8

region 3

surface -1

surface -2

surface -3

surface -4region 4

x0

x1

x2

y2

y1

y0

z3

z2

z1

z0

Figure 10: Example of pure Cartesian cells in 2-D (left) and 3-D (right).

Such a Cartesian cell should contain

Nr = nxnynz

subregions, the mixture associated with these subregions being provided byml. In DRAGON, each subregion
l with volumeVl (see Appendix A.1) of a cell can be associated with a position(i, j, k) in the Cartesian mesh
according to (see Figure 10 for an example in 2-D):

l = i+ nx (j − 1 + ny(k − 1)) (3.1)

Vl = (xi − xi−1)(yj − yj−1)(zk − zk−1) (3.2)

this notation being similar to that used in the input data structure to associate a mixture with a subregion.
The numberingℓ (negative values) of the surfaces with areaSℓ follows the following algorithm:
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1. nx,s = nynz surfaces atx = x0

ℓ = −(j + ny(k − 1)) (3.3)

Sℓ = (yj − yj−1)(zk − zk−1) (3.4)

2. nx,s surfaces atx = xnx

ℓ = −(j + ny(k − 1))− nx,s (3.5)

Sℓ = (yj − yj−1)(zk − zk−1) (3.6)

3. ny,s = nznx surfaces aty = y0

ℓ = −(k + nz(i − 1))− 2nx,s (3.7)

Sℓ = (zk − zk−1)(xi − xi−1) (3.8)

4. ny,s surfaces aty = yny

ℓ = −(k + nz(i − 1))− 2nx,s − ny,s (3.9)

Sℓ = (zk − zk−1)(xi − xi−1) (3.10)

5. nz,s = nxny surfaces atz = z0

ℓ = −(i+ nx(j − 1))− 2nx,s − 2ny,s (3.11)

Sℓ = (xi − xi−1)(yj − yj−1) (3.12)

6. nz,s surfaces atz = znz

ℓ = −(i+ nx(j − 1))− 2nx,s − 2ny,s − nz,s (3.13)

Sℓ = (xi − xi−1)(yj − yj−1) (3.14)

for a total of

NS = 2nx,s + 2ny,s + 2nz,s

= 2nynz + 2nznx + 2nxny (3.15)

surfaces.

3.1.2 Pure annular and cylindrical cells

Pure annular (2-D) and cylindrical (3-D) cells (see Figure 11) may be created using the following DRAGON
input data structures

• 2-D annular cell

Geometry := GEO: TUBE nr

MESHR (rg, g = 0, nr)
MIX (mg, g = 1, nr) ;

containingNr = nr subregions.

• 3-DX directed cylinders cell
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Geometry := GEO: TUBEX nr nx

MESHR (rg, g = 0, nr)
MESHX (xi, i = 0, nx)
MIX ((mg+nr(i−1), g = 1, nr), i = 1, nx) ;

that containsNr = nrnx subregions.

• 3-D Y directed cylinders cell

Geometry := GEO: TUBEY nr ny

MESHR (rg, g = 0, nr)
MESHY (yj, j = 0, ny)
MIX ((mg+nr(j−1), g = 1, nr), j = 1, ny) ;

that containsNr = nrny subregions.

• 3-DZ directed cylinders cell

Geometry := GEO: TUBEZ nr nz

MESHR (rg, g = 0, nr)
MESHZ (zk, k = 0, nz)
MIX ((mg+nr(k−1), g = 1, nr), k = 1, nz) ;

that containsNr = nrnz subregions.

whereri is the radius of thenr concentric annular or cylindrical regions in the cell such thatr0 = 0.0. For 3-D
cylinders,xi, yj andzk are respectively the local position of the planes normal to the cylindrical axis defining
the extent of thenx, ny or nz cylinders. Note that for simplicity we will assume that the 2-D geometry is a 3-D
geometry withnz = 1 and an extension

z0 = 0

z1 = 1

even though the 3-D extension is in principle from−∞ to ∞. The mixture associated with these subregions are
provided provided byml.

For the 2-D annular cells, each subregionl with volumeVl can be associated with a positiong in the radial
mesh according to (see Appendix A.2):

l = g (3.16)

Vg = π(rg − rg−1)
2 (3.17)

For 3-D cylindrical cells we will use

• X directed cylinders

l = g + nr(i− 1) (3.18)

Vl = π(rg − rg−1)
2(xi − xi−1) (3.19)

• Y directed cylinders

l = g + nr(j − 1) (3.20)

Vl = π(rg − rg−1)
2(yj − yj−1) (3.21)
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r0 r2r1

x0

x1

x2

y2

y1

y0

z3

z2

z1

z0

Figure 11: Examples of annular geometry:TUBE (top),TUBEX (bottom left),TUBEY (bottom center) andTUBEZ
(bottom right) geometries.
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• X directed cylinders

l = g + nr(k − 1) (3.22)

Vl = π(rg − rg−1)
2(zk − zk−1) (3.23)

The volume ordering being consistent with the mixture ordering.
In 2-D, a single outer surfaceℓ = −1 will be considered with area

S1 = 2πrnr
(3.24)

while for 3-D cylinders we will use

• X directed cylinders

1. nr surfaces atx = x0

ℓ = −g (3.25)

Sℓ = π(rg − rg−1)
2 (3.26)

2. nr surfaces atx = xnx

ℓ = −g − nr (3.27)

Sℓ = π(rg − rg−1)
2 (3.28)

3. nx radial surfaces (in theY − Z plane) arr = rnr

ℓ = −i− 2nr (3.29)

Sℓ = 2πrnr
(xi − xi−1) (3.30)

for a total ofNS = 2nr + nx surfaces.

• Y directed cylinders

1. nr surfaces aty = y0

ℓ = −g (3.31)

Sℓ = π(rg − rg−1)
2 (3.32)

2. nr surfaces aty = yny

ℓ = −g − nr (3.33)

Sℓ = π(rg − rg−1)
2 (3.34)

3. ny radial surfaces (in theZ −X plane) arr = rnr

ℓ = −j − 2nr (3.35)

Sℓ = 2πrnr
(yj − yj−1) (3.36)

for a total ofNS,Y = 2nr + ny surfaces.

• Z directed cylinders

1. nr surfaces atz = z0

ℓ = −g (3.37)

Sℓ = π(rg − rg−1)
2 (3.38)
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2. nr surfaces atz = znz

ℓ = −g − nr (3.39)

Sℓ = π(rg − rg−1)
2 (3.40)

3. nz radial surfaces (in theX − Y plane) arr = rnr

ℓ = −k − 2nr (3.41)

Sℓ = 2πrnr
(zk − zk−1) (3.42)

for a total ofNS,Z = 2nr + nz surfaces.

3.1.3 Cartesian cell with annular subregions

Cartesian 2-D cells containing annular subregions and Cartesian 3-D cells with cylindrical (3-D) subregions
(see Figure 12) may be created using the following DRAGON input data structures

• 2-D Cartesian cell with annular mesh

Geometry := GEO: CARCEL nr nx ny

MESHR (rg, g = 0, nr)
MESHX (xi, i = 0, nx)
MESHY (yj, j = 0, ny)
MIX (((mg+(nr+1)(i−1+nx(j−1)), g = 1, nr + 1), i = 1, nx), j = 1, ny) ;

containing a maximum ofNr = (nr + 1)nxny subregions. Note that the a value of(g, i, j) with g ≤ nr

correspond to the part of an annular ring located betweenrg and rg−1 that is included in the Cartesian
region identified by(i, j) while a set(g, i, j) with g = nr + 1 corresponds to the part of a Cartesian region
identified by(i, j) completely outside the annular ring of radiusrnr

. Some of these regions may not exists
wheng ≤ nr since the intersection of the ring and the Cartesian region may vanish. In this case, the a
mixture number is still required on input even if it will not be used in the cell description.

• 3-D Cartesian cells containingX directed cylinders

Geometry := GEO: CARCELX nr nx ny nz

MESHR (rg, g = 0, nr)
MESHX (xi, i = 0, nx)
MESHY (yj, j = 0, ny)
MESHZ (zk, k = 0, nz)
MIX ((((mg+(nr+1)(j−1+ny(k−1+nz(i−1))), g = 1, nr+1), j = 1, ny), k = 1, nz), i = 1, nx) ;

that contains a maximum ofNr = (nr + 1)nxnynz subregions. Note that the a value of(g, i, j, k) with
g ≤ nr correspond to the part of an cylindrical ring located between rg andrg−1 that is included in the
Cartesian region identified by(i, j, k) while a set(g, i, j, k) with g = nr + 1 corresponds to the part of the
Cartesian region identified by(i, j, k) completely outside the cylindrical ring of radiusrnr

. Some of these
regions may not exists wheng ≤ nr since the intersection of the ring and the Cartesian region may vanish.
In this case, the a mixture number is still required on input even if it will not be used in the cell description.

• 3-D Cartesian cells containingY directed cylinders
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Geometry := GEO: CARCELY nr nx ny nz

MESHR (rg, g = 0, nr)
MESHX (xi, i = 0, nx)
MESHY (yj, j = 0, ny)
MESHZ (zk, k = 0, nz)
MIX ((((mg+(nr+1)(k−1+nz(i−1+nx(j−1))), g = 1, nr+1), k = 1, nz), i = 1, nz), j = 1, ny) ;

that contains a maximum ofNr = (nr + 1)nxnynz subregions. The same comment on mixtures input as
that provided for Cartesian cells withX directed cylinders remains valid here.

• 3-D Cartesian cells containingZ directed cylinders

Geometry := GEO: CARCELZ nr nx ny nz

MESHR (rg, g = 0, nr)
MESHX (xi, i = 0, nx)
MESHY (yj, j = 0, ny)
MESHZ (zk, k = 0, nz)
MIX ((((mg+(nr+1)(i−1+nx(j−1+ny(k−1))), g = 1, nr + 1), i = 1, nx), j = 1, ny), k = 1, nz)
;

that contains a maximum ofNr = (nr + 1)nxnynz subregions. Again some mixtures may not be used in
the calculations as described for Cartesian cells withX directed cylinders.

Hereri is the again radius of thenr concentric annular or cylindrical regions in the cell such thatr0 = 0.0. For
3-D cylinders,xi, yj andzk are respectively the local position of the planes normal to the cylindrical axis defining
the extent of thenx, ny or nz cylinders. Note that for simplicity we will again assume that the 2-D geometry is a
3-D geometry withnz = 1 andz0 = 0 andz1 = 1 even though the 3-D extension is in principle from−∞ to∞.

For the 2-DCARCEL geometries, each possible subregionl of the cell can be associated with a position(g, i, j)
according to (see Appendix A.2):

l = g + (nr + 1)(i− 1 + nx(j − 1)) (3.43)

for a maximum ofNr regions. The volumeVl of these regions can be evaluated using the procedures described
in Appendix A. Note that some of these volumes may turn out to vanish since not all the radial regions will have
an intersection with each of the Cartesian region. Thus, thefinal region identification will correspond to{lc}, a
compressed version of the set{l} that containsNV terms where the elements with vanishing volume have been
removed:

lc=0
DO l=1,N_{r}
IF(V_{l} .NE. 0) THEN

lc=lc+1
V_{lc}=V_{l}
m_{lc}=m_{l}

ENDIF
ENDDO
N_{V}=lc

where the mixture identification vector is compressed in a fashion similar toVl.
For the 3-DCARCELX, CARCELY andCARCELZ geometries, a similar process is used where each possible

subregionl of the cell can be now associated with a position(g, i, j, k). Here we use:

l = g + (nr + 1)(i− 1 + nx(j − 1 + ny(k − 1))) (3.44)
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Figure 12: Examples of Cartesian geometry with annular subregions:CARCEL (top), CARCELX (bottom left),
CARCELY (bottom center) andCARCELZ (bottom right) geometries.
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for a maximum ofNr regions. The global ordering here is different from that used for the mixture ordering.
The volumesVl can again be evaluated using the procedures described in Appendix A. As for theCARCEL
geometry, some of the volumes may turn out to vanish. Thus, the final region identification will correspond to
{lc}, a compressed version of the set{l} that containsNV terms where the elements with vanishing volume can
be removed using the procedure described above.

In 2-D, the outer surfacesℓ are numbered according to the following procedure

1. ny surfaces atx = x0

ℓ = −j (3.45)

Sℓ = (yj − yj−1) (3.46)

2. ny surfaces atx = xnx

ℓ = −j − ny (3.47)

Sℓ = (yj − yj−1) (3.48)

3. nx surfaces aty = y0

ℓ = −i− 2ny (3.49)

Sℓ = (xi − xi−1) (3.50)

4. nx surfaces aty = yny

ℓ = −i− 2ny − nx (3.51)

Sℓ = (xi − xi−1) (3.52)

for a total of

NS = 2ny + 2nx (3.53)

surfaces.
For 3-D Cartesian geometries with embedded cylindrical regions, the surfaces are numbered according to the

following procedure

• CARCELX

1. A maximum ofnr,x = (nr + 1)nynz surfaces atx = x0

ℓ = −g − (nr + 1)(j − 1 + ny(k − 1)) (3.54)

with Sℓ evaluated using the procedure of Appendix A.

