A DESCRIPTION OF THE DRAGON AND TRIVAC VERSION4 DATA STRUCTURES

A. Hébert, G. Marleau and R. Roy

Contents

Contents ii
List of Tables v
1 Contents of a / macrolib/ directory 1
1.1 State vector content for the /macrolib/ data structure 1
1.2 The main/macrolib/ directory 2
1.3 The group sub-directory GROUP in /macrolib/ 4
1.4 The /ADF/ sub-directory in /macrolib/ 8
1.5 The /GFF/ sub-directory in /macrolib/ 9
1.6 The /SPH/ sub-directory in /macrolib/ 10
1.7 Delayed neutron information 11
2 Contents of a /microlib/ directory 15
2.1 State vector content for the /microlib/ data structure 15
2.2 The main / microlib/ directory 18
2.3 State vector content for the depletion sub-directory 20
2.4 The depletion sub-directory / depletion/ in /microlib/ 21
2.5 State vector content for the SHIBA self-shielding sub-directory 23
2.6 State vector content for the subgroup self-shielding sub-directory 24
2.7 The shiba self-shielding sub-directory /selfshield/ in /microlib/ 26
2.8 The subgroup self-shielding sub-directory /selfshield/ in /microlib/ 26
2.9 Contents of an /isotope/ directory 26
2.9.1 The probability table directory PT-PHYS in /isotope/ 34
3 Contents of a / geometry/ directory 36
3.1 State vector content for the /geometry/ data structure 36
3.2 The main / geometry/ directory 39
3.3 The /BIHET/ sub-directory in /geometry/ 45
4 Contents of a /tracking/ directory 47
4.1 State vector content for the /tracking/ data structure 47
4.2 The main /tracking/ directory 47
4.3 The sybilt dependent records and sub-directories on a /tracking/ directory 48
4.3.1 The /PURE-GEOM/ sub-directory in sybilt 49
4.3.2 The /DOITYOURSELF/ sub-directory in sybilt 51
4.3.3 The /EURYDICE/ sub-directory in sybilt 52
4.4 The excelt dependent records on a /tracking/ directory 54
4.5 The mocgt dependent records on a /tracking/ directory 67
4.6 The snt dependent records on a / tracking/ directory 71
4.7 The bivact dependent records on a /tracking/ directory 76
4.8 The trivat dependent records on a /tracking/ directory 79
4.9 The /BIHET/ sub-directory 86
5 Contents of a /asminfo/ directory 87
5.1 State vector content for the /asminfo/ data structure 87
5.2 The main /asminfo/ directory 88
5.3 The GROUP double-heterogeneity group sub-directory 89
5.4 The GROUP or BIHET group sub-directory 90
5.4.1 The trafict dependent records on a GROUP directory 90
5.4.2 The sybilt dependent records on a GROUP directory 92
5.4.3 The mocgt dependent records on a GROUP directory 93
6 Contents of a /system/ directory 94
6.1 State vector content for the /system/ data structure 94
6.2 The main /system/ directory 94
7 Contents of a /kinet/ directory 98
7.1 State vector content for the /kinet/ data structure 98
7.2 The main /kinet/ directory 99
8 Contents of a /fluxunk/ directory 100
8.1 State vector content for the /fluxunk/ data structure 100
8.2 The main /fluxunk/ directory 102
8.3 The harmonic mode sub-directories in /fluxunk/ 103
9 Contents of a /gptsour/ directory 105
9.1 State vector content for the /gptsour/ data structure 105
9.2 The main / gptsour/ directory 105
10 Contents of a /edition/ directory 106
10.1 State vector content for the /edition/ data structure 106
10.2 The main /edition/ directory 107
10.3 The /REF : ADF/ sub-directory in /edition/ 109
11 Contents of a /burnup/ directory 110
11.1 State vector content for the /burnup/ data structure 110
11.2 The main /burnup/ directory 111
11.3 The depletion sub-directory /depldir/ in /burnup/ 113
12 Contents of a /multicompo/ directory 114
12.1 State vector content for the /multicompo/ data structure 115
12.2 The main /multicompo/ directory 115
12.3 The GLOBAL sub-directory in /multicompo/ 116
12.4 The LOCAL sub-directory in /multicompo/ 117
12.5 The homogenized mixture sub-directory in /multicompo/ 118
12.6 The TREE sub-directory in a MIXTURES component 118
13 Contents of a / CPO/ directory 122
13.1 The main directory 122
13.2 The mixture sub-directory 123
13.3 The burnup sub-directory 124
14 Contents of a /saphyb/ directory 125
14.1 The main /saphyb/ directory 125
14.2 The constphysiq sub-directory in /saphyb/ 128
14.3 The contenu sub-directory in /saphyb/ 128
14.4 The adresses sub-directory in /saphyb/ 129
14.5 The geom sub-directory in /saphyb/ 130
14.6 The paramdescrip sub-directory in /saphyb/ 130
14.7 The paramvaleurs sub-directory in /saphyb/ 131
14.8 The paramarbre sub-directory in /saphyb/ 132
14.9 The varlocdescri sub-directory in /saphyb/ 134
14.10 The elementary calculation sub-directory /caldir/ in /saphyb/ 134
14.10.1 The info sub-directory in /caldir/ 135
14.10.2 The divers sub-directory in /caldir/ 136
14.10.3 The mixture sub-directory /mixdir/ in /caldir/ 137
14.10.4 The cinetique sub-directory in /mixdir/ 139
15 Contents of a /mc/ Directory 140
15.1 State vector content for the $/ \mathrm{mc} /$ data structure 140
15.2 The main $/ \mathrm{mc} /$ directory 140
16 Contents of a /draglib/ directory 142
16.1 The main /draglib/ directory 142
16.2 Contents of an /isotope/ directory 143
17 Contents of a /fview/ data structure 146
17.1 The state-vector content 146
17.2 The main /fview/ directory . 146