2. A maximum ofnr,x surfaces atx = xnx

ℓ = −g − (nr + 1)(j − 1 + ny(k − 1))− nr,x (3.55)

with Sℓ evaluated using the procedure of Appendix A.

3. nxnz surfaces aty = y0

ℓ = −k − nz(i− 1)− 2nr,x (3.56)

Sℓ = (xi − xi−1)(zk − zk−1) (3.57)
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4. nxnz surfaces aty = yny

ℓ = −k − nz(i − 1)− 2nr,x − nxnz (3.58)

Sℓ = (xi − xi−1)(zk − zk−1) (3.59)

5. nxny surfaces atz = z0

ℓ = −i− nx(j − 1)− 2nr,x − 2nxnz (3.60)

Sℓ = (xi − xi−1)(yj − yj−1) (3.61)

6. nxny surfaces atz = znz

ℓ = −i− nx(j − 1)− 2nr,x − 2nxnz − nxny (3.62)

Sℓ = (xi − xi−1)(yj − yj−1) (3.63)

for a maximum of

NS = 2(nr,x + nx(nz + ny)) (3.64)

surfaces.

• CARCELY

1. nynz surfaces atx = x0

ℓ = −j − ny(k − 1) (3.65)

Sℓ = (yj − yj−1)(zk − zk−1) (3.66)

2. nynz surfaces atx = xnx

ℓ = −j − ny(k − 1)− nynz (3.67)

Sℓ = (yj − yj−1)(zk − zk−1) (3.68)

3. A maximum ofnr,y = (nr + 1)nxnz surfaces aty = y0

ℓ = −g − (nr + 1)(k − 1 + nz(i− 1))− 2nynz (3.69)

with Sℓ evaluated using the procedure of Appendix A.

4. A maximum ofnr,y surfaces aty = yny

ℓ = −g − (nr + 1)(k − 1 + nz(i− 1))− 2nynz − nr,y (3.70)

with Sℓ evaluated using the procedure of Appendix A.

5. nxny surfaces atz = z0

ℓ = −i− nx(j − 1)− 2nr,y − 2nynz (3.71)

Sℓ = (xi − xi−1)(yj − yj−1) (3.72)

6. nxny surfaces atz = znz

ℓ = −i− nx(j − 1)− 2nr,y − 2nynz − nxny (3.73)

Sℓ = (xi − xi−1)(yj − yj−1) (3.74)
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for a maximum of

NS = 2(nr,x + ny(nz + nx)) (3.75)

surfaces.

• CARCELZ

1. nynz surfaces atx = x0

ℓ = −j − ny(k − 1) (3.76)

Sℓ = (yj − yj−1)(zk − zk−1) (3.77)

2. nynz surfaces atx = xnx

ℓ = −j − ny(k − 1)− nynz (3.78)

Sℓ = (yj − yj−1)(zk − zk−1) (3.79)

3. nxnz surfaces aty = y0

ℓ = −k − nz(i − 1)− 2nynz (3.80)

Sℓ = (xi − xi−1)(zk − zk−1) (3.81)

4. nxnz surfaces aty = yny

ℓ = −k − nz(i− 1)− 2nynz − nxnz (3.82)

Sℓ = (xi − xi−1)(zk − zk−1) (3.83)

5. A maximum ofnr,z = (nr + 1)nxny surfaces atz = z0

ℓ = −g − (nr + 1)(i− 1 + nx(j − 1))− 2nynz − 2nxnz (3.84)

with Sℓ evaluated using the procedure of Appendix A.

6. A maximum ofnr,z surfaces atz = znz

ℓ = −g − (nr + 1)(i − 1 + nx(j − 1))− 2nynz − 2nxnz − nr,z (3.85)

with Sℓ evaluated using the procedure of Appendix A.

The maximum number of surfaces in this case is

NS = 2(nr,x + nz(nx + ny)) (3.86)

Again some of these surfaces will vanish and the final index associated with the surfaces will be compressed
using a procedure similar to that used for the volumes.

3.1.4 Annular cell with Cartesian subregions

Annular (2-D) and cylindrical (3-D) cells (see Figure 13) with Cartesian subregions may be created using the
following DRAGON input data structures

• 2-D annular cell
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Geometry := GEO: TUBE nr nx ny

MESHR (rg, g = 0, nr)
MESHX (xi, i = 0, nx)
MESHY (yj, i = 0, ny)
OFFCENTER xc yy MIX (((mg+nr(i−1+nx(j−1)), g = 1, nr), i = 1, nx), j = 1, ny) ;

containing a maximum ofNr = nrnxny subregions. Here the conditions:

x0 < −rnr
+

x0 + xnx

2
+ xc

xnx
> rnr

+
x0 + xnx

2
+ xc

y0 < −rnr
+

y0 + yny

2
+ yc

yny
> rnr

+
y0 + yny

2
+ yc

must be satisfied.

• 3-DX directed cylinders cell

Geometry := GEO: TUBEX nr nx ny nz

MESHR (rg, g = 0, nr)
MESHX (xi, i = 0, nx)
MESHY (yj, i = 0, ny)
MESHZ (zk, k = 0, nz)
OFFCENTER xc yy zc MIX ((((mg(nr(j−1+ny(k−1+nz(i−1))), g = 1, nr), j = 1, ny), k =
1, nz), i = 1, nx) ;

that contains a maximum ofNr = nrnxnynz subregions. Here the conditions:

y0 < −rnr
+

y0 + yny

2
+ yc

yny
> rnr

+
y0 + yny

2
+ yc

z0 < −rnr
+

z0 + znz

2
+ zc

znz
> rnr

+
z0 + znz

2
+ zc

must be satisfied.

• 3-D Y directed cylinders cell

Geometry := GEO: TUBEY nr nx ny nz

MESHR (rg, g = 0, nr)
MESHX (xi, i = 0, nx)
MESHY (yj, i = 0, ny)
MESHZ (zk, k = 0, nz)
OFFCENTER xc yy zc MIX ((((mg+nr(k−1+nz(i−1+nx(j−1))), g = 1, nr), k = 1, nz), i =
1, nz), j = 1, ny) ;
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that contains a maximum ofNr = nrnxnynz subregions. Here the conditions:

x0 < −rnr
+

x0 + xnx

2
+ xc

xnx
> rnr

+
x0 + xnx

2
+ xc

z0 < −rnr
+

z0 + znz

2
+ zc

znz
> rnr

+
z0 + znz

2
+ zc

must be satisfied.

• 3-DZ directed cylinders cell

Geometry := GEO: TUBEZ nr nx ny nz

MESHR (rg, g = 0, nr)
MESHX (xi, i = 0, nx)
MESHY (yj, i = 0, ny)
MESHZ (zk, k = 0, nz)
OFFCENTER xc yy zc MIX ((((mg+nr(i−1+nx(j−1+ny(k−1))), g = 1, nr), i = 1, nx), j =
1, ny), k = 1, nz) ;

that contains a maximum ofNr = nrnxnynz subregions. Here the conditions:

x0 < −rnr
+

x0 + xnx

2
+ xc

xnx
> rnr

+
x0 + xnx

2
+ xc

y0 < −rnr
+

y0 + yny

2
+ yc

yny
> rnr

+
y0 + yny

2
+ yc

must be satisfied.

Only the part of each Cartesian region totally inside the annular or cindrical region will be considered. The mixture
associated with these subregions are provided provided byml.

For the 2-DTUBE geometries, each possible subregionl of the cell can be associated with a position(g, i, j)
according to:

l = g + nr(i− 1 + nx(j − 1)) (3.87)

for a maximum ofNr regions. The volumeVl of these regions can be evaluated using the procedures described
in Appendix A. Note that some of these volumes may turn out to vanish since not all the radial regions will have
an intersection with each of the Cartesian region. Thus, thefinal region identification will correspond to{lc}, a
compressed version of the set{l} that containsNV terms where the elements with vanishing volume have been
removed:

lc=0
DO l=1,N_{r}
IF(V_{l} .NE. 0) THEN

lc=lc+1
V_{lc}=V_{l}
m_{lc}=m_{l}
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Figure 13: Examples of annular geometry with Cartesian subregions:TUBE (top),TUBEX (bottom left),TUBEY
(bottom center) andTUBEZ (bottom right).
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ENDIF
ENDDO
N_{V}=lc

where the mixture identification vector is compressed in a fashion similar toVl.
For the 3-DTUBEX, TUBEY andTUBEZ geometries, a similar process is used where each possible subregion

l of the cell can be now associated with a position(g, i, j, k). Here we use:

l = g + nr(i− 1 + nx(j − 1 + ny(k − 1))) (3.88)

for a maximum ofNr regions. The global ordering here is different from that used for the mixture ordering. The
volumesVl can again be evaluated using the procedures described in Appendix A. As for theTUBE geometry, some
of the volumes may turn out to vanish. Thus, the final region identification will correspond to{lc}, a compressed
version of the set{l} that containsNV terms where the elements with vanishing volume can be removed using the
procedure described above.

In 2-D, the outer surfacesℓ are numbered according to the following procedure

ℓ = −i− nx(j − 1) (3.89)

for a maximum ofnyny radial surfaces atrnr
(for example in Figure 13, there is no outer surface associated with

the Cartesian region(i, j) = (2, 2)).
For 3-D Cylindrical geometries with embedded Cartesian regions, the surfaces are numbered according to the

following procedure

• TUBEX

1. A maximum ofnr,x = nrnynz surfaces atx = x0

ℓ = −g − nr(j − 1 + ny(k − 1)) (3.90)

with Sℓ evaluated using the procedure of Appendix A.

2. A maximum ofnr,x surfaces atx = xnx

ℓ = −g − nr(j − 1 + ny(k − 1))− nr,x (3.91)

with Sℓ evaluated using the procedure of Appendix A.

3. A maximum ofnxnynz radial surfaces atr = rnr

ℓ = −i− nx(j − 1 + ny(k − 1))− 2nr,x (3.92)

for a maximum of

NS = 2nr,x + nxnynz (3.93)

surfaces.

• TUBEY

1. A maximum ofnr,y = nrnxnz surfaces aty = y0

ℓ = −g − nr(i− 1 + nz(k − 1)) (3.94)

2. A maximum ofnr,y surfaces aty = yny

ℓ = −g − nr(i− 1 + nx(k − 1))− nr,y (3.95)
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3. A maximum ofnxnynz radial surfaces atr = rnr

ℓ = −i− nx(j − 1 + ny(k − 1))− 2nr,x (3.96)

for a maximum of

NS = 2nr,y + nxnynz (3.97)

surfaces.

• TUBEZ

1. A maximum ofnr,z = nrnxny surfaces atz = z0

ℓ = −g − nr(i − 1 + nx(j − 1)) (3.98)

2. A maximum ofnr,z surfaces atz = znz

ℓ = −g − nr(i − 1 + nx(j − 1))− nr,z (3.99)

3. A maximum ofnxnynz radial surfaces atr = rnr

ℓ = −i− nx(j − 1 + ny(k − 1))− 2nr,x (3.100)

for a maximum of

NS = 2nr,z + nxnynz (3.101)

surfaces.

Again some of these surfaces will vanish and the final index associated with the surfaces will be compressed
using a procedure similar to that used for the volumes.

3.2 Pins in cells

Pin cells can be inserted in a pure geometry using the commandCLUSTER. A 2-D example can be found in
Figure 14 corresponding to

Geometry := GEO: CARCEL nr nx ny

MESHR (rg, g = 0, nr)
MESHX (xi, i = 0, nx)
MESHY (yj , j = 0, ny)
MIX (((mg+(nr+1)(i−1+nx(j−1)), g = 1, nr + 1), i = 1, nx), j = 1, ny)
CLUSTER GeoPin

::: GeoPin:= GEO: TUBE nr,l nx,l ny,l

MESHR (rg,l, g = 0, nr,l)
MESHX (xi,l, i = 0, nx,l)
MESHY (yj,l, i = 0, ny,l)
MIX (((mg+nr(i−1+nx(j−1)), g = 1, nr,l), i = 1, nx,l), j = 1, ny,l)
NPIN 2 RPIN rp APIN θp ;

;

where two pin geometryGeoPin are inserted in the cellGeometry at positions

(x1, y1) =

(

rp cos(θp) +
x0 + xnx

2
, rp sin(θp) +

y0 + yny

2

)

(x2, y2) =

(

rp cos(θp + π) +
x0 + xnx

2
, rp sin(θp + π) +

y0 + yny

2

)

Similarly, the 3-D example illustrated in Figure 15 corresponds to
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Figure 14: Annular pins inCARCEL geometries.