References . 147
Index . 148

List of Tables

1 Main records and sub-directories in /macrolib/ 2
2 Vectorial cross section records and directories in GROUP 4
3 Example of delayed-neutron records in GROUP 5
4 Additional cross section records 5
5 Scattering cross section records in GROUP 7
6 Records in the /ADF/ sub-directory 8
7 Records in the /GFF/ sub-directory 9
8 Records in the /SPH/ sub-directory 10
9 Main records and sub-directories in /microlib/ 18
10 Examples of isotopes directory in a /microlib/ 20
11 Main records and sub-directories in /depletion/ 21
12 Main records and sub-directories in /selfshield/ 26
13 Main records and sub-directories in /selfshield/ 26
14 Isotopic cross section identifier records 27
15 Delayed neutron reaction records 27
16 Example of delayed-neutron records in /isotope/ 28
17 Depletion-related information 28
18 Example of isotopic vector reaction records 29
19 Additional total cross section records for $I=2$ 31
20 Optional scattering records 32
21 Example of cross section records 34
22 Physical probability tables 35
23 Group-dependent probability table directories 35
24 Main records and sub-directories in /geometry/ 39
25 Cylindrical correction related records in /geometry/ 42
26 Cell sub-geometry directory 44
27 Cluster sub-geometry directory 45
28 Records in the /BIHET/ sub-directory 45
29 Main records and sub-directories in /tracking/ 47
30 The sybilt records and sub-directories in /tracking/ 49
31 The contents of the sybilt /PURE-GEOM/ sub-directory 49
32 The contents of the sybilt /DOITYOURSELF/ sub-directory 51
33 The contents of the sybilt /EURYDICE/ sub-directory 52
34 The EXCELT: records in /tracking/ 56
35 Global geometry records in /NXTRecords/ 57
36 Cell $i=1$ records in /NXTRecords/ 61
37 Pin $i=1$ records in /NXTRecords/ 64
38 Global geometry records in /NXTRecords/ 66
39 The MCCGT: records in /tracking/ 69
40 The MCCGT: records in /PROJECTION/ 70
41 The snt records in /tracking/ 72
42 The snt records in /tracking/ (Cartesian 1-D geometry) 73
43 The snt records in /tracking/ (tube 1-D geometry) 73
44 The snt records in /tracking/ (spherical 1-D geometry) 74
45 The snt records in /tracking/ (Cartesian 2-D and R-Z geometries) 74
46 The snt records in /tracking/ (Cartesian 3-D geometry) 75
47 The bivact records in /tracking/ 77
48 Description of the /BIVCOL/ sub-directory 78
49 The trivat records in /tracking/ 82
50 The trivat records in /tracking/ (contd.) 83
51 The trivat records in /tracking/ (contd.) 83
52 The trivat records in /tracking/ (contd.) 84
53 The contents of the /BIHET/ sub-directory 86
54 Main records and sub-directories in /asminfo/ 88
55 Records and sub-directories in GROUP 89
56 Records and sub-directories in GROUP 90
57 Collision probability records in GROUP 91
58 SYBIL groupwise assembly information in GROUP 92
59 MCCG groupwise directories 93
60 Main records and sub-directories in /system/ 95
61 Main records and sub-directories in /kinet/ 99
62 Main records and sub-directories in /fluxunk/ 102
63 Component of the harmonic mode directory 104
64 Main records and sub-directories in /gptsour/ 105
65 Main records and sub-directories in /edition/ 107
66 Example of an editing directory 109
67 Records in the /REF:ADF/ sub-directory 109
68 Main records and sub-directories in /burnup/ 111
69 Example of depletion directories 112
70 Contents of a depletion sub-directory in /burnup/ 113
71 Main records in /multicompo/ 116
72 Main records and sub-directories in $\{/$ namdir/\} 116
73 Contents of sub-directory GLOBAL in /multicompo/ 117
74 Contents of sub-directory LOCAL in /multicompo/ 118
75 Component of the homogenized mixture directory 118
76 Contents of sub-directory TREE in MIXTURES 118
77 Main records and sub-directories in /CPO/ 122
78 Example of homogeneous mixture directories 123
79 Contents of a mixture sub-directory in /CPO/ 123
80 Example of homogeneous mixture directories 124
81 Contents of a burnup sub-directory in /CPO/ 124
82 Main records and sub-directories in /saphyb/ 126
83 Contents of sub-directory constphysiq in /saphyb/ 128
84 Contents of sub-directory contenu in /saphyb/ 128
85 Contents of sub-directory adresses in /saphyb/ 129
86 Contents of sub-directory geom in /saphyb/ 130
87 Contents of sub-directory outgeom in /geom/ 130
88 Contents of sub-directory paramdescrip in /saphyb/ 130
89 Contents of sub-directory paramvaleurs in /saphyb/ 131
90 Contents of sub-directory paramarbre in /saphyb/ 132
91 Contents of sub-directory varlocdescri in /saphyb/ 134
92 Contents of sub-directory / caldir/ in /saphyb/ 135
93 Contents of sub-directory info in /caldir/ 135
94 Contents of sub-directory divers in /caldir/ 136
95 Contents of sub-directory outflx in /caldir/ 137
96 Contents of mixture sub-directory / mixdir/ in /caldir/ 137
97 Contents of sub-directory cinetique in /mixdir/ 139
98 Main records and sub-directories in $/ \mathrm{mc} /$ 140
99 Main records and sub-directories in /draglib/ 142
100 Temperature-dependent isotopic records 143
101 Temperature-dependent isotopic records 144

102 Records and sub-directories in /fview/ data structure . 146

1 Contents of a /macrolib/ directory

A /macrolib/ directory always contains the set of macroscopic multigroup cross sections associated with a set of mixtures. The structure of this directory, is quite different to that associated with an /isotope/ directory (see Section 2.9). First, it is multi-level, namely, it contains sub-directories. Moreover instead of having one directory per mixture which contains the associated multigroup cross section, one will have one directory component per group containing multi-mixture information. Finally its contents will vary depending on the operator which was used to create it. Here for convenience we will define the variable \mathcal{M} to identify the creation operator:

$$
\mathcal{M}= \begin{cases}0 & \text { if the directory is created by the MAC: operator } \\ 1 & \text { if the directory is created by the LIB: or EvO: operator } \\ 2 & \text { if the directory is created by the EDI: operator } \\ 3 & \text { if the directory is created by the OUT: or NCR: operator }\end{cases}
$$

In the case where the LIB: or EDI: operator is used to create this directory, it is embedded as a subdirectory in a /microlib/ or an /edition/ directory. For the other cases, it appears on the root level of the macrolib data structure.

1.1 State vector content for the /macrolib/ data structure

The dimensioning parameters for the /macrolib/ data structure, which are stored in the state vector \mathcal{S}^{M}, represent:

- The number of energy groups $G=\mathcal{S}_{1}^{M}$
- The number of mixtures $N_{m}=\mathcal{S}_{2}^{M}$
- The order for the scattering anisotropy $L=\mathcal{S}_{3}^{M}$ ($L=1$ is an isotropic collision; $L=2$ is a linearly anisotropic collision, etc.)
- The maximum number of fissile isotopes in a mixture $N_{f}=\mathcal{S}_{4}^{M}$
- The number of additional ϕ-weighted editing cross sections $N_{e}=\mathcal{S}_{5}^{M}$
- The transport correction option $I_{t r}=\mathcal{S}_{6}^{M}$

$$
I_{t r}= \begin{cases}0 & \text { do not use a transport correction } \\ 1 & \text { use an APOLLO-type transport correction (micro-reversibility at all energies) } \\ 2 & \text { recover a transport correction from the cross-section library } \\ 4 & \text { use a leakage correction based on NTOT1 data. }\end{cases}
$$

- The number of precursor groups for delayed neutron $N_{d}=\mathcal{S}_{7}^{M}$
- The number of physical albedo $N_{A}=\mathcal{S}_{8}^{M}$
- The type of leakage $I_{l}=\mathcal{S}_{9}^{M}$

$$
I_{l}= \begin{cases}0 & \text { no diffusion/leakage coefficient available } \\ 1 & \text { isotropic diffusion/leakage coefficient available } \\ 2 & \text { anisotropic diffusion/leakage coefficient available. }\end{cases}
$$

- The maximum Legendre order of the weighting functions $I_{w}=\mathcal{S}_{10}^{M}$

$$
I_{w}= \begin{cases}0 & \text { use the flux as weighting function for all cross sections } \\ 1 & \text { use the fundamental current } \mathcal{J} \text { as weighting function for scattering cross sections with } \\ & \text { order } \geq 1 \text { and compute both } \phi-\text { and } \mathcal{J} \text {-weighted total cross sections. }\end{cases}
$$

- The number of delta cross section sets $I_{\text {step }}=\mathcal{S}_{11}^{M}$ used for generalized perturbation theory (GPT) or kinetics calculations:

$$
I_{\text {step }}= \begin{cases}0 & \text { no delta cross section sets } \\ >0 & \text { number of delta cross section sets. }\end{cases}
$$

- Discontinuity factor flag $I_{\mathrm{df}}=\mathcal{S}_{12}^{M}$:

$$
I_{\mathrm{df}}= \begin{cases}0 & \text { no discontinuity factor information } \\ 1 & \text { ALBS-type information is available } \\ 2 & \text { discontinuity factor information (see Section 1.4) is available }\end{cases}
$$

- Adjoint macrolib flag $I_{\text {adj }}=\mathcal{S}_{13}^{M}$:

$$
I_{\mathrm{adj}}= \begin{cases}0 & \text { direct macrolib } \\ 1 & \text { adjoint macrolib }\end{cases}
$$

- SPH-information $I_{\mathrm{sph}}=\mathcal{S}_{14}^{M}$:

$$
I_{\mathrm{sph}}= \begin{cases}0 & \text { no SPH information available } \\ 1 & \text { SPH information is available }\end{cases}
$$

- Type of weighting in EDI: module $I_{\text {pro }}=\mathcal{S}_{15}^{M}$:

$$
I_{\mathrm{pro}}= \begin{cases}0 & \text { use a flux weighting } \\ 1 & \text { use an adjoint-direct (a.k.a., product) flux weighting. Only available if } \mathcal{M} \geq 2\end{cases}
$$

- Group form factor index $I_{\mathrm{gff}}=\mathcal{S}_{16}^{M}$:

$$
I_{\mathrm{gff}}= \begin{cases}0 & \text { no group form factor information } \\ >0 & \text { number of form factors per mixture and per energy group (see Section 1.5) }\end{cases}
$$

1.2 The main /macrolib/ directory

The following records and sub-directories will be found on the first level of a /macrolib/ directory:

Table 1: Main records and sub-directories in /macrolib/

Name	Type	Condition	Units	Comment
SIGNATURE பபப	$\mathrm{C} * 12$			Signature of the /macrolib/ data structure (SIGNA =L_MACROLIBபப).
STATE-VECTOR	$\mathrm{I}(40)$			Vector describing the various parameters associated with this data structure \mathcal{S}_{i}^{M}, as defined in Section 1.1.
ADDXSNAME-P0	$\mathrm{C}\left(N_{e}\right) * 8$	$N_{e} \geq 1$		Names of the additional ϕ-weighted editing cross sections $\left(\mathrm{ADDXS}_{k}\right)$. These names should not appear in Tables 2 and 5.

Main records and sub-directories in / macrolib/
continued from last page

Name	Type	Condition	Units	Comment
FISSIONINDEX	$\mathrm{I}\left(N_{m}, N_{f}\right)$	$N_{f} \geq 1, \mathcal{M}=1$		For each mixture i contains the index of each fissile isotope j. The index is pointing to a component of record ISOTOPESUSED or ISOTOPERNAME of /microlib/.
ENERGY	$\mathrm{R}(G+1)$	$\mathcal{M} \geq 1$	eV	Energy group limits E_{g}
DELTAU	$\mathrm{R}(G)$	$\mathcal{M} \geq 1$		Lethargy width of each group U_{g}
ALBEDOபபபபபப	$\mathrm{R}\left(N_{A}\right)$	$N_{A}>0$	cm^{3}	Surface ordered and energy independent physical albedo $\beta_{p, j}$
VOLUME	$\mathrm{R}\left(N_{m}\right)$	$\mathcal{M} \geq 2$	cm^{3}	Volume of region containing this mixture V_{m}
FLUXDISAFACT	$\mathrm{R}(G)$	$\mathcal{M}=2$		Ratio of the flux in the fuel to the flux in the cell F_{g} after homogenization
LAMBDA-D பபபப $^{\text {l }}$	$\mathrm{R}\left(N_{d}, N_{f}\right)$	$N_{d} \geq 1$	s^{-1}	Radioactive decay constants of each delayed neutron precursor group, for each fissile isotope.
BETA-D - $^{\text {Uபபபபப }}$	$\mathrm{R}\left(N_{d}, N_{f}\right)$	$N_{d} \geq 1$		Delayed-neutron fraction for each delayed neutron precursor group, for each fissile isotope.
K-EFFECTIVE ${ }_{\sqcup}$	$\mathrm{R}(1)$	$N_{f} \geq 1$		Effective multiplication constant $k_{\text {eff }}$
K-INFINITY	$\mathrm{R}(1)$	$N_{f} \geq 1$		Infinite multiplication constant k_{∞}
DIFFB1HOM	$\mathrm{R}(G)$	$\mathcal{M}=2, I_{l} \geq 1$	cm	Homogeneous leakage/diffusion coefficient D^{g}
B2பபB1H0M பபப	R(1)	$I_{l} \geq 1$	cm^{-2}	Homogeneous Buckling $B_{\text {hom }}$
B2பபHETEபபபப	R(3)	$I_{l}=2$	cm^{-2}	Directional Buckling B_{j}
TIMESTAMP $\downarrow ப \sqcup$	R(3)	$\mathcal{M}=1$		A vector T_{j} containing three elements. The first element $T_{1}=t$ is the time in days, the second element $T_{2}=B$ is the burnup in MW day T^{-1} and the third element $T_{3}=w$ is the irradiation in Kb^{-1}
GROUP பபபபபபப	$\operatorname{Dir}(G)$			List of energy-group sub-directories. Each component of the list is a directory containing the reference macroscopic cross-section information associated with a specific group.
STEPபபபபபபபப	$\operatorname{Dir}\left(I_{\text {step }}\right)$	$I_{\text {step }} \geq 1$		List of GPT or kinetics perturbation sub-directories. Each component of this list contains a single list of energy-group sub-directories following the GROUP specification. This GROUP list contains variations or derivatives of the reference cross-section set.
ADF பபபபபபபபப $^{\text {a }}$	Dir	$I_{\text {df }} \geq 1$		ADF-related information as presented in Section 1.4.
GFF,பபபபபபபபப	Dir	$I_{\mathrm{gff}} \geq 1$		Group form factor information as presented in Section 1.5.
SPH $\mathrm{SUபபபபபபபப}^{\text {a }}$	Dir	$I_{\text {sph }}=1$		SPH-related input data as presented in Section 1.6.