Geometry := GEO: CARCELX nr nx ny nz

MESHR (rg, g = 0, nr)
MESHX (xi, i = 0, nx)
MESHY (yj , j = 0, ny)
MESHZ (zk, k = 0, nz)
MIX ((((mg+(nr+1)(j−1+ny(k−1+nz(i−1))), g = 1, nr + 1), j = 1, ny), k = 1, nz), i = 1, nx)
CLUSTER GeoPin

::: GeoPin:= GEO: TUBEX nr,p nx,p ny,p nz,p

MESHR (rg,p, g = 0, nr,p)
MESHX (xi,p, i = 0, nx,p)
MESHY (yj,p, i = 0, ny,p)
MESHZ (zk,p, k = 0, nz,p)
MIX ((((mg+(nr)(j−1+ny(k−1+nz(i−1))), g = 1, nr), j = 1, ny), k = 1, nz), i = 1, nx)
NPIN 2 RPIN rp ;

;

The main feature of the pure geometry that are inserted in a cell using this command is the fact that the pins
hide completely the part of the cell geometry that is locatedcompletely inside the limits of the pins (see Figure 14
for a 2-D example)

3.3 Cells in assemblies
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Figure 15:X directed cylindrical pins inCARCELX geometries.
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4 TRACKING IN THE NXT MODULE OF DRAGON

4.1 Region Volume and Surface Area Evaluation

4.1.1 Cartesian Region

The subroutine that is used to evaluate the region volume andsurface area in this case isNXTVCA. Depending
on the value of main direction parameterIDIRC specified, the localx, y andy ordering of axis may differ form
the referenceX , Y andZ axis. In fact we will have:

• x = X , y = Y , z = Z whenIDIRC=1;

• x = Y , y = Z, z = X whenIDIRC=2;

• x = Z, y = X , z = Y whenIDIRC=3.

The region number1 ≤ n ≤ NxNyNz associated with positioni, j, k in thex, y, z mesh will be computed using

n = i+ (j + kNy)Nx (4.1)

and will have a volume given by

Vn = ∆x∆y∆z (4.2)

where for a 3–D geometry we have

∆x = (xi − xi−1) (4.3)

∆y = (yj − yj−1) (4.4)

∆z = (zk − zk−1) (4.5)

For a 2–Dx− y geometry we will assume that∆z = 1 while for y − z andz − x geometries we will use∆x = 1
and∆y = 1 respectively. Finally for 1–Dx, y andz geometries we will select successively∆y = ∆z = 1,
∆z = ∆x = 1 and∆x = ∆y = 1.

Note that we will use a similar definition of∆x, ∆y and∆z for surface area calculation:

Sm = ∆x∆y∆z (4.6)

For example, in 1–D geometry we will use∆z = ∆y = ∆z = 1. For a 2–Dx − y geometry we will consider
∆z = ∆x = 1 and∆z = ∆y = 1 respectively for surfaces parallel to they andx axis. Similar relations will
also be used for 2–Dy − z andz − x geometries. Finally, for 3–D geometries we will use successively ∆x = 1,
∆y = 1 and∆z = 1 for surfaces parallel to they − z, z − x andx − y planes. The surface are then numbered
according to:

• m = j +Nyk for location(j, k) in they − z plane located atx0 (i = −1);

• m = j +Nyk +NyNz for location(j, k) in they − z plane located atxNx
(i = −2);

• m = k +Nzi+ 2NyNz for location(k, i) in thez − x plane located aty0 (j = −1);

• m = k +Nzi+NzNx + 2NyNz for location(k, i) in thez − x plane located atyNy
(j = −2);

• m = i+Nxj + 2(NyNz +NzNx) for location(i, j) in thex− y plane located atz0 (k = −1);

• m = i+Nxj +2(NyNz +NzNx) + 2NxNy for location(i, j) in thex− y plane located atzNz
(k = −2).
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4.1.2 Cylindrical Region

4.1.3 Mixed Cartesian/Cylindrical Region

4.2 Geometry Description

Here we will describe the various procedures in the NXT module to track multilevel geometries. The notation
we will use is the following:

• xγ
i is thex-directed spatial mesh for subgeometryγ. This vector containsi = 0, Nγ

x elements classified in
increasing value ofx and stored in recorddmeshx(γ).

• yγj is they-directed spatial mesh for subgeometryγ. This vector containsj = 0, Nγ
y elements classified in

increasing value ofy and stored in recorddmeshy(γ).

• zγk is thez-directed spatial mesh for subgeometryγ. This vector containsk = 0, Nγ
z elements classified in

increasing value ofz and stored in recorddmeshz(γ).

• rγl is the radial mesh for subgeometryγ. This vector containsl = 1, Nγ
r elements classified in increasing

value of r. For 3–D geometries, one must also specify the directiond of the axis of the cylinder with
d = x for a x-directed cylinder,d = y for a y-directed cylinder andd = z for a z-directed cylinder. For
2–D geometries, the circles are assumed to lie in thex − y plane (directiond = z). This vector contains
l = 1, Nγ

r elements classified in increasing value ofr and stored in recorddmeshr(γ).

• (rγ
−1, r

γ
−2) is the position of the center of the cylinders in a plane mormal to the directiond. In the case

whered = x, the point(rγ
−1, r

γ
−2) = (y, z) represents a position in theY − Z plane. Ford = y, the point

(rγ
−1, r

γ
−2) = (z, x) represents a position in theZ −X plane while ford = z, the point(rγ

−1, r
γ
−2) = (x, y)

represents a position in theX−Y plane. This information corresponds to the elementsl = −1,−2 of record
dmeshr(γ).

• Ivlijk identifies the region located in

xγ
i−1 < x < xγ

i yγj−1 < y < yγj zγk−1 < z < zγk rγl−1 < r < rγl

Note that the regions associated with a position such that

xγ
i−1 < x < xγ

i yγj−1 < y < yγj zγk−1 < z < zγk rγ
N

γ

r

< r

is identified byIvl′ijk wherel′ = Nγ
r + 1. This region is located inside the Cartesian mesh but outside the

annular region. This is the case of regionIv3111 in Figure 12. Similarly,

x < xγ
0 yγj−1 < y < yγj zγk−1 < z < zγk rγl−1 < r < rγl → Ivl0jk

xγ

N
γ

x

< x yγj−1 < y < yγj zγk−1 < z < zγk rγl−1 < r < rγl → Ivli′jk

xγ
i−1 < x < xγ

i y < yγ0 zγk−1 < z < zγk rγl−1 < r < rγl → Ivli0k

xγ
i−1 < x < xγ

i yγ
N

γ

y

< y zγk−1 < z < zγk rγl−1 < r < rγl → Ivlij′k

xγ
i−1 < x < xγ

i yγj−1 < y < yγj z < zγ0 rγl−1 < r < rγl → Ivlij0

xγ
i−1 < x < xγ

i yγj−1 < y < yγj zγ
N

γ

y

< z rγl−1 < r < rγl → Ivlijk′

with i′ = Nγ
x + 1, j′ = Nγ

y + 1 andk′ = Nγ
z + 1 as illustrated in Figure 16.
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Figure 16: Numbering a multiregion geometry in DRAGON.

• Sx
−,jkl identify the region located on the planex = Xg,x

0 with (recordINDX-X):

Xg,y
j−1 < y < Xg,y

j

Xg,z
k−1 < z < Xg,z

k

Rg,d
l−1 < r < Rg,d

l

• Sx
+,jkl identify the region located on the planex = Xg,x

N
g

x

with (recordINDX+X):

Xg,y
j−1 < y < Xg,y

j

Xg,z
k−1 < z < Xg,z

k

Rg,d
l−1 < r < Rg,d

l

• Sy
−,ikl identify the region located on the planey = Xg,y

0 with (recordINDX-Y):

Xg,x
i−1 < x < Xg,x

i

Xg,z
k−1 < z < Xg,z

k

Rg,d
l−1 < r < Rg,d

l

• Sy
+,ikl identify the region located on the planey = Xg,y

N
g

y

with (recordINDX+Y):

Xg,x
i−1 < x < Xg,x

i

Xg,z
k−1 < z < Xg,z

k

Rg,d
l−1 < r < Rg,d

l

• Sz
−,ijl identify the region located on the planez = Xg,z

0 with (recordINDX-Z):

Xg,x
i−1 < x < Xg,x

i

Xg,y
j−1 < y < Xg,y

j

Rg,d
l−1 < r < Rg,d

l
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• Sz
+,ijl identify the region located on the planez = Xg,z

N
g

z

with (recordINDX+Z):

Xg,x
i−1 < x < Xg,x

i

Xg,y
j−1 < y < Xg,y

j

Rg,d
l−1 < r < Rg,d

l

• Sr
+,ijk identify the region located on the planer = Xg,d

N
g

r

with (recordINDX+R):

Xg,x
i−1 < x < Xg,x

i

Xg,y
j−1 < y < Xg,y

j

Xg,z
k−1 < z < Xg,z

k

Note that for one can extract from geometryg = 1, the maximum extension of the geometry in all the directions,
namely:

X1,x
0 < x < X1,x

N1
x

X1,y
0 < y < X1,y

N1
y

X1,z
0 < z < X1,z

N1
z

R1,n
0 < r < R1,n

N1
r

Note that for the case whered = z, the external boundary will be cylindrical and the limitingcondition onr will
be

(x− Cg,z
1 )2 + (y − Cg,z

2 )2 = r < (R1,z
N1

r

)2

for az directed cylinder and with a similar logic forx andy directed cylinders.
Similarly, the maximum extension of each sub-geometryg will be:

Xg,x
0 < x < Xg,x

N
g

x

Xg,y
0 < y < Xg,y

N
g

y

Xg,z
0 < z < Xg,z

N
g

z

Rg,d
0 < r < Rg,d

N
g

r

Now each tracking line in DRAGON is represented by a positionvector~ro = (rxo , r
y
o , r

z
o) throught which the

tracking line passes (rxo , rxo andrxo are thex, y, andz components of~ro) and a direction vector~µ = (µx, µy, µz)
whereµx, µy andµz are the cosine of the angle between the track and thex, y andz axes respectively. Any point
on this line can then be described in the following parametric form:

~r = rxo + l~µ

where−∞ < l < ∞.
Since each region in space can be specified by a series of bounding surfaces, determining if a line crosses

a region is equivalent to determining if a line intersect some of the surfaces bounding the region. In fact, for
Cartesian, hexagonal and cylindrical regions either zero or two (one for the line entering the region and one for the
line leaving the region) intersection between the trackingline and the bounding surfaces can be found. Now let us
see how one can determine the location of these intersectionpoints for various type of geometries.
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4.3 Volume Evaluation

In the new version of DRAGON we have tackle these problems in the following way.

• For an assembly of Cartesian 3–D cells denoted(i, j, k) and located at:

xi−1 ≤ x ≤ xi yj−1 ≤ y ≤ yj zk−1 ≤ z ≤ zk

the regional volumes are given by

Vijk = (xi − xi−1)(yj − yj−1)(zk − zk−1)

These volumes are computed using routineNXTVCA.

• For sets ofx, y or z directed concentric 3-D cylinders centered at(yc, zc), (zc, xc) and(xc, yc) respectively
and denoted by(i, l), (j, l) or (k, l) we will have :

(i, l) → rl−1 ≤ r ≤ rl xi−1 ≤ x ≤ xi

(j, l) → rl−1 ≤ r ≤ rl yj−1 ≤ y ≤ yj

(k, l) → rl−1 ≤ r ≤ rl zk−1 ≤ z ≤ zk

the volumes are given by

Vil = π(rl − rl−1)(rl + rl−1)(xi − xi−1)

Vjl = π(rl − rl−1)(rl + rl−1)(yj − yj−1)

Vkl = π(rl − rl−1)(rl + rl−1)(zk − zk−1)

This volume is computed using routineNXTVCY.

• For sets ofx, y or z directed concentric 3-D cylinders centered at(yc, zc), (zc, xc) and(xc, yc) respectively
and denoted by(i, l), (j, l) or (k, l) overlapping a Cartesian mesh denoted by(i, j, k) the following volume
evaluation procedure is considered in routineNXTVCC:

1. Call the routineNXTVCA to compute the volumes of the Cartesian regions.

2. For each concentric cylindersl starting with the outermost, find the volume of intersection∆vl between
a projection of the cylinder and of the 3-D Cartesian(i, j, k) in a 2-D plane normal to the cylinder axis.
This volume intersection is computed using routineNXTIRA.

3. Remove∆vl from Vijkl+1 and store inVijkl .

4. Return to 2 and repeat the process until∆vl = 0 or l = 1.

The volumes should satisfy:

Vijk =

L+1
∑

l=1

Vijkl

• For an annular pin covering a set of concentric 3-D cylinderscentered at(yc, zc), (zc, xc) and(xc, yc) respec-
tively and denoted by(i, l), (j, l) or (k, l) overlapping a Cartesian mesh denoted by(i, j, k) the following
volume evaluation procedure is considered in routineNXTPCC:

A 3-D Cartesian cell containingN concentric cylinders of radiusrn was first projected on a plane perpendicular
to these cylinders. Then the resulting 2-D Cartesian cell was discretized according to the users specification and to
each Cartesian sub-cell(i, j, k) located at

xk
1 ≤ x ≤ xk

2 yl1 ≤ y ≤ yl2
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were associated(N + 1) 2-D regions of identical volumeV k,l = (xk
1 − xk

2)(y
l
1 − yl2), region1 to N represent-

ing respectively theN concentric cylinders centered at(xr, yr). Then starting with the most outer cylinder one
determines whether the Cartesian region(k, l) is located totally outside or inside the specific cylinder orintersects
it.

In the case where the Cartesian region is located outside thecylinder of outer radiusrn, the volume of region
1 to n vanishes identically. In the case where it is located insidethe region of radiusrn then the volume of region
n+ 1 toN + 1 vanishes identically.