1.3 The group sub-directory GROUP in /macrolib/

Each component of the list GROUP is a directory containing cross-section information corresponding to a single energy group. Inside each groupwise directory, the following records associated with vectorial cross sections will be found:

Table 2: Vectorial cross section records and directories in GROUP

Name	Type	Condition	Units	Comment
NTOT0 பபபபபபப	$\mathrm{R}\left(N_{m}\right)$		cm^{-1}	The ϕ-weighted total cross section $\Sigma_{0, m}^{g}$
NTOT1 + பபபபபப	$\mathrm{R}\left(N_{m}\right)$	$\mathcal{M}=2 ; I_{w} \geq 1$	cm^{-1}	The \mathcal{J}-weighted total cross section $\Sigma_{1, m}^{g}$
TRANCபபபபபபப	$\mathrm{R}\left(N_{m}\right)$	$I_{t r}=2$	cm^{-1}	The transport correction $\Sigma_{t c, m}^{g}$
FIXE	$\mathrm{R}\left(N_{m}\right)$		$\mathrm{cm}^{-3} \mathrm{~S}^{-1}$	${ }^{1}$ Fixed sources S_{m}^{g}.
NUSIGF பபபபபப	$\mathrm{R}\left(N_{m}, N_{f}\right)$	$N_{f} \geq 1$	cm^{-1}	The product of $\Sigma_{f, m}^{g}$, the fission cross section with $\nu_{m}^{\mathrm{ss}, g}$, the steady-state number of neutron produced per fission, $\nu \Sigma_{f, m}^{g}$
$\mathrm{CHI}_{\text {பபபபபபபபப }}$	$\mathrm{R}\left(N_{m}, N_{f}\right)$	$N_{f} \geq 1$		The steady-state energy spectrum of the neutron emitted by fission $\chi_{m}^{\mathrm{ss}, g}$
\{nusid\}	$\mathrm{R}\left(N_{m}, N_{f}\right)$	$N_{d} \geq 1$	cm^{-1}	The product of $\Sigma_{f, m}^{g}$, the fission cross section with $\nu_{m, \ell}^{\mathrm{D}, g}$, the averaged number of fissionemitted delayed neutron produced in the precursor group $\ell, \nu \Sigma_{f, m, \ell}^{\mathrm{D}, g}$
\{chid\}	$\mathrm{R}\left(N_{m}, N_{f}\right)$	$N_{d} \geq 1$		The energy spectrum of the fission-emitted delayed neutron in the precursor group $\ell, \chi_{m, \ell}^{\mathrm{D}, g}$
FLUX-INTG ${ }_{\text {Uபப }}$	$\mathrm{R}\left(N_{m}\right)$	$\mathcal{M} \geq 2$	$\mathrm{cm} \mathrm{s}^{-1}$	The volume-integrated flux Φ_{m}^{g}
FLUX-INTG-P1	$\mathrm{R}\left(N_{m}\right)$	$\mathcal{M} \geq 2 ; I_{w} \geq 1$	$\mathrm{cm} \mathrm{s}^{-1}$	The volume-integrated fundamental current \mathcal{J}_{m}^{g}
NWAT0 பபபபபபப	$\mathrm{R}\left(N_{m}\right)$	$I_{\text {pro }}=1$	1	The multigroup neutron adjoint flux spectrum $\phi_{m}^{* g}$
NWAT1 $ا$ பபபபபபப	$\mathrm{R}\left(N_{m}\right)$	$I_{w} \geq 1 ; I_{\text {pro }}=1$	1	The multigroup fundamental adjoint current spectrum $\mathcal{J}_{m}^{* g}$
OVERV பபபபபபப	$\mathrm{R}\left(N_{m}\right)$		$\mathrm{cm}^{-1} \mathrm{~S}$	The average of the inverse neutron velocity $<1 / v>{ }_{m}^{g}$
DIFF பபபபபபபப	$\mathrm{R}\left(N_{m}\right)$	$\mathcal{M}=2 ; \quad I_{l}=1$	cm	The isotropic diffusion coefficient D_{m}^{g}
DIFFX	$\mathrm{R}\left(N_{m}\right)$	$\mathcal{M}=2 ; \quad I_{l}=2$	cm	The x-directed diffusion coefficient $D_{x, m}^{g}$
DIFFY	$\mathrm{R}\left(N_{m}\right)$	$\mathcal{M}=2 ; I_{l}=2$	cm	The y-directed diffusion coefficient $D_{y, m}^{g}$
DIFFZபபபபபபப	$\mathrm{R}\left(N_{m}\right)$	$\mathcal{M}=2 ; I_{l}=2$	cm	The z-directed diffusion coefficient $D_{z, m}^{g}$
NSPH பபபபபபபப $^{\text {a }}$	$\mathrm{R}\left(N_{m}\right)$	$\mathcal{M}=2$	1	SPH equivalence factors μ_{m}^{g}. By default, these factors are set equal to 1.0. Otherwise, all the cross sections, diffusion coefficients and integrated fluxes stored on the macrolib are SPH-corrected.
H-FACTOR	$\mathrm{R}\left(N_{m}\right)$	$\mathcal{M}=2$	$\mathrm{J} \mathrm{cm}^{-1}$	Energy production coefficients H_{m}^{g} (product of each macroscopic cross section times the energy emitted by this reaction).
\{/xsname/\}	$\mathrm{R}\left(N_{m}\right)$	$N_{e} \geq 1$	cm^{-1}	Set of cross section records specified by ADDXS_{k}

The set of delayed neutron records \{nusid\} and \{chid\} will be composed, using the following FORTRAN instructions, as NUSID and CHID, respectively

$$
\begin{aligned}
& \text { WRITE(NUSID,' (A6, I2.2)') 'NUSIGF', ell } \\
& \text { WRITE(CHID,' (A3, I2.2)') 'CHI', ell }
\end{aligned}
$$

for $1 \leq e l l \leq N_{d}$. For example, in the case where two group cross sections are considered $\left(N_{d}=2\right)$, the following records would be generated:

Table 3: Example of delayed-neutron records in GROUP

Name	Type	Condition	Units	Comment
NUSIGF01 $+\sqcup \sqcup \sqcup$	$\mathrm{R}\left(N_{m}, N_{f}\right)$	$N_{d} \geq 1$	cm^{-1}	The product of $\Sigma_{f, m}^{g}$, the fission cross section with $\nu_{m, 1}^{\mathrm{D}, g}$, the averaged number of fission-emitted delayed neutron produced in the precursor group $\ell=1$, $\nu \Sigma_{f, m, 1}^{\mathrm{D}, g}$
CHI01	$\mathrm{R}\left(N_{m}, N_{f}\right)$	$N_{d} \geq 1$		The energy spectrum of the fission-emitted delayed neutron in the precursor group $\ell=1, \chi_{m, 1}^{\mathrm{D}, g}$
NUSIGF02பபபப	$\mathrm{R}\left(N_{m}, N_{f}\right)$	$N_{d} \geq 2$	cm^{-1}	The product of $\Sigma_{f, m}^{g}$, the fission cross section with $\nu_{m, 2}^{\mathrm{D}, g}$, the averaged number of fission-emitted delayed neutron produced in the precursor group $\ell=2$, $\nu \Sigma_{f, m, 2}^{\mathrm{D}, g}$
CHIO2பபபபபபப	$\mathrm{R}\left(N_{m}, N_{f}\right)$	$N_{d} \geq 2$		The energy spectrum of the fission-emitted delayed neutron in the precursor group $\ell=2, \chi_{m, 2}^{\mathrm{D}, g}$

In the case where $N_{e}=3$ and

$$
\mathrm{ADDXS}_{k}=\left\{\begin{array}{lll}
\mathrm{NG} & \text { for } & k=1 \\
\mathrm{~N} 2 \mathrm{~N} & \text { for } & k=2 \\
\mathrm{NFTOT} & \text { for } & k=3
\end{array}\right.
$$

the following reactions will be available in the data structure described in Table 2:

Table 4: Additional cross section records

Name	Type	Condition	Units	Comment
NG $\mathrm{N} 2 \mathrm{~N}_{\text {பபபபபபபபப }}$ NFTOT	$\begin{aligned} & \mathrm{R}\left(N_{m}\right) \\ & \mathrm{R}\left(N_{m}\right) \\ & \mathrm{R}\left(N_{m}\right) \end{aligned}$		$\begin{aligned} & \mathrm{cm}^{-1} \\ & \mathrm{~cm}^{-1} \\ & \mathrm{~cm}^{-1} \end{aligned}$	The neutron capture cross section $\Sigma_{\mathrm{c}, m}^{g}$ The cross section $\Sigma_{(\mathrm{n}, 2 \mathrm{n}), m}^{g}$ for the reaction ${ }_{Z}^{A} X+n \rightarrow{ }_{Z}^{A-1} X+2 n$ The neutron fission cross section $\Sigma_{\mathrm{f}, m}^{g}$

The information associated with the multigroup scattering matrix, which gives the probability for a neutron in group h to appear in group g after a collision with an isotope in mixture m is represented by the form:

$$
\Sigma_{s, m}^{h \rightarrow g}\left(\vec{\Omega} \rightarrow \vec{\Omega}^{\prime}\right)=\sum_{l=0}^{L} \frac{2 l+1}{4 \pi} P_{l}\left(\vec{\Omega} \cdot \vec{\Omega}^{\prime}\right) \Sigma_{l, m}^{h \rightarrow g}=\sum_{l=0}^{L} \sum_{m=-l}^{l} Y_{l}^{m}(\vec{\Omega}) Y_{l}^{m}\left(\vec{\Omega}^{\prime}\right) \Sigma_{l, m}^{h \rightarrow g}
$$

using a series expansion to order L in spherical harmonic. Assuming that the spherical harmonic are orthonormalized, we can define $\Sigma_{l, m}^{h \rightarrow g}$ in terms of $\Sigma_{s, m}^{h \rightarrow g}\left(\vec{\Omega} \rightarrow \vec{\Omega}^{\prime}\right)$ using the following integral:

$$
\Sigma_{l, m}^{h \rightarrow g}=\int_{4 \pi} d^{2} \Omega \Sigma_{s, m}^{h \rightarrow g}\left(\vec{\Omega} \rightarrow \vec{\Omega}^{\prime}\right) P_{l}\left(\vec{\Omega} \cdot \vec{\Omega}^{\prime}\right)
$$

Note that this definition of $\Sigma_{l, m}^{h \rightarrow g}$ is not unique and some authors include the factor $2 l+1$ directly in the different angular moments of the scattering cross section.

Here instead of storing the $G \times M$ matrix $\Sigma_{l, m}^{h \rightarrow g}$ associated with each final energy group g, a vector which contains a compress form of the scattering matrix will be considered. We will first define three integer vectors $n_{l, m}^{g}, h_{l, m}^{g}$ and $p_{l, m}^{g}$ for order l in the scattering cross section, final energy group g and mixture m. They will contain respectively the number of initial energy groups h for which the scattering cross section to group g does not vanish, the maximum energy group index for which scattering to the final group g does not vanishes and the position in the compressed scattering vector where the data associated with mixture m for each energy group g can be found. Here $p_{l, m}^{g}$ is directly related to $n_{l, m}^{g}$ by

$$
p_{l, m}^{g}=1+\sum_{k=1}^{m-1} n_{l, k}^{g}
$$

Figure 1: Numbering of scattering elements in 'SCAT' matrices.

Now consider the following 4 groups isotropic scattering cross section matrix associated with mixture 1 and $2\left(N_{m}=2\right)$ respectively:

				Mixture $m=1$			Mixture $m=2$		
$\sigma_{0, m}^{h \rightarrow g}$	$g=1$	$g=2$	$g=3$	$g=4$	$g=1$	$g=2$	$g=3$	$g=4$	
$h=1$	a_{1}	a_{2}	0	0	b_{1}	b_{2}	0	0	
$h=2$	0	a_{3}	a_{4}	a_{5}	b_{3}	b_{4}	b_{5}	0	
$h=3$	0	a_{6}	a_{7}	0	0	b_{6}	b_{7}	0	
$h=4$	0	a_{8}	0	a_{9}	0	0	b_{8}	b_{9}	
$h_{0, m}^{g}$	1	4	3	4	2	3	4	4	
$n_{0, m}^{g}$	1	4	2	3	2	3	3	1	
$p_{0, m}^{g}$	1	1	1	1	2	5	3	4	

The compressed scattering matrix will then take the following form for each final group g :

$$
\begin{aligned}
\Sigma_{0, k, c}^{1} & =\left(a_{1}, b_{3}, b_{1}\right) \\
\Sigma_{0, k, c}^{2} & =\left(a_{8}, a_{6}, a_{3}, a_{2}, b_{6}, b_{4}, b_{2}\right) \\
\Sigma_{0, k, c}^{3} & =\left(a_{7}, a_{4}, b_{8}, b_{7}, b_{5}\right) \\
\Sigma_{0, k, c}^{4} & =\left(a_{9}, 0, a_{5}, b_{9}\right)
\end{aligned}
$$

Finally, we will also save the total scattering cross section vector of order l which is defined as

$$
\Sigma_{l, m, s}^{g}=\sum_{h=1}^{G} \Sigma_{l, m}^{g \rightarrow h}
$$

and the diagonal element of the scattering matrix:

$$
\Sigma_{l, m, w}^{g}=\Sigma_{l, m}^{g \rightarrow g}
$$

In the case where only the order $l=0$ and $l=1$ moment of scattering cross section are non vanishing (isotropic and linearly anisotropic scattering) the following records can be found on the group directory.