Finally when the Cartesian cell intersects thenth cylinder, one can compute the volume of intersection∆V k,l
n

between the mesh(k, l)n and the cylinder using the relation:

∆V k,l
n = V k,l

2,2 − V k,l
2,1 − V k,l

1,2 + V k,l
1,1

where the volumeV k,l
i,j represents the intersection between the cylinder and the plane located to the left of surface

xk
i and belowyjj .

Here for simplicity we will computeV k,l
i,j in terms ofV k

j which represents the cylinder surface located to the
left of the plane defined byxk

j andV l
j which represents the cylinder surface located below the plane defined by

surfaceylj. These can be obtained using the relation

Vj =







0 for uj < −rn
πr2n for uj > rn
αjr

2
n + uj

√

r2n − (uj)2 otherwise

αj = arccos

(

−
uj

rn

)

whereV k
j = Vj when

uj = xk
j − xr

is selected, whileV l
j = Vj if

ul
j = ylj − yr

is used.
In the case where the point of intersection of linexk

i andylj is located inside the cylinder of radiusrn, namely

uk,l
i,j =

√

(xk
i − xr)2 + (ylj − yr)2 < rn

V k,l
ij is given by:

V k,l
i,j =

1

2

(

V k
i − V l

j

)

+ uk
i u

l
j +

1

4
πr2n

In all the other cases, depending on the location of the various planes with respect to the center of the cylinder we
will use:

V k,l
i,j =















0 if uk
i < 0 andul

j < 0
V l
j if uk

i < 0 andul
j > 0

V k
i if uk

i > 0 andul
j < 0

V k
i + V l

j − πr2n if uk
i > 0 andul

j > 0

Once∆V k,l
n has been computed, we can redefine the volume of regionsn+ 1 andn as:

Vn+1 = Vn+1 −∆V k,l
n

Vn = ∆V k,l
n

and proceed to cylindern− 1.
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Once all the Cartesian regions associated with a specific 2-Dmapping of the 3-D cell have been processed in
the same way, the next step will consists in extracting from the set ofK × L × (N + 1) regions those which will
have a non-vanishing 2-D volume. Then the explicit volume ofeach region in a 3-D plane will be obtained using:

V m
n = Vn(z

m
2 − zm1 )

assuming this plane is located at
zm1 ≤ z ≤ zm2

We also associate to each region a 4 dimensional pointerI(x, y, z, r) which identifies the location of this region
inside the(x, y, z, r) mesh assuming that for regions located inside a Cartesian mesh but outside the cylinders the
radial pointer will be set to 0.

After each region has been identified in this fashion, the explicit tracking procedure can begin. Because
DRAGON already embodied a quite general tracking procedurethe implementation of the new geometric options
was quite simple. Each tracking line is first defined by a direction ~Ω and a starting point(xs, ys, zs) located out-
side the 3-D assembly. Then for each of the Cartesian directions, one locates the 3-D intersection point(xi, yi, zi)
between the integration line and the various Cartesian planes perpendicular to the specific direction the line may
encounter. Similarly, for each possible cylinder in the assembly one determines if it can intersect the integration
line and the two locations at which this intersection occurs(x±, y±, z±). The distance between the starting point
and each intersection point is then computed using

Di =
√

(xi − xs)2 + (yi − ys)2 + (zi − zs)2

and theDi are classified by increasing value. It is then simple to identify each track segment with a specific region
number using the 4 dimensional pointerI(x, y, z, r) and to generate a DRAGON integration line.

4.4 Generation of the Integration Lines

4.4.1 Cartesian Geometry

We will first consider the 3-D case where each region is definedby the following 6 surfaces:

rx1 = Xg,x
0 with Xg,y

0 < ry1 < Xg,y

N
g

y

and Xg,z
0 < rz1 < Xg,z

N
g

z

(4.7)

rx2 = Xg,x

N
g

x

with Xg,y
0 < ry2 < Xg,y

N
g

y

and Xg,z
0 < rz2 < Xg,z

N
g

z

(4.8)

ry3 = Xg,y
0 with Xg,x

0 < rx3 < Xg,x

N
g

x

and Xg,z
0 < rz3 < Xg,z

N
g

z

(4.9)

ry4 = Xg,y

N
g

y

with Xg,x
0 < rx4 < Xg,x

N
g

x

and Xg,z
0 < rz4 < Xg,z

N
g

z

(4.10)

rz5 = Xg,z
0 with Xg,x

0 < rx5 < Xg,x

N
g

x

and Xg,y
0 < ry5 < Xg,y

N
g

y

(4.11)

rz6 = Xg,z

N
g

z

with Xg,x
0 < rx6 < Xg,x

N
g

x

and Xg,y
0 < ry6 < Xg,y

N
g

y

(4.12)

The first step is to find the value ofl associated with each face using:

lx1 = (rx1 − rxo )/µ
x lx2= (rx2 − rxo )/µ

x

ly3 = (ry3 − ryo )/µ
y ly4 = (ry4 − ryo )/µ

y

lz5 = (rz5 − rzo)/µ
z lz6 = (rz6 − rzo)/µ

z

The next step is to locate the other two components of the vector r associated with the distanceslji defined above:

ry1 = lx1µ
y + ryo rz1= lx1µ

z + rzo ry2 = lx2µ
y + ryo rz2= lx2µ

z + rzo

rz3 = ly3µ
z + rzo rx3= ly3µ

x + rxo rz4 = ly4µ
z + rzo rx4= ly4µ

x + rxo

rx5 = lz5µ
x + rxo ry5= lz5µ

y + ryo rx6 = lz6µ
x + rxo ry6= lz6µ

y + ryo
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and to test if these points can be located can be located on oneof the six faces of the parallelipiped. In order
for a line to cross a region, or two surfaces, at least two of the six set of relations (Eqs. (4.7) to (4.12)) must be
satisfied. One can also classify the surfaces by looking at the distance travelled along theµ direction, namelyldj ,
and ordering them in a monotonically increasing order.

For the 2-D case, we will consider only the following 4 relations

rx1 = Xg,x
0 with Xg,y

0 < ry1 < Xg,y

N
g

y

(4.13)

rx2 = Xg,x

N
g

x

with Xg,y
0 < ry2 < Xg,y

N
g

y

(4.14)

ry3 = Xg,y
0 with Xg,x

0 < rx3 < Xg,x

N
g

x

(4.15)

ry4 = Xg,y

N
g

y

with Xg,x
0 < rx4 < Xg,x

N
g

x

(4.16)

which are required to delimit a region. The first step is to findthe value ofl associated with each face using:

lx1 = (rx1 − rxo )/µ
x lx2= (rx2 − rxo )/µ

x

ly3 = (ry3 − ryo )/µ
y ly4 = (ry4 − ryo )/µ

y

The next step is to evaluate the other component of the vectorr (2-D vector) associated with the distanceslji :

ry1 = lx1µ
y + ryo ry2= lx2µ

y + ryo

rx3 = ly3µ
x + rxo rx4= ly4µ

x + rxo

In order for a line to cross a region, or 2 surfaces, at least two of the four relations (Eqs. (4.13) to (4.16)) must be
satisfied. Finally, one can classify the surfaces by lookingat the distance travelled along theµ direction, namely
ldj , and ordering them in a monotonically increasing order.

4.4.2 Cylindrical Geometry

Here we will consider independently the three types of 3-D cylinders that are permitted in DRAGON:

1. A cylinder with axis in thex direction and bounding surfaces:

(ry1 − Cg,x
1 )2 + (rz1 − Cg,x

2 )2 = (R1,x
N1

r

)2 with Xg,x
0 < rx1 < Xg,x

N
g

x

(4.17)

rx2 = Xg,x
0 with (ry2 − Cg,x

1 )2 + (rz2 − Cg,x
2 )2 < (R1,x

N1
r

)2 (4.18)

rx3 = Xg,x

N
g

z

with (ry3 − Cg,x
1 )2 + (rz3 − Cg,x

2 )2 < (R1,x
N1

r

)2 (4.19)

First we will evaluate the distancelxi along the cylinder axis from our starting point to one of the bottom (rx2 )
ot top (rx3 ) faces of the cylinder.

lx2 = (rx2 − rxo )/µ
x lx3= (rx3 − rxo )/µ

x

which can be used to locate completely the intersection between the tracking line with an infinite plane
perpendicular to this direction.

(rx2 , r
y
2 , r

z
2) = (rx2 , l

x
2µ

y + ryo , l
x
2µ

z + rzo)

(rx3 , r
y
3 , r

z
3) = (rx3 , l

x
3µ

y + ryo , l
x
3µ

z + rzo)

The line will cross the bottom (i = 2) or the top (i = 3) of the cylinder if:

(ryi − Cg,x
1 )2 + (rzi − Cg,x

2 )2 < (R1,x
N1

r

)2
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The second step consist in locating, if possible, an intersection between the tracking line and a cylinder of
infinite extension in thex direction. The problem can be simplified if one considers only the projection of
the cylinder in they, z plane. If one definesϕ⊥ as the angle between a projection of the line in they, z plane
and they axis we will have:

ϕ⊥ = arccos(µy/
√

1− (µx)2)

and we can now definẽµy andµ̃z as follows:

µ̃y = µy/
√

1− (µx)2

µ̃z = µz/
√

1− (µx)2

Now we need to determine if a line with direction cosines(µ̃y, µ̃z) passing by the point(ryo , r
z
o) can cross the

circle of radiusR centered at(Cg,x
1 , Cg,x

2 ). The simplest way to deal with this problem is to use 2 successive
change of coordinates:

• Translate the axis in such a way that the origin of our system of coordinates is the center of the circle:

(r̃yo , r̃
z
o) = (ryo , r

z
o)− (Cg,x

1 , Cg,x
2 )

(C̃g,x
1 , C̃g,x

2 ) = (0, 0)

• Rotate the axis in such a way that the tracking line is parallel to the second axis:
(

r̂yo
r̂zo

)

=

(

µ̃y −µ̃z

µ̃z µ̃y

)(

r̃yo
r̃zo

)

• The line will intersect the circle only if−R ≤ r̂zo ≤ R, in which case

r̂yi = ±
√

R2 − (r̂zo)
2

• Rotate and translate back to the original system of coordinates:
(

ryi
rzi

)

=

(

µ̃y µ̃z

−µ̃z µ̃y

)(

r̂yi
r̂zo

)

+

(

Cg,x
1

Cg,x
2

)

• Find the value ofrxi associated with this point:

rxi = rzi
µx

µy

• The cylinder is crossed in the cases where:

Xg,x
0 < rxi < Xg,x

N
g

x

2. A cylinder with axis in they direction and bounding surfaces:

(rz1 − Cg,y
1 )2 + (rx1 − Cg,y

2 )2 = (R1,y
N1

r

)2 with Xg,y
0 < ry1 < Xg,y

N
g

y

(4.20)

ry2 = Xg,y
0 with (rz2 − Cg,y

1 )2 + (rx2 − Cg,y
2 )2 < (R1,y

N1
r

)2 (4.21)

ry3 = Xg,y

N
g

z

with (rz3 − Cg,y
1 )2 + (rx3 − Cg,y

2 )2 < (R1,y
N1

r

)2 (4.22)

First we will evaluate the distancelxi along the cylinder axis from our starting point to one of the bottom (rx2 )
ot top (rx3 ) faces of the cylinder.

lx2 = (rx2 − rxo )/µ
x lx3= (rx3 − rxo )/µ

x
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which can be used to locate completely the intersection between the tracking line with an infinite plane
perpendicular to direction this direction.

(rx2 , r
y
2 , r

z
2) = (rx2 , l

x
2µ

y + ryo , l
x
2µ

z + rzo)

(rx3 , r
y
3 , r

z
3) = (rx3 , l

x
3µ

y + ryo , l
x
3µ

z + rzo)

The line will cross the bottom (i = 2) or the top (i = 3) of the cylinder if:

(ryi − Cg,x
1 )2 + (rzi − Cg,x

2 )2 < (R1,x
N1

r

)2

3. A cylinder with axis in thez direction and bounding surfaces:

(rx1 − Cg,z
1 )2 + (ry1 − Cg,z

2 )2 = (R1,z
N1

r

)2 with Xg,z
0 < rz1 < Xg,z

N
g

z

(4.23)

rz2 = Xg,z
0 with (rx2 − Cg,z

1 )2 + (ry2 − Cg,z
2 )2 < (R1,z

N1
r

)2 (4.24)

rz3 = Xg,z

N
g

z

with (rx3 − Cg,z
1 )2 + (ry3 − Cg,z

2 )2 < (R1,z
N1

r

)2 (4.25)

First we will evaluate the distancelxi along the cylinder axis from our starting point to one of the bottom (rx2 )
ot top (rx3 ) faces of the cylinder.

lx2 = (rx2 − rxo )/µ
x lx3= (rx3 − rxo )/µ

x

which can be used to locate completely the intersection between the tracking line with an infinite plane
perpendicular to direction this direction.