Table 5: Scattering cross section records in GROUP

Name	Type	Condition	Units	Comment
SIGS00_பபபபபப	$\mathrm{R}\left(N_{m}\right)$		cm^{-1}	The isotropic component $(l=0)$ of the total scattering cross section $\Sigma_{0, m, s}^{g}$
SIGW00பபபபபப	$\mathrm{R}\left(N_{m}\right)$		cm^{-1}	The isotropic component $(l=0)$ of the within group scattering cross section $\Sigma_{0, m, w}^{g}$
IJJS00_பபபபபப	$\mathrm{I}\left(N_{m}\right)$			Highest energy group number for which the isotropic component of the scattering cross section to group g does not vanish, $h_{0, m}^{g}$
NJJS00_பபபபபப	$\mathrm{I}\left(N_{m}\right)$			Number of energy groups for which the isotropic component of the scattering cross section to group g does not vanish, $n_{0, m}^{g}$
IPOS00_பபபபபப	$\mathrm{I}\left(N_{m}\right)$			Location in the isotropic compressed scattering matrix where information associated with mixture m begins $p_{0, m}^{g}$

Scattering cross section records in GROUP continued from last page

Name	Type	Condition	Units	Comment
SCAT00 பபபபபப	$\mathrm{R}\left(\sum_{m=1}^{N_{m}} n_{0, m}^{g}\right)$		cm^{-1}	Compressed isotropic component of the scattering matrix Σ_{0}^{g}
SIGS01பபபபபப	$\mathrm{R}\left(N_{m}\right)$	$L \geq 1$	cm^{-1}	The linearly anisotropic component of the total scattering cross section $\Sigma_{1, m, s}^{g}$
SIGW01பபபபபப	$\mathrm{R}\left(N_{m}\right)$	$L \geq 1$	cm^{-1}	The linearly anisotropic component of the within group scattering cross section $\Sigma_{1, m, w}^{g}$
IJJS01பபபபபப	$\mathrm{I}\left(N_{m}\right)$	$L \geq 1$		Highest energy group number for which the linearly anisotropic component of the scattering cross section to group g does not vanish, $h_{1, m}^{g}$
NJJS01 -1 பபபபப	$\mathrm{I}\left(N_{m}\right)$	$L \geq 1$		Number of energy groups for which the linearly anisotropic component of the scattering cross section to group g does not vanish, $n_{1, m}^{g}$
IPOS01 பபபபபப	$\mathrm{I}\left(N_{m}\right)$	$L \geq 1$		Location in the linearly anisotropic compressed scattering matrix where information associated with mixture m begins $p_{1, m}^{g}$
SCAT01 பபபபபப	$\mathrm{R}\left(\sum_{m=1}^{N_{m}} n_{1, m}^{g}\right)$	$L \geq 1$	cm^{-1}	Compressed linearly anisotropic component of the scattering matrix $\Sigma_{1, k, c}^{g}$

1.4 The /ADF/ sub-directory in /macrolib/

Sub-directory containing ADF-type boundary flux edition information. This information can be used to compute discontinuity factors or to perform Selengut-type normalization with the superhomogénéisation (SPH) method.

Table 6: Records in the /ADF/ sub-directory
\(\left.$$
\begin{array}{|llll|}\hline \hline \text { Name } & \text { Type } & \text { Condition Units } & \text { Comment } \\
\hline \text { NTYPE }_{\text {HADFபபபபப }} & \mathrm{I}(1) & I_{\mathrm{df}}=2 & I_{\mathrm{df}}=2\end{array}
$$ \quad \begin{array}{l}Number of ADF-type boundary flux edits.

Name of each ADF-type boundary flux edit. Any

name can be used, but some names are standard.

Standard names are: = FD_C: corner flux edition;

= FD_B: surface (assembly gap) flux edition;=\end{array}\right\}\)| FD_H: row flux edition (these are the first row of |
| :--- |
| surrounding cells in the assembly). |
| averaged fluxes surrounding the geometry. These |
| values correspond to surfaces where a VOID |
| boundary condition was replaced by a REFL |
| boundary condition in DRAGON. |

Records in the /ADF/ sub-directory
continued from last page

Name	Type	Condition	Units	Comment
\{/type/\}	$\mathrm{R}\left(N_{m}, G\right)$	$I_{\text {df }}=2$		Averaged fluxes in boundary regions. Name type is a component of HADF array.

1.5 The /GFF/ sub-directory in /macrolib/

Sub-directory containing group form factor information. This information can be used to perform fine power reconstruction over a fuel assembly.

Table 7: Records in the /GFF/ sub-directory

Name	Type	Condition	Units	Comment

The set of diffusion multigroup neutron flux spectrum records $\{/ F I N F /\}$ will be composed, using the following FORTRAN instructions as HVECT,

```
WRITE(HVECT,'(5HFINF_, I3.3)') 'ifx'
```

where if x is a value chosen by the user (default value is 0). A different value can be chosen every time the multicompo are "enriched" with different options (homogeneous/heterogeneous, tracking options, etc.).

1.6 The /SPH/ sub-directory in /macrolib/

The first level of the macrolib directory may contains a superhomogénéisation (SPH) sub-directory /SPH/ containing input data:

Table 8: Records in the /SPH/ sub-directory

Name	Type	Condition	Units	Comment
STATE-VECTOR	I(40)			Vector describing the various parameters associated with this data structure $\mathcal{S}_{i}^{\mathrm{sph}}$.
SPH\$TRK	$\mathrm{C} * 12$	$\mathcal{S}_{1}^{\text {sph }} \geq 2$		Name of the flux solution door.
$\mathrm{SPH}^{\text {-EPSILON }}{ }_{\sqcup}$	R(1)	$\mathcal{S}_{1}^{\text {sph }} \geq 2$	1	Convergence criterion for stopping the SPH iterations.

The dimensioning parameters for this data structure, which are stored in the state vector $\mathcal{S}^{\mathrm{sph}}$, represent values related to the last editing step:

- Type of SPH equivalence factors: $I_{\text {type }}=\mathcal{S}_{1}^{\text {sph }}$

$$
I_{\text {type }}= \begin{cases}0 & \text { no SPH correction; } \\ 1 & \text { the SPH factors are read from LCM; } \\ 2 & \text { homogeneous macro-calculation (non-iterative procedure or Hébert-Benoist } \\ & \text { SPH-5 procedure); } \\ 3 & \text { any type of } P_{i j} \text { macro-calculation; } \\ 4 & \text { any type of diffusion, } S_{n}, P_{n} \text { or } S P_{n} \text { macro-calculation. }\end{cases}
$$

- Type of SPH equivalence normalization $I_{\text {norm }}=\mathcal{S}_{2}^{\mathrm{sph}}$

$$
I_{\text {norm }}= \begin{cases}<0 & \text { asymptotic normalization with respect to homoheneous mixture }-I_{\text {norm }} \\ 1 & \text { average flux normalization; } \\ 2 & \text { Selengut normalization using ALBS00 information; } \\ 3 & \text { Selengut normalization using FD_B boundary fluxes; } \\ 4 & \text { Generalized Selengut normalization (EDF-type); } \\ 5 & \text { Selengut normalization with surface leakage. }\end{cases}
$$

- The maximum number of SPH iterations $\mathcal{S}_{3}^{\text {sph }}$
- The acceptable number of SPH iterations with an increase in convergence error before aborting $\mathcal{S}_{4}^{\text {sph }}$
- Flag for forcing the production of a macrolib or microlib at LHS $I_{\mathrm{lhs}}=\mathcal{S}_{5}^{\mathrm{sph}}$

$$
I_{\mathrm{lhs}}= \begin{cases}0 & \text { produce an object of the type of the RHS; } \\ 1 & \text { produce an edition object; } \\ 2 & \text { produce a microlib; } \\ 3 & \text { produce a macrolib }\end{cases}
$$

- Type of SPH factors $I_{\mathrm{imc}}=\mathcal{S}_{6}^{\mathrm{sph}}$

$$
I_{\mathrm{imc}}= \begin{cases}1 & \text { factors compatible with diffusion theory, } P_{n} \text { and } S P_{n} \text { equations } \\ 2 & \text { factors compatible with other types of transport-theory macro-calculations } \\ 3 & \text { factors compatible with } P_{i j} \text { macro-calculations and Bell acceleration. }\end{cases}
$$

- The first group index where the equivalence process is applied $\mathcal{S}_{7}^{\text {sph }}$
- The maximum group index where the equivalence process is applied $\mathcal{S}_{8}^{\mathrm{sph}}$

1.7 Delayed neutron information

We will present space-time kinetics equations in the context of the diffusion approximation (i.e. using the Fick law) and equations used in a lattice code to produce condensed and homogenized information. These equations will be useful to understand the information written in the MACROLIB specification. Similar expressions can be obtained in transport theory. Note that delayed neutron information β_{ℓ} and Λ can also be computed at the scale of the complete reactor provided that bilinear direct-adjoint condensation and homogenization relations are used.

The continuous-energy space-time diffusion equation is written:

$$
\begin{align*}
\frac{\partial}{\partial t}\left[\frac{1}{v(E)} \phi(\vec{r}, E, t)\right] & =\sum_{j} \chi_{j}^{\mathrm{pr}}(E) \int_{0}^{\infty} d E^{\prime} \nu_{j}^{\mathrm{pr}}\left(\vec{r}, E^{\prime}, t\right) \Sigma_{\mathrm{f}, j}\left(\vec{r}, E^{\prime}, t\right) \phi\left(\vec{r}, E^{\prime}, t\right) \\
& +\sum_{j} \sum_{\ell} \chi_{\ell, j}^{\mathrm{D}}(E) \lambda_{\ell} c_{\ell, j}(\vec{r}, t)+\nabla \cdot D(\vec{r}, E, t) \nabla \phi(\vec{r}, E, t) \\
& -\Sigma(\vec{r}, E, t) \phi(\vec{r}, E, t)+\int_{0}^{\infty} d E^{\prime} \Sigma_{\mathrm{s} 0}\left(\vec{r}, E \leftarrow E^{\prime}, t\right) \phi\left(\vec{r}, E^{\prime}, t\right) \tag{1.1}
\end{align*}
$$

together with the set of N_{d} precursor equations:

$$
\begin{equation*}
\frac{\partial c_{\ell, j}(\vec{r}, t)}{\partial t}=\int_{0}^{\infty} d E \nu_{\ell, j}^{\mathrm{D}}(\vec{r}, E, t) \Sigma_{\mathrm{f}, j}(\vec{r}, E, t) \phi(\vec{r}, E, t)-\lambda_{\ell} c_{\ell, j}(\vec{r}, t) \quad ; \quad \ell=1, N_{d} \tag{1.2}
\end{equation*}
$$

where
$\phi(\vec{r}, E, t)=$ neutron flux
$\chi_{j}^{\mathrm{pr}}(E)=$ prompt neutron spectrum for a fission of isotope j
$\nu_{j}^{\mathrm{pr}}(\vec{r}, E, t)=$ number of prompt neutrons for a fission of isotope j
$\Sigma_{\mathrm{f}, j}(\vec{r}, E, t)=$ macroscopic fission cross section for isotope j
$\chi_{\ell, j}^{\mathrm{D}}(E)=$ neutron spectra for delayed neutrons emitted by precursor group ℓ due to a fission of isotope j
$\lambda_{\ell}=$ radioactive decay constant for precursor group ℓ. This constant is assumed to be independent of the fissionable isotope j.
$c_{\ell, j}(\vec{r}, t)=$ concentration of the ℓ-th precursor for a fission of isotope j
$D(\vec{r}, E, t)=$ diffusion coefficient
$\Sigma(\vec{r}, E, t)=$ macroscopic total cross section
$\Sigma_{\mathrm{s} 0}\left(\vec{r}, E \leftarrow E^{\prime}, t\right)=$ macroscopic scattering cross section
$\nu_{\ell, j}^{\mathrm{D}}(\vec{r}, E, t)=$ number of delayed neutrons in precursor group ℓ for a fission of isotope j.
The neutron spectrum are normalized so that

$$
\begin{equation*}
\int_{0}^{\infty} d E \chi_{j}^{\mathrm{ss}}(E)=1 \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} d E \chi_{\ell}^{\mathrm{D}}(E)=1 \quad ; \quad \ell=1, N_{d} \tag{1.4}
\end{equation*}
$$

After condensation over energy, Eqs. (1.1) and (1.2) are written

$$
\begin{align*}
<1 / v>^{g} \frac{\partial}{\partial t} \phi^{g}(\vec{r}, t) & =\sum_{j} \chi_{j}^{\mathrm{pr}, g}\left[1-\sum_{\ell} \beta_{\ell, j}\right] \sum_{h} \nu \Sigma_{\mathrm{f}, j}^{h}(\vec{r}, t) \phi^{h}(\vec{r}, t) \\
& +\sum_{j} \sum_{\ell} \chi_{\ell, j}^{\mathrm{D}, g} \lambda_{\ell} c_{\ell, j}(\vec{r}, t)+\nabla \cdot D^{g}(\vec{r}, t) \nabla \phi^{g}(\vec{r}, t) \\
& -\Sigma^{g}(\vec{r}, t) \phi^{g}(\vec{r}, t)+\sum_{h} \Sigma_{\mathrm{s} 0}^{g \leftarrow h}(\vec{r}, t) \phi^{h}(\vec{r}, t) \tag{1.5}
\end{align*}
$$

together with the set of N_{d} precursor equations:

$$
\begin{equation*}
\frac{\partial c_{\ell, j}(\vec{r}, t)}{\partial t}=\beta_{\ell, j} \sum_{h} \nu \Sigma_{\mathrm{f}, j}^{h}(\vec{r}, t) \phi^{h}(\vec{r}, t)-\lambda_{\ell} c_{\ell, j}(\vec{r}, t) \quad ; \quad \ell=1, N_{d} \tag{1.6}
\end{equation*}
$$