(rx2 , r
y
2 , r

z
2) = (rx2 , l

x
2µ

y + ryo , l
x
2µ

z + rzo)

(rx3 , r
y
3 , r

z
3) = (rx3 , l

x
3µ

y + ryo , l
x
3µ

z + rzo)

The line will cross the bottom (i = 2) or the top (i = 3) of the cylinder if:

(ryi − Cg,x
1 )2 + (rzi − Cg,x

2 )2 < (R1,x
N1

r

)2

The first step consist of evaluating the distancelji along the cylinder axis with directionj from our starting point
to one of the bottom (rj2) ot top (rj3) faces of the cylinder.

lx2 = (rx2 − rxo )/µ
x lx3= (rx3 − rxo )/µ

x

ly2 = (ry2 − ryo )/µ
y ly3 = (ry3 − ryo )/µ

y

lz2 = (rz2 − rzo)/µ
z lz3 = (rz3 − rzo)/µ

z

which can be used to locate completely the intersection the tracking line with an infinite plane perpendicular to
directionj.

(rx2 , l
x
2µ

y + ryo , l
x
2µ

z + rzo) (rx3 , l
x
3µ

y + ryo , l
x
3µ

z + rzo)

(ly2µ
x + rxo , r

y
2 , l

y
2µ

z + rzo) (ly3µ
x + rxo , r

y
3 , l

y
3µ

z + rzo)

(lz2µ
x + rxo , l

z
2µ

y + ryo , r
z
2) (lz3µ

x + rxo , l
z
3µ

y + ryo , r
z
3)
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APPENDIX A

ANALYTICAL VOLUME EVALUATION

figures/ Here we will only be dealing with combinations of 3-Drectangles and 3-D cylinders or 2-D rectangles
and circles. One restriction in DRAGON is that only 3-D cylinders within a cell can intersect and that these
cylinders must all have parallel axes that are co-linear with thex, y or z directions. One consequence of this
observation is that all the volume for 3-D geometry can be computed using the surfaces associated with a 2-D
projection of the cell along the axis of the cylinders multiplied by the height of the cell or cylinder. Accordingly,
we will concentrate on the problem of evaluating the surfaces associated with each region possible when rectangles
and circles intersect with a maximum of 2 non-concentric circles being permitted in DRAGON.

A.1 Rectangle

A 2-D Cartesian cell is identified by a point(x, y) that satisfies (see Figure 17):

x1 ≤ x ≤ x2 y1 ≤ y ≤ y2 (A.1)

wherex1 andx2 are the locations with respect to the origin of the left and right boundary whiley1 andy2 are the
locations with respect to the origin of the bottom and top boundary. The 2-D volume (3-D surface) of this rectangle
is given by:

V C = (x2 − x1)(y2 − y1)

X

Y

y1

y2

x1 x2

VC

Figure 17: Volume of a rectangle

A.2 Concentric Circles

Concentric annular rings are identified by the position of their center(R, θ) with respect to the origin and the
innerr1 and outer radiusr2 of the rings (see Figure 18)

r1 ≤ r ≤ r2

The 2-D volume of this ring is:

V R = π(r22 − r21)

The volume of a circle of radiusr can be obtained from the above usingr2 = r andr1 = 0.
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X

Y

R

θ

r2
r1

VR

Figure 18: Volume of concentric annular circles

A.3 Overlapping Circles

The 2-D volumeV A associated with the intersection of two non-concentric circles overlapping is somewhat
more difficult to obtain. Here we will assume for simplicity that each circlei (i = 1, 2) is identified by(Ri, θi, ri)
as illustrated in Figure 19. The first step is then to locate the center(xi,c, yi,c) of each circlei

(xi,c, yi,c) = (Ri cos θi, Ri sin θi)

the equation for the line delimiting each circle being

(x − xi,c)
2 + (y − yi,c)

2 = r2i

X

Y

R1

θ1

r2

r1

VA

R2
θ2

x1,cx2,c

y1,c

y2,c

Figure 19: Volume of overlapping circles

The first step in evaluating the surface of intersection between circle 1 and 2 is to find the intersection points,
if any between the two lines defining the circle. This can be readily obtained in the following way. First, one
displaces the system origin in such a way that it is located atthe center of circle 1 (x → x+x1,c andy → y+y1,c)
(see Figure 20). The equations for the line defining each circle in the translated system of reference is

x2 + y2 = r21

(x− x2,d)
2 + (y − y2,d)

2 = (r2)
2

with

x2,d = (x2,c − x1,c)

y2,d = (y2,c − y1,c)

Every point on the first circle must then satisfy:

y2 = r21 − x2 (A.2)
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X

Y

X

Y

r2

r2

r1
r1

VA

VA

Translation Rotation

Figure 20: Translation and rotation of overlapping circles

this equation being invariant under rotation of the axis with respect to the origin of circle 1. The second step
consists in rotating the axis in such a way that the center of the circle 2 is located on thex axis (see Figure 20).
Since circle 2 is located at position(x2,d, y2,d) with respect to the origin of circle 1, we will have:

R2,d =
√

(x2,d)2 + (y2,d)2

θ2,d = arctan

(

y2,d
x2,d

)

Note that for|y2,d/x2,d| > 1, one generally uses

θ2,d = arccotan

(

x2,d

y2,d

)

for increased precision whenx2,d becomes small with respect toy2,d.
After a rotation of the axis by−θ2,d, the equation for circle 2 becomes:

(x−R2,d)
2 + y2 = r22 (A.3)

Circles 1 and 2 then intersect only if

R2,d < r1 + r2

Using Eq. (A.2) in Eq. (A.3) one obtains

(x−R2,d)
2 + r21 − x2 = r22

which has for solution:

xs =
R2

2,d − r22 − r21)

2R2,d
(A.4)

The intersection points are then given by(xs,−ys) and(xs, ys) with

ys =
√

r21 − x2
s (A.5)
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Now for circle 1, these two points cover an angular sector of width

α1 = 2 arctan

(

ys
xs

)

while for circle 2 the angular sector covered is

α2 = 2 arctan

(

ys
xs −R2,d

)

still being careful to use thearccotan instead when eitherxs or xs −R2,d are much smaller thanys.
Using this information, the 2-D volume of the intersection region can be computed in the following way. It is

the sum the part of the angular sector of circle 1 to the left ofthe line define byxs given by:

V 1,l =
α1

2
r21 − xsys

and the part of the angular sector of circle 2 to the right of the line define byxs:

V 2,r = πr22 −
(α2

2
r22 − (xs −R2,d)ys

)

for a total of

V A = V 1,l + V 2,r

A.4 Circles Overlapping a Rectangle

First let us consider the intersection of a rectangle definedas in Eq. (A.1) and a circle defined by(R, θ, r) or
(xc, yc, r) as illustrated in Figure 21:

(xc, yc) = (R cos θ,R sin θ)

The first step here consists of determining whether the rectangle is located totally outside or inside the circle or
intersects it.

In the case where the rectangle is totally located outside the cylinder the volume of intersection of these two
regions vanishes identically. If the Cartesian region is anouter cell, the surface area of each face is just the lenght
of the lines composing the sides of the Cartesian cell. In thecase where the rectangle is located totally inside
the circle, the volume of intersection isV C while if the circle is located totally inside the circle the volume of
intersection isV R and the surface area is the lenght of the circle, namely2πr (for a circle corresponding to an
outer boundary). Finally when some of the faces defining the rectangle intersect the circle, one can compute the
volume of intersectionV O between the rectangle and the circle using

V O = V2,2 − V2,1 − V1,2 + V1,1

where the volumeVi,j represents the intersection between the cylinder and the plane located to the left of surface
xi and belowyj (see Figure 22 for example).

Here for simplicity we will computeVi,j in terms ofVj which represents either the cylinder surface located to
the left of the plane defined byxj or the cylinder surface located below the plane defined by surfaceyj . These can
be obtained using the relation

Vj =







0 for uj < −r
πr2 for uj > r

αjr
2 + uj

√

r2 − (uj)2 otherwise

αj = arccos
(

−
uj

r

)
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X

Y

y1

y2

x1 x2

VO

R

θ

Figure 21: Volume for the overlapp of a rectangle with an annular region

X

Y

y1

y2

x1 x2
X

Y

y1

y2

x1 x2

V2,1

V2,2

Figure 22: Decomposition of a rectangle circle region overlap
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where
uj = xj − xc

for the surface to the left ofxj or
uj = yj − yc

for the surface belowyj .
In the case where the point of intersection of linesxi andyj is located inside the cylinder of radiusr, namely

ui,j =
√

(xi − xc)2 + (yj − yc)2 < r

Vij is given by:

Vi,j =
1

2
(Vi − Vj) + uiuj +

1

4
πr2

For all the other cases, depending on the location of the various planes with respect to the center of the cylinder we
will use:

Vi,j =















0 if ui < 0 anduj < 0
Vj if ui < 0 anduj > 0
Vi if ui > 0 anduj < 0
Vi + Vj − πr2 if ui > 0 anduj > 0

When Cartesian regions intersect annular cell, only the surfaces associated with the annular boundary can be
outer boundaries (TUBE). In this case, the area correspond to

Sradial = r(θmax − θmin)

whereθmax is the maximum angle covered by the circular arc andθmin the minimum angle.
Finally, for the case where a rectangle is intersected with 2non concentric annular regions as illustrated in

Figure 23 the volume evaluation process to be considered is acombination of rectangle/circles intersections (see
above) and circle/circle intersections (see Appendix A.3).

X

Y

x1 x2

y1

y2

VO

Figure 23: Volume for the overlapp of a rectangle with two nonconcentric annular regions
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APPENDIX B

PROGRAMMING GUIDE FOR THE NXT MODULE

B.1 Structure of the program

Structure of the NXT tracking driver:STRNXT.tex

NXT
|------ NXTGET
|------ NXTACG
| |------ NXTBCG
| |------ NXTBRT
| | |------ NXTETS
| | |------ NXTETH
| |------ NXTCUA
| | | |------ NXTTRS
| |------ NXTHUA
| | | |------ NXTTRS
| |------ NXTGMD
| | |------ NXTTPO
| | | |------ NXTIAA
| | | |------ NXTIRA
| | | |------ NXTIHA
| | |------ NXTTRM
| | |------ NXTHCL
| |------ NXTMCD
| | |------ NXTEGI
| | |------ NXTRCS
| | |------ NXTRIS
| | | |------ NXTTRS
| | |------ NXTRPS
| | |------ NXTRTS
| | |------ NXTSGI
| | |------ NXTSGT
| | |------ NXTTPS
| | |------ NXTVOL
| | | |------ NXTPCA
| | | | |------ NXTIRA
| | | | |------ NXTIRR
| | | | | |------ NXTPRR
| | | |------ NXTPCC
| | | | |------ NXTIAA
| | | | |------ NXTIRA
| | | | |------ NXTIRR
| | | | | |------ NXTPRR
| | | | |------ NXTPRA
| | | | |------ NXTPRR
| | | |------ NXTVCA
| | | |------ NXTVCC
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| | | | |------ NXTVCA
| | | | |------ NXTIRA
| | | |------ NXTTLO
| | | |------ NXTPHC
| | | | |------ NXTIAA
| | | | |------ NXTITA
| | | | |------ NXTPRA
| | | |------ NXTVHT
| | | |------ NXTPHT
| | | |------ NXTVHC
| |------ NXTCVS
| | |------ NXTAVS
| |------ NXTAGM
|------ NXTTCG
| |------ NXTXYZ
| |------ NXTQAC
| | |------ XELTSA
| | |------ XELTSW
| |------ NXTQAS
| | |------ NXTQEW
| | |------ NXTQLC
| | |------ NXTQLT
| | |------ NXTLSN
| | |------ NXTQRN
| |------ NXTQSC
| |------ NXTQSS
| |------ NXTTLC
| | |------ NXTLCA
| | |------ NXTLHA
| | |------ NXTTCR
| | | |------ NXTLCA
| | | |------ NXTLCU
| | | |------ NXTLCY
| | | |------ NXTLHA
| | | |------ NXTLHT
| | | |------ NXTLRH
| | | |------ NXTLRS
| | | |------ NXTRTL
| |------ NXTTLS
| | |------ NXTLCA
| | |------ NXTLHA
| | |------ NXTQPS
| | |------ NXTTCR
| | | |------ NXTLCA
| | | |------ NXTLCU
| | | |------ NXTLCY
| | | |------ NXTLHA
| | | |------ NXTLHT
| | | |------ NXTLRH
| | | |------ NXTLRS
| | | |------ NXTRTL
| |------ NXTCVM
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| |------ NXTSQD
| |------ NXTTNS

Structure of EXCELP inline driver for NXT:STRNXTEXCELP.tex

EXCELP
|------ NXTTGC
| |------ NXTLCA
| |------ NXTTCR
|------ NXTTGS
| |------ NXTLCA
| |------ NXTTCR

B.2 Use of each routine

TheNXT: routines perform the following tasks:

• NXT is the main subroutine of the module NXT.

• NXTACG is the main routine to analyze a geometry.

• NXTAGM applies general merge vector to geometry and creates theMATCOD,VOLUME andKEYFLX vectors.

• NXTAVS adds current cell information to global surfaces and volumes for geometry.

• NXTBCG reads boundary conditions and symmetries and verify for consistency.

• NXTBRT builts surface reflection/transmission coupling array.

• NXTCUA creates the array for testing the geometry in a Cartesian assembly for internal symmetries and
unfolding the assembly according to these symmetries.

• NXTCVM compresses arraysVOLSUR andMATALB according toKEYMRG and save on tracking file.

• NXTCVS computes final volumes and surfaces.

• NXTEGI extracts cell or pin geometry information.

• NXTETH builts equivalent surface array for translational symmetry in triangular hexagons.

• NXTETS builts equivalent surface array for translational symmetry in Cartesian geometries.

• NXTGET readsNXT: input data.

• NXTGMD evaluates global mesh for assembly.

• NXTHCL locate spatial position of hexagon in assembly of cells.

• NXTHUA creates the array for testing the geometry in an hexagonal assembly for internal symmetries and
unfolding the assembly according to these symmetries.

• NXTIAA computes the volume of intersection between twoTUBE.

• NXTIHA finds the intersection between an hexagonal region and an annular pin.

• NXTIRA finds the intersection between a rectangular region and an annular pin.

• NXTIRR finds intersection between a rectangular region and a Cartesian pin.
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• NXTITA compute the volume of intersection between a 2D triangle andan annular pin.

• NXTLCA tracks a Cartesian 2-D or 3-D geometry.

• NXTLCU merges two sets of tracks.

• NXTLCY tracks an annular geometry.

• NXTLHA tracks an hexagonal assembly in 2-D or 3-D geometry.

• NXTLHT track a triangular hexagon in 2-D or 3-D geometry.

• NXTLRH stores line segments in tracking vector for hexagonal geometry with global region and surface
identification.

• NXTLRS stores line segments in tracking vector with global region and surface identification.

• NXTLSN defines level-symmetric (type 2) quadrature angles.

• NXTMCD creates a multicell description for the geometry.

• NXTPCA removes volumes or surfaces of the overlapping pins.

• NXTPCC removes from the volumes or surfaces associated with an annular/hexagonal 2-D or 3-D geome-
trythe volumes or surfaces of the overlapping pins.

• NXTPHC removes from the volumes or surfaces associated with an annular/hexagonal 2-D or 3-D geometry
the volumes or surfaces of the overlapping pins.

• NXTPHTRemove from the volumes or surfaces associated with a hexagonal 2D or 3D geometry the volumes
or surfaces of the overlapping pins.

• NXTPRA compute the volume of intersection between aCARCEL and aTUBE centered at the origin.

• NXTPRR finds rectangle representing the intersection of two rectangles.

• NXTQAC defines quadrature angles for cyclic tracking.

• NXTQAS defines quadrature angles for a given standard tracking option.

• NXTQEW definesEQN quadrature angles.

• NXTQLC defines Legendre-Chebyshev quadrature angles.

• NXTQLT defines Sanchez-Mao-Santandrea (Legendre-Trapezoidal) quadrature angles.

• NXTQPS generates directions defining the planes normal to a solid angle.

• NXTQRN defines quadruple range (QR) quadrature angles.

• NXTQSC defines spatial quadrature for cyclic tracking.

• NXTQSS defines standard spatial quadrature.

• NXTRCS renumbers cell surfaces.

• NXTRIS rotates geometry according to reference turn.

• NXTRPS renumbers pin cluster surfaces.

• NXTRTS rotate hexagon with triangles according to reference turn and test, and verify that it satisfies intrinsic
symmetries.
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• NXTRTL rotates tracking line according to reference turn.

• NXTSGI discretizes geometry according to splitting options for Cartesian geometries.

• NXTSGT discretizes geometry according to splitting options for hexagonal geometries.

• NXTSQD saves double precision quadrature parameters on tracking file.

• NXTTCG is the main routine to track a geometry.

• NXTTCR tracks a cell rotated according to its explicit position in the assembly.

• NXTTLC generates the cyclic tracking lines for a geometry.

• NXTTLO locate triangle position for hexagons with triangles.

• NXTTLS generates the standard tracking lines for a geometry

• NXTTNS normalizes tracking lines and save on tracking data structure.

• NXTTPO tests that cluster pins do not overlapp.

• NXTTPS tests if pins satisfy required symmetry.

• NXTTRM determines the final mesh of a cell after turn.

• NXTTRS applies Cartesians symmetry to TURN factors.

• NXTVCA computes volume and surfaces for Cartesian geometry.

• NXTVCC computes volumes for a mixedCARCEL geometry.

• NXTVHC computes the volume and area associated with each region or surface for a annular/hexagon with
triangular mesh in 2D or 3D geometry.

• NXTVOL computes regional volumes.

• NXTXYZ finds the global cell limits.

In addition the following lines are called by theEXCELP routine when inline tracking is requested:

• NXTTGC generate a specific cyclic tracking line for a geometry (inline tracking).

• NXTTGS generate a specific standard tracking line for a geometry (inline tracking).
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APPENDIX C

CONTENTS OF THE DRAGON BINARY TRACKING FILE

The tracking file generated by theNXT module is compatible withEXCELT and stored in a sequential binary
format. It contain the information required to evaluate thecollision probabilities associated with a geometry or to
solve the transport equation using the method of characteristics. It can be decoded using the following FORTRAN
instructions:

SUBROUTINE RDTRAK(IUNIT)

*----

* IUNIT is fortran file unit number

*----

* Dimensioning of variables

*----
IMPLICIT NONE
INTEGER IUNIT,NCOMNT,NBTR,IFMT
CHARACTER CHEAD*4,COMNT*80
INTEGER NDIM,LTRK,NREG,NSOUT,NALBG,NCOR,NANGL,MAXSUB,MXSEG
INTEGER NSUB,NSEG,IA
DOUBLE PRECISION WEIGHT
INTEGER ICOM,II,JJ,IDLINE(4)

*----

* Allocatable arrays

*----
REAL, ALLOCATABLE, DIMENSION(:) :: VOLSUR
REAL, ALLOCATABLE, DIMENSION(:) :: GALBED,DENSTY
REAL, ALLOCATABLE, DIMENSION(:,:) :: ANGLE
INTEGER, ALLOCATABLE, DIMENSION(:) :: MATALB,ICODE,

> IANGL,NRSEG
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: SEGLEN
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: BOLINE

*----

* Read header and comments

*----
READ(IUNIT) CHEAD,NCOMNT,NBTR,IFMT
DO ICOM=1,NCOMNT
READ(IUNIT) COMNT

ENDDO

*----

* Read general information

*----
READ(IUNIT) NDIM,LTRK,NREG,NSOUT,NALBG,NCOR,NANGL,MAXSUB,MXSEG
ALLOCATE(VOLSUR(-NSOUT:NREG),MATALB(-NSOUT:NREG),ICODE(NALBG),

> GALBED(NALBG),ANGLE(NDIM,NANGL),DENSTY(NANGL))
READ(IUNIT) (VOLSUR(II),II=-NSOUT,NREG)
READ(IUNIT) (MATALB(II),II=-NSOUT,NREG)
READ(IUNIT) (ICODE(II),II=1,NALBG)
READ(IUNIT) (GALBED(II),II=1,NALBG)
READ(IUNIT) ((ANGLE(II,JJ),II=1,NDIM),JJ=1,NANGL)
READ(IUNIT) (DENSTY(JJ),JJ=1,NANGL)
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*----

* Read tracks information

*----
ALLOCATE(IANGL(MAXSUB),NRSEG(NSEG))
ALLOCATE(SEGLEN(NSEG))
ALLOCATE(BOLINE(NDIM,MAXSUB))

100 CONTINUE
IF(IFMT .EQ. 1) THEN
READ(IUNIT,END=105) NSUB,NSEG,WEIGHT,

> (IANGLE(IA),IA=1,NSUB),
> (NRSEG(II),II=1,NSEG),
> (SEGLEN(II),II=1,NSEG),
> (IDLINE(IRA),IRA=1,4),
> ((BOLINE(IRA,II),IRA=1,NDIM),II=1,NSUB)
ELSE
READ(IUNIT,END=105) NSUB,NSEG,WEIGHT,

> (IANGLE(IA),IA=1,NSUB),
> (NRSEG(II),II=1,NSEG),
> (SEGLEN(II),II=1,NSEG)
ENDIF
GO TO 100

105 CONTINUE
DEALLOCATE(BOLINE,SEGLEN,NRSEG,IANGL)
DEALLOCATE(DENSTY,ANGLE,GALBED,ICODE,MATALB,VOLSUR)
RETURN
END

where

IUNIT FORTRAN unit associated with this file.

CHEAD keyword to identify the tracking file. The file is a valid DRAGON tracking file ifCHEAD=$TRK

NCOMNT Number of comment records.

NBTR Total number of tracks if known, otherwiseNBTRK=0.

IFMT track format where

• IFMT=0 for a short file where only the line segments are saved.

• IFMT=1 for a long file where the starting location of each line segment is saved (useful for
drawing purposes).

COMNT comment lines.

NDIM Dimension of problem (2 for 2-D geometry and 3 for 3-D geometry).

LTRK Type of tracking:

• LTRK=0 or isotropic tracking.

• LTRK=1 for cyclic (specular) tracking.

NREG Number of regions.

NSOUT Number of outer surfaces.
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NALBG Number of geometric albedos.

NCOR Number of initial and final surfaces that can be crossed by a track.

NANGL Number of track direction angles considered in the integration.

MAXSUB Maximum number of subtracks in a line. A subtrack corresponds to the line segments associated
with an inner and an outer surface. For isotropic tracking, asingle subtrack is associated with
each line. For cyclic (specular) tracking a new subtrack is started after a line intersects a face.

MXSEG Maximum number of line segments per track.

VOLSUR Surface-volume vector.

MATALB Surface direction and region material identification vector.

ICODE Albedo number associated with a face. Negative values forICODE refers to a geometric albedo
while positive values refers to a physical albedo.

GALBED Geometric albedos.

ANGLE Tracking angle directions. For 2-D geometry they representthe cosine and sine of the tracking
angles respectively while for 3-D geometries, they represent the 3 director cosines associated
with the track direction.

DENSTY Density associated with each tracking angle. For 2-D geometries, this is a linear density while
for 3-D geometries it is a surface track density.

NSUB Number of subtracks for this line.

NSEG Number of segments for this line.

WEIGHT Integration weight factor associated with this track.

IANGL Angle number for subtracks.

NRSEG Surface (negative) and region (positive) numbers crossed by track. WhenISPEC=0, the first and
the last elements of this vector are associated with the external surfaces, all the other elements
being associated with region numbers. WhenISPEC=1,NRSEG starts and finishes with a surface
number. In addition the surface numbers will be mixed with the region numbers in the remaining
elements of the vectorNRSEG.

SEGLEN Length of segment crossing a region. Elements of the vectorSEGLEN associated with surfaces
are set to 1.0 for isotropic scattering and 0.5 for specular tracking.

IDLINE line type identifier.

BOLINE begining of subtrack origin.
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APPENDIX D

CONTENTS OF A /TRACKING/ DIRECTORY

This directory contains the information generated after the geometry has been analyzed by theNXT tracking
module of DRAGON.

D.1 The main directory

The records presents in Table 1 are always present in the /TRACKING/ directory.

Table 1: Main records in /TRACKING/

Name Type Units Comment

SIGNATURE C∗12 parameterSIGNA containing the signature of the data
structure.

STATE-VECTOR I(40) arraySt
i containing various parameters that are required

to describe the data structure.
TRACK-TYPE C∗12 parameterTRKT containing the name of the tracking

model used to create the structure.
TITLE C∗72 parameterTITLE containing the title associated with the

tracking structure.
MATCOD I(St

1) arrayMi containing the physical (real) mixture numbers
associated with flux regions in the geometry.

HOMMATCOD I(St
1) arrayHi containing the virtual (homogenization) mixture

numbers associated with flux regions in the geometry.
KEYFLX I(St

1) arrayIi containing the index positions, for the array con-
taining the transport unknowns, where the volume aver-
aged flux are stored.

VOLUME R(St
1) cm3 arrayVi containing the volumes of flux regions in the ge-

ometry.

The signature for this data structure isSIGNA=L_TRACK . The tracking modelTRKT can take the
following values:

TRKT =











EXCELL for tracking by theEXCELT:, EXCELL: or NXT: modules;

SYBIL for tracking by theSYBILT: module;

JPM for tracking by theJPMT: module.

The arraySt
i contains the following information:

• St
1 = Nr is the number of independent flux regions in the problem.

• St
2 = Nu is the number of independent transport unknowns in the problem.
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• St
3 = IL is the leakage flag where:

IL =

{

0 indicates that leakage is present;

1 indicates that no leakage is present.

• St
4 = SG

7 = Mm is the maximum number of mixtures (physical and virtual) used in the problem.

• St
5 = Ns is the number of independent external surfaces in the problem.

• St
6 is the anisotropy level for flux calculations in the problem where:

St
6 =

{

0 only the isotropic flux components are considered;

1 the isotropic and linearly anisotropic flux components are considered.

In addition to the above records, the main /TRACKING/ directory also contains information that is specific to each
tracking module. The contents of theSt

i vector fori ≥ 7 will also depend on the specific tracking module selected.
This information will be described in Section D.2.

D.2 TheEXCELL records and sub-directories

WhenTRKT=EXCELL the following elements ofSt
i are also defined.

• St
7 is the specificEXCELL tracking procedure considered where:

St
7 =



















1 for tracking Cartesian assemblies usingEXCELT: or EXCELL:;

2 for tracking hexagonal assemblies usingEXCELT:;

3 for tracking 2-D cluster cells usingEXCELT:;

4 for tracking 2-D and 3-D Cartesian and hexagonal assemblieswith clusters usingNXT:.

• St
8 is the track normalization flag where:

St
8 =











−1 direction dependent track normalization to merged volumes;

0 global track normalization to merged volumes;

1 no normalization.

The default isSt
8 = 0. The optionSt

8 = −1 can only be activated using theRENO keyword in theNXT:,
EXCELT: andEXCELL: modules.

• St
9 is the tracking type where:

St
9 =

{

0 means that a standard tracking procedure was considered;

1 means that a cyclic tracking procedure was considered.

• St
10 is the type of boundary conditions to be used for the collision probability calculations where:

St
10 =

{

0 isotropic (white) boundary conditions are considered;

1 mirror-like (specular) boundary conditions are considered.

Mirror-like boundary conditions (St
10 = 1) can be used only if a cyclic tracking procedure is considered

(St
9 = 1).
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• St
11 = NΩ is the order of the azimuthal (2-D) or solid (3-D) angular quadrature. For 2-D geometry, the order

of the azimuthal quadrature represents:

– NΩ equal sectors (trapezoidal quadrature) in the[0, π] range when theEXCELT: module is used for
Cartesian assemblies;

– NΩ equal sectors (trapezoidal quadrature) in the[0, π] range when theEXCELT: module is used for
hexagonal geometries;

– NΩ equal sectors (trapezoidal quadrature) in the[0,max(St
12, 2)π] range when theEXCELT: module

is used for cluster geometries;

– NΩ equal sectors in the[0, π/2] range andNΩ equal sectors in the[π/2, π] range (trapezoidal quadra-
ture) when theNXT: module is used.

For 3-D geometry, the order of the solid angle quadrature represent

– St
16 = NΩ(NΩ + 2)/8 directions in each quadrant (0 ≤ ϕ ≤ π/2 and0 ≤ θ ≤ π/2) for theEQNΩ

quadrature (NXT:, EXCELT: andEXCELL: modules for Cartesian assemblies);

– St
16 = 3×NΩ(NΩ+2)/8 directions in each quadrant (0 ≤ ϕ ≤ π/2 and0 ≤ θ ≤ π/2) for theLCNΩ

quadrature (NXT: module for Cartesian assemblies);

– St
16 = 3×N2

Ω/2 directions in each quadrant (0 ≤ ϕ ≤ π/2 and0 ≤ θ ≤ π/2) for theLTn quadrature
(NXT: module for Cartesian assemblies);

– NΩ equal sectors (trapezoidal quadrature) in the[0, 2π] range when theEXCELT: module is used for
hexagonal geometries;

• St
12 is the angular symmetry factor.

• St
13 is the polar angle quadrature type where:

St
13 =



















1 for a Gauss quadrature;

2 for a CACTUS type A quadrature;

3 for a CACTUS type B quadrature;

4 for an optimized Bickley quadrature.

• St
14 is the polar angle quadrature order.

• St
15 is the azimuthal (2-D) or solid (3-D) angle quadrature type where:

St
15 =































1 for aEQNΩ
(3-D) or trapezoidal (2-D) quadrature;

2 for a Gauss quadrature (2-D hexagonal geometries inEXCELT:);

3 for a median angle quadrature;

4 for aLCNΩ
3-D quadrature;

5 for aLTNΩ
3-D quadrature.

• St
16 is the number of directions for the azimuthal (2-D) or solid (3-D) angle quadrature.

• St
17 is the maximum number of tracking points on a line.

• St
18 is the maximum length of a track.

• St
19 is the total number of tracks generated.

• St
20 is the total number of track directions processed.

The records presented in Table 2 will also be present on the main level of a /TRACKING/ directory when the
EXCELT:, EXCELL: or NXT: tracking modules are used.
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Table 2: Additional records forEXCELL tracking

Name Type Units Comment

EXCELTRACKOP R(40) arrayRi containing additional tracking parameters.
ICODE I(6) arrayIβ,k containing the surface albedo index (geometric

albedos are used ifIβ,k < 0 while physical albedos (see
/MACROLIB/ directory) are used whenIβ,k > 0).

ALBEDO R(6) arrayβg,k containing the geometric surface albedo (used
only if Iβ,k ≥ 0).

EXCELL Dir directory containing additionalEXCELT: andEXCELL:
records for the cases whereSt

7 = 1 orSt
7 = 3.

Present only ifSt
7 < 4.

NXTRecords Dir directory containing additionalNXT: records.
Present only ifSt

7 = 4.

The recordRi contains the following information:

• R1 is the maximum error allowed on the exponential function.

• R2 is the user requested tracking density in cm−1 and in cm−2 respectively for 2-D and 3-D geometries.

• R3 is the maximum distance in cm between an integration line anda surface.

• R4 is the computed tracking density in cm−1 and in cm−2 respectively for 2–D and 3–D D geometries (used
only if St

7 = 4).

• R5 is the computed line spacing in cm (used only ifSt
7 = 4).

• R6 is the weight of the spatial quadrature (used only ifSt
7 = 4).

• R7 is the minimal radius of the circle (2-D) or sphere (3-D) containing the geometry (used only ifSt
7 = 4).

• R8 is thex position of the center of the minimal circle (2-D) or sphere (3-D) containing the geometry (used
only if St

7 = 4).

• R9 is they position of the center of the minimal circle (2-D) or sphere (3-D) containing the geometry (used
only if St

7 = 4).

• R10 is thez position of the center of the minimal circle (2-D) or sphere (3-D) containing the geometry (used
only if St

7 = 4).

The/NXTRecords/ directory contains the information required to track the geometry using theNXT: mod-
ule module once it has been analyzed. The contents of this directory is presented in Table 3.
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Table 3: Global geometry records in/NXTRecords/

Name Type Units Comment

G00000001DIM I(40) arrayNGG
i containing the dimensioning information re-

quired to rebuilt the assembly.
G00000001CUF I(2, NGG

5 ) arrayDGG
i,j containing the assembly description of the

geometry in terms of cells and rotations. The first ele-
ment (i = 1) identifies the cell number while the sec-
ond element identifies the cell rotation.

G00000001CIS I(4, NGG
4 ) arraySGG

i,j containing the cell intrinsic symmetry prop-
erties. A value of1 indicates that a center cell reflexion
symmetry is present while a value of0 indicates that
the symmetry is not considered (see below for a more
complete description of this array).

G00000001CFE I(0 : 10, NGG
4 ) array FGG

i,j containing the assembly external surface
identification index (see below for a more complete de-
scription of this array).

G00000001SMX D(0 : NGG
13 ) cm arrayxGG containing thex-directed mesh for the cell

assembly in a Cartesian or Cylindrical geometry and
the x position of the cell center for an hexagonal as-
sembly (see below for more explanations).

G00000001SMY D(0 : NGG
14 ) cm arrayyGG containing they-directed mesh for the cell

assembly in a Cartesian or Cylindrical geometry and
the y position of the cell center for an hexagonal as-
sembly (see below for more explanations).

G00000001SMZ D(0 : NGG
15 ) cm arrayzGG containing thez-directed mesh for the cell

assembly (see below for more explanations).
Present only ifNGG

1 = 3.
G00000001SMR D(0 : 1) cm the radiusrGG of the outer assembly boundary (see be-

low for more explanations).
Present only ifNGG

2 = 1.
KEYMRG I(−NGG

23 : NGG
22 ) array MRGi containing the merged surface and region

number associated with each individual surfaces and
regions in this geometry.

MATALB I(−NGG
23 : NGG

22 ) array containing the albedo number associated with
each surface and the physical mixture number associ-
ated with each region in this geometry.

HOMMATALB I(−NGG
23 : NGG

22 ) array containing the albedo number associated with
each surface and the virtual (homogenization) mixture
number associated with each region in this geometry.

SAreaRvolume D(−NGG
23 : NGG

22 ) array containing the area (Sα in cm for 2-D and cm2 for
3-D problems) and volume (Vi cm2 for 2-D and cm3 for
3-D problems) associated with each surface and region
in this geometry.

The dimensioning vector for the global geometry contains the following information:



IGE–260 60

• NGG
1 number of dimensions for the problem.

• NGG
2 type of boundary. A value of0 indicates a Cartesian geometry, a value of1 indicates a cylindrical

geometry and a value of 2 an hexagonal geometry.

• NGG
3 first direction to process in the analysis. For cylinder, this is the direction of the first axis of the plane

normal to the cylinder axis. For Cartesian and hexagonal geometries a value of 1 (x-axis) is selected by
default.

• NGG
4 number of cells in the original geometry (before unfolding).

• NGG
5 number of cells in the geometry after the original geometry is unfolded according to the symmetries.

• NGG
6 diagonal symmetry flag. A value of0 indicates that this symmetry is not used. A value of−1 indicates

that the symmetry is used for thex− = y+ plane and a value of1 that the symmetry is used for thex+ = y
plane.

• NGG
7 flag to identify symmetries with respect to thex-axis (x− or x+). A value of 0 indicates that no

symmetry is present,NGG
7 = ±1 is for aSYME symmetry at thex± plane,NGG

7 = ±2 represents aSSYM
symmetry at thex± plane andNGG

7 = 3 implies a translation symmetry is thex direction (x− = x+).

• NGG
8 flag to identify symmetries with respect to they-axis (y− or y+). A value of 0 indicates that no

symmetry is present,NGG
7 = ±1 is for aSYME symmetry at they± plane,NGG

7 = ±2 represents aSSYM
symmetry at they± plane andNGG

7 = 3 implies a translation symmetry is they direction (y− = y+).

• NGG
9 flag to identify symmetries with respect to thez-axis (z− or z+). A value of 0 indicates that no

symmetry is present,NGG
7 = ±1 is for aSYME symmetry at thez± plane,NGG

7 = ±2 represents aSSYM
symmetry at thez± plane andNGG

7 = 3 implies a translation symmetry is thez direction (z− = z+).

• NGG
10 number ofx mesh subdivisions or hexagons in the original geometry.

• NGG
11 number ofy mesh subdivisions or hexagons in the original geometry.

• NGG
12 number ofz mesh subdivisions in the original geometry.

• NGG
13 number ofx mesh subdivisions or hexagons in the unfolded geometry.

• NGG
14 number ofy mesh subdivisions or hexagons in the unfolded geometry.

• NGG
15 number ofz mesh subdivisions in the unfolded geometry.

• NGG
16 maximum number cells required to represent this geometry.

• NGG
17 maximum number of region for this geometry.

• NGG
18 total number of clusters in this geometry.

• NGG
19 maximum number of pins in this geometry.

• NGG
20 maximum dimensions of any mesh array for a cell in this geometry.

• NGG
21 maximum dimensions of any mesh array for a pin in this geometry.

• NGG
22 number of external surfaces for this geometry.

• NGG
23 number of regions for this geometry.

• NGG
24 maximum number of external surfaces in a sub-geometry included in this geometry.

• NGG
25 maximum number of regions in a sub-geometry included in thisgeometry.
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The indexing of arraySGG
i,j for the axis of symmetry is as follows

1. Cartesian assemblies:

• i = 1 refers to a reflexion of the geometry on a plane normal thex-axis;

• i = 2 refers to a reflexion of the geometry on a plane normal they-axis;

• i = 3 refers to a reflexion of the geometry on the planex = y;

• i = 4 refers to a reflexion of the geometry on a plane normal thez-axis.

2. Hexagonal assemblies (symmetries not yet programmed).

• i = 1 refers to a reflexion of the geometry on a plane normal theu-axis;

• i = 2 refers to a reflexion of the geometry on a plane normal thev-axis;

• i = 3 refers to a reflexion of the geometry on the planew;

• i = 4 refers to a reflexion of the geometry on a plane normal thez axis.

1 2

34
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6 7

8

9

101112

13

14

15

16 17 18
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20
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22

23242526
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28

29
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31

32 33 34 35

36

37

Face= 0

U=2

Face= 1 or -5

W=2
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Face= 2 or -4
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Face= 4 or -2

W=1

Face= 3 or -3

U=1

Figure 24: Example of an assembly of hexagons (left) and external faces identification for an hexagon

The indexing of arrayFGG
i,j for external surface identification is as follows. FirstFGG

0,j represents the number of
times the cell appears in the geometry after it has been unfolded. Fori > 0, FGG

i,j can take the following values

FGG
i,j =

{

1 surface associated with directioni of cell j is an external boundary of the assembly

0 surface associated with directioni of cell j is not an external boundary of the assembly

with the following planes associated with different valuesof i:

1. Cartesian assemblies:

• i = 1 surfaces on thex− plane for cellj;

• i = 2 surfaces on thex+ plane for cellj;

• i = 3 surfaces on they− plane for cellj;

• i = 4 surfaces on they+ plane for cellj;

• i = 5 surfaces on thez− plane for cellj;

• i = 6 surfaces on thez+ plane for cellj.

2. Hexagonal assemblies (see Figure 24):
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• i = 1 surfaces on theu− plane for cellj;

• i = 2 surfaces on theu+ plane for cellj;

• i = 3 surfaces on thev− plane for cellj;

• i = 4 surfaces on thev+ plane for cellj;

• i = 5 surfaces on thez− plane for cellj;

• i = 6 surfaces on thez+ plane for cellj;

• i = 9 surfaces on thew− plane for cellj;

• i = 10 surfaces on thew+ plane for cellj.

The arraysxGG, yGG, zGG andrGG contain the following information:

1. Cartesian assemblies:

• xGG
i−1 andxGG

i are the lower and upperx limits of mesh elementi (i = 1, nx);

• yGG
j−1 andyGG

j are the lower and uppery limits of mesh elementj (j = 1, ny);

• zGG
k−1 andzGG

k are the lower and upperz limits of mesh elementk (k = 1, nz).

2. Hexagonal assemblies (see Figure 24):

• xGG
0 = h is the width of one face of the hexagon andxGG

i is the position inx of the center of celli in
the assembly;

• yGG
0 = h is the width of one face of the hexagon andyGG

j is the position iny of the center of cellj in
the assembly;

• zGG
k−1 andzGG

k are the lower and upperz limits of mesh elementk (k = 1, nz).

As we noted above, the global geometry is always an assembly containing cells. For each celli in this as-
sembly, several records will be generated in the/NXTRecords/ directory. These records are identified using a
FORTRANCHARACTER*12 variable as follows

INTEGER I
CHARACTER*12 NAMREC
CHARACTER*3 NREC
WRITE(NAMREC,’(A1,I8.8,A3)’) ’C’,I,NREC

where the variableNREC can take the following values:

• DIM for dimensioning information;

• SMR for the radial mesh description;

• SMX for thex-directed mesh description;

• SMY for they-directed mesh description;

• SMZ for thez-directed mesh description;

• MIX for physical mixture description;

• HOM for virtual mixture description;

• VSE for areas and volumes results;

• VSI for local surfaces and regions identification;

• RID for final region numbering;
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• SID for final surface numbering

• PNT for pin contents description;

• PIN for pins location.

In Table 4, a description of the additional/NXTRecords/ records associated with celli = 1 can be found.

Table 4: Celli = 1 records in/NXTRecords/

Name Type Units Comment

C00000001DIM I(40) arrayNGC
j containing the dimensioning information re-

quired to rebuilt the cell.
C00000001SMR D(NGC

2 ) cm arrayrGC
j containing the cell radial mesh description.

C00000001SMX D(NGC
3 ) cm arrayxGC

j containing the cellx-directed mesh descrip-
tion.

C00000001SMY D(NGC
4 ) cm arrayyGC

j containing the celly-directed mesh description.
C00000001SMZ D(NGC

5 ) cm arrayzGC
j containing the cellz-directed mesh description.

C00000001MIX I(NGC
6 ) arrayMGC

j containing the cell physical mixture for each
region.

C00000001HOM I(NGC
6 ) arrayHGC

j containing the cell virtual mixture for each
region.

C00000001VSE D(−NGC
9 : NGC

8 ) array SVGC
j containing surface areaj (SVGC

−j = SGC
j in

cm for 2-D and cm2 for 3-D problems) and regional vol-
umesj (SVGC

j = V GC
j in cm2 for 2-D and cm3 for 3-D

problems).
C00000001VSI I(5,−NGC

9 : NGC
8 ) array VSIGC

k,j containing the location of a surface (j < 0)
and a region (j > 0). See below for a more complete
description of this array.

C00000001RID I(NGC
8 ) index array RIDGC

j associating local and global region
numbering.

C00000001SID I(NGC
9 ) index array SIDGC

j,i associating local and global outer sur-
face numbering.

C00000001PNT I(3, NGC
18 ) array PCGC

k,j containing the cell pin contents.
C00000001PIN D(−1 : 4, NGC

18 ) array pGC
k,j containing the location of the pins in cell.

Note that the record names above are built using the following FORTRAN instructions:

WRITE(NAMREC,’(A1,I8.8,A3)’) ’C’,i,NAMEXT

The cell dimensioning arrayNGC
i for cell i contains the following information:

• NGC
1 cell geometry type;

• NGC
2 dimensions of the radial mesh array;

• NGC
3 dimensions of thex-directed mesh array;

• NGC
4 dimensions of they-directed mesh array;
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• NGC
5 dimensions of thez-directed mesh array;

• NGC
6 dimensions of the mixture record;

• NGC
7 geometry level (1 for cell);

• NGC
8 number of regions in the cell before symmetry considerations;

• NGC
9 number of surfaces in the cell before symmetry considerations;

• NGC
10 number of regions in the cell after symmetry considerations;

• NGC
11 number of surfaces in the cell after symmetry considerations;

• NGC
12 first global region number for cell;

• NGC
13 last global region number for cell;

• NGC
14 first global surface number for cell;

• NGC
15 last global surface number for cell;

• NGC
16 number of pin cluster geometries in cell;

• NGC
17 first pin cluster geometry associated with cell;

• NGC
18 total number of pins in cell;

• NGC
19 number of times this cell is used in the global cell.

while the remaining elements are not used.
The arrayxGC

j contains the following information:

• xGC
−1 contains the displacement of the center of the cylindrical region with respect to the center of the Carte-

sian mesh in directionx. This center is located at:

xc =
xGc
nx + xGC

0

2

where we have usednx = NGC
3 .

• xGC
j−1 andxGC

j are the lower and upperx limits of mesh elementj (j = 1, nx).

The arrayyGC
j contains the following information:

• yGC
−1 contains the displacement of the center of the cylindrical region with respect to the center of the Carte-

sian mesh in directiony. This center is located at:

yc =
yGC
ny + yGC

0

2

where we have usedny = NGC
4 .

• yGC
j−1 andyGC

j are the lower and uppery limits of mesh elementj (j = 1, ny).

The arrayzGC
j contains the following information:

• zGC
−1 contains the displacement of the center of the cylindrical region with respect to the center of the Carte-

sian mesh in directionz. This center is located at:

zc =
zGC
nz + zGC

0

2

where we have usednz = NGC
5 .
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• zGC
j−1 andzGC

j are the lower and upperz limits of mesh elementj (j = 1, nz).

The arrayrGC
j contains the following information:

• rGC
−1 = rGC

0 = 0.

• rGC
j−1 ≤ r ≤ rGC

j describes the position inr of mesh elementj (j = 1, NGC
2 ).

The arraypGC
j contains the following information:

• pGC
−1 is the angular position ofz-, x- or y-directed pin with respect to thex, y or z axis.

• pGC
0 is the radial position ofz-, x- or y-directed pin with respect to thex − y, y − z or z − x center of the

cell where the pin is located.

• pGC
1 is the height of ax-directed pin.

• pGC
2 is the height of ay-directed pin.

• pGC
3 is the height of az-directed pin.

• pGC
4 is the outer radius of the pin.

The surface and volume identification array VSIGC
k,j contains the following information

• VSIGC
1,j identify thex or u mesh position of the region or volume. For a−x or −u surface, a value of−1 is

used while for a+x or+u surface, a value of−2 is specified.

• VSIGC
2,j identify they or v mesh position of the region or volume. For a−y or −v surface, a value of−1 is

used while for a+y or+v surface, a value of−2 is specified.

• VSIGC
3,j identify thez mesh position of the region or volume. For a−z, a value of−1 is used while for a+z

surface, a value of−2 is specified.

• VSIGC
4,j identify the radial mesh position of the region or volume. Regions outside the external boundary are

assigned the valurNGC
2 + 1.

• VSIGC
5,j identify thew mesh position of the region or volume. For a−w surface, a value of−1 is used while

for a+w surface, a value of−2 is specified.

In Table 5, a description of the additional/NXTRecords/ records associated with pini = 1 can be found.
These records are identified using a procedure similar to that used for cell records, namely

INTEGER I
CHARACTER*12 NAMREC
CHARACTER*3 NREC
WRITE(NAMREC,’(A1,I8.8,A3)’) ’P’,I,NREC

where the variableNREC can take the same values as for cell records, except forNREC=PNT andNREC=PIN
which are now forbidden.
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Table 5: Pini = 1 records in/NXTRecords/

Name Type Units Comment

P00000001DIM I(40) arrayNGP
j containing the dimensioning information re-

quired to rebuilt the pin.
P00000001SMR D(NGP

2 ) cm arrayrGP
j containing the pin radial mesh description.

P00000001SMX D(NGP
3 ) cm arrayxGP

j containing the pinx-directed mesh description.
P00000001SMY D(NGP

4 ) cm arrayyGP
j containing the piny-directed mesh description.

P00000001SMZ D(NGP
5 ) cm arrayzGP

j containing the pinz-directed mesh description.
P00000001MIX I(NGP

6 ) arrayMGP
j containing the pin physical mixture for each

region.
P00000001HOM I(NGP

6 ) arrayHGP
j containing the pin virtual mixture for each re-

gion.
P00000001VSE D(−NGP

9 : NGP
8 ) array SVGP

j containing surface areaj (SVGP
−j = SGP

j in
cm for 2-D and cm2 for 3-D problems) and regional vol-
umesj (SVGP

j = V GP
j in cm2 for 2-D and cm3 for 3-D

problems).
P00000001VSI I(5,−NGP

9 : NGP
8 ) array VSIGP

k,j containing the location of a surface (j < 0)
and a region (j > 0). The notation used here is similar to
thst selected for VSIGC

k,j .
P00000001RID I(NGP

8 ) index array RIDGP
j associating local and global region

numbering.
P00000001SID I(NGP

9 ) index array SIDGP
j,i associating local and global outer sur-

face numbering.

The pin dimensioning arrayNGP contains the following information:

• NGP
1, pin geometry type;

• NGP
2, dimensions of the radial mesh array;

• NGP
3, dimensions of thex-directed mesh array;

• NGP
4, dimensions of they-directed mesh array;

• NGP
5, dimensions of thez-directed mesh array;

• NGP
6, dimensions of the mixture record;

• NGP
7, geometry level (2 for pins);

• NGP
8, number of regions in the pin before symmetry considerations;

• NGP
9, number of surfaces in the pin before symmetry considerations;

• NGP
10 number of regions in the pin after symmetry considerations;

• NGP
11 number of surfaces in the pin after symmetry considerations;
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• NGP
12 first global region number for pins in cluster;

• NGP
13 last global region number for pins in cluster;

• NGP
14 first global surface number for pins in cluster;

• NGP
15 last global surface number for pins in cluster;

• NGP
16 first pin cluster geometry for pins in cluster.

• NGP
17 total number of pins in cluster.

while the remaining elements are not used. The arrayxGP
j contains the following information:

• xGP
−1 contains the displacement of the center of the cylindrical region with respect to the center of the Carte-

sian mesh in directionx. This center is located at:

xc =
xGP
nx + xGP

0

2

where we have usednx = NGP
3 .

• xGP
j−1 andxGP

j re the lower and upperx limits of mesh elementj (j = 1, nx).

The arrayyGP
j contains the following information:

• yGP
−1 contains the displacement of the center of the cylindrical region with respect to the center of the Carte-

sian mesh in directiony. This center is located at:

yc =
yGP
ny + yGP

0

2

where we have usedny = NGP
4 .

• yGP
j−1 andyGP

j are the lower and uppery limits of mesh elementj (j = 1, ny).

The arrayzGP
j contains the following information:

• zGP
−1 contains the displacement of the center of the cylindrical region with respect to the center of the Carte-

sian mesh in directionz. This center is located at:

zc =
zGP
nz + zGP

0

2

where we have usednz = NGP
5 .

• zGP
j−1 andzGP

j are the lower and upperz limits of mesh elementj (j = 1, nz).

The arrayrGP
j contains the following information:

• rGP
−1 = rGP

0 = 0.

• rGP
j−1 ≤ r ≤ rGP

j describes the position inr of mesh elementj with j = 1, NGP
2 .

Finally the/NXTRecords/ directory also contains records associated with global identification of the sur-
faces and volumes as illustrated in Table 6.
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Table 6: Global geometry records in/NXTRecords/

Name Type Units Comment

TrackingDnsA D(St
20) cm arrayDi containing the spatial spacing for each track di-

rection.
TrackingDirc D(NGG

1 ,St
20) arrayαj,i containing the director cosine for axisj for

each track direction.
TrackingOrig D(NGG

1 , Np,S
t
20) cm arrayLk,j,i containing the origin in space (k = 1, NGG

1 )
and the direction of the normal plan for each planej and
track directioni.

TrackingWgtD D(St
20) arrayWi containing the integration weight for each track

direction.
VTNormalize D(NGG

22 ) arrayRi containing the ratio of the analytical and numer-
ical volume for each region.

VTNormalizeD D(NGG
22 ,St

20) arrayRi containing the ratio of the analytical and numer-
ical volume for regioni for each track direction.
Present only ifSt

8 = −1.
KEYMRG I(−NGG

23 , NGG
22 ) array MRGi containing the global merging index.

MATALB I(−NGG
23 , NGG

22 ) array containing the albedo number associated with each
surface and the physical mixture number associated with
each region.

HOMMATALB I(−NGG
23 , NGG

22 ) array containing the albedo number associated with each
surface and the virtual mixture number associated with
each region.

SAreaRvolume D(−NGG
23 , NGG

22 ) array containing the area (Sα in cm for 2-D and cm2 for
3-D problems) and volumes (Vi cm2 for 2-D and cm3 for
3-D problems) of each external surface and region in the
geometry.