where
$\nu \sum_{\mathrm{f}, j}^{h}(\vec{r}, t)=$ product of the number $\nu_{j}^{\mathrm{ss}}(\vec{r}, E)$ of secondary neutrons (both prompt and delayed) for a fission of isotope j times the macroscopic fission cross section for a fission of isotope j.
$\beta_{\ell, j}=$ delayed neutron fraction in precursor group ℓ.
The following condensation formulas have been used:

$$
\begin{align*}
& \nu_{j}^{\mathrm{ss}}(\vec{r}, E)=\nu_{j}^{\mathrm{pr}}(\vec{r}, E)+\sum_{\ell} \nu_{\ell, j}^{\mathrm{D}}(\vec{r}, E) \tag{1.7}\\
& \beta_{\ell, j}=\frac{\int_{0}^{\infty} d E \nu_{\ell, j}^{\mathrm{D}}(\vec{r}, E) \Sigma_{\mathrm{f}, j}(\vec{r}, E) \phi(\vec{r}, E)}{\int_{0}^{\infty} d E \nu_{j}^{\mathrm{ss}}(\vec{r}, E) \Sigma_{\mathrm{f}, j}(\vec{r}, E) \phi(\vec{r}, E)}=\frac{\sum_{g} \nu \Sigma_{\mathrm{f}, \ell, j}^{\mathrm{D}, g}(\vec{r}) \phi^{g}(\vec{r})}{\sum_{g} \nu \Sigma_{\mathrm{f}, j}^{g}(\vec{r}) \phi^{g}(\vec{r})} \tag{1.8}\\
& {\left[1-\sum_{\ell} \beta_{\ell, j}\right]=\frac{\int_{0}^{\infty} d E \nu_{j}^{\mathrm{pr}}(\vec{r}, E) \Sigma_{\mathrm{f}, j}(\vec{r}, E) \phi(\vec{r}, E)}{\int_{0}^{\infty} d E \nu_{j}^{\mathrm{ss}}(\vec{r}, E) \Sigma_{\mathrm{f}, j}(\vec{r}, E) \phi(\vec{r}, E)}=\frac{\sum_{g} \nu \Sigma_{\mathrm{f}, j}^{\mathrm{pr}, g}(\vec{r}) \phi^{g}(\vec{r})}{\sum_{g} \nu \Sigma_{\mathrm{f}, j}^{g}(\vec{r}) \phi^{g}(\vec{r})}} \tag{1.9}\\
& \phi^{g}(\vec{r})=\int_{E_{g}}^{E_{g-1}} d E \phi(\vec{r}, E) \tag{1.10}\\
& \chi_{j}^{\mathrm{pr}, g}=\int_{E_{g}}^{E_{g-1}} d E \chi_{j}^{\mathrm{pr}}(E) \tag{1.11}
\end{align*}
$$

$$
\begin{align*}
& \chi_{\ell, j}^{\mathrm{D}, g}=\int_{E_{g}}^{E_{g-1}} d E \chi_{\ell, j}^{\mathrm{D}}(E) ; \quad \ell=1, N_{d} \tag{1.12}\\
& <1 / v>^{g}=\frac{1}{\phi^{g}(\vec{r})} \int_{E_{g}}^{E_{g-1}} d E \frac{1}{v(E)} \phi(\vec{r}, E) \tag{1.13}\\
& \Sigma^{g}(\vec{r})=\frac{1}{\phi^{g}(\vec{r})} \int_{E_{g}}^{E_{g-1}} d E \Sigma(\vec{r}, E) \phi(\vec{r}, E) \tag{1.14}\\
& \Sigma_{\mathrm{s} 0}^{g \leftarrow h}(\vec{r})=\frac{1}{\phi^{h}(\vec{r})} \int_{E_{g}}^{E_{g-1}} d E \int_{E_{h}}^{E_{h-1}} d E^{\prime} \Sigma_{\mathrm{s} 0}\left(\vec{r}, E \leftarrow E^{\prime}\right) \phi\left(\vec{r}, E^{\prime}\right) \tag{1.15}\\
& \nu \Sigma_{\mathrm{f}, j}^{g}(\vec{r})=\frac{1}{\phi^{g}(\vec{r})} \int_{E_{g}}^{E_{g-1}} d E \nu_{j}^{\mathrm{ss}}(\vec{r}, E) \Sigma_{\mathrm{f}, j}(\vec{r}, E) \phi(\vec{r}, E) . \tag{1.16}
\end{align*}
$$

where the variable t has been omitted in order to simplify the notation.
A steady-state fission spectrum (taking into account both prompt and delayed neutrons), for a fission of isotope j, is also required for solving the static neutron diffusion equation:

$$
\begin{equation*}
\chi_{j}^{\mathrm{ss}}(E)=\left[1-\sum_{\ell} \beta_{\ell, j}\right] \chi_{j}^{\mathrm{pr}}(E)+\sum_{\ell} \beta_{\ell, j} \chi_{\ell, j}^{\mathrm{D}}(E) \tag{1.17}
\end{equation*}
$$

The group-integrated steady-state fission spectrum is therefore given as

$$
\begin{equation*}
\chi_{j}^{\mathrm{ss}, g}=\left[1-\sum_{\ell} \beta_{\ell, j}\right] \chi_{j}^{\mathrm{pr}, g}+\sum_{\ell} \beta_{\ell, j} \chi_{\ell, j}^{\mathrm{D}, g} \tag{1.18}
\end{equation*}
$$

The space-time diffusion equation is generally solved by assuming a unique averaged fissionable isotope. In this case, the variable N_{f} is set to 1 in the MACROLIB specification and the summations over j disapears in Eqs. (1.5) and (1.6):

$$
\begin{align*}
<1 / v>^{g} \frac{\partial}{\partial t} \phi^{g}(\vec{r}, t) & =\chi^{\mathrm{pr}, g}\left[1-\sum_{\ell} \beta_{\ell}\right] \sum_{h} \nu \Sigma_{\mathrm{f}}^{h}(\vec{r}, t) \phi^{h}(\vec{r}, t) \\
& +\sum_{\ell} \chi_{\ell}^{\mathrm{D}, g} \lambda_{\ell} c_{\ell}(\vec{r}, t)+\nabla \cdot D^{g}(\vec{r}, t) \nabla \phi^{g}(\vec{r}, t) \\
& -\Sigma^{g}(\vec{r}, t) \phi^{g}(\vec{r}, t)+\sum_{h} \Sigma_{\mathrm{s} 0}^{g \leftarrow h}(\vec{r}, t) \phi^{h}(\vec{r}, t) \tag{1.19}
\end{align*}
$$

together with the set of n_{d} precursor equations:

$$
\begin{equation*}
\frac{\partial c_{\ell}(\vec{r}, t)}{\partial t}=\beta_{\ell} \sum_{g} \nu \Sigma_{\mathrm{f}}^{g}(\vec{r}, t) \phi^{g}(\vec{r}, t)-\lambda_{\ell} c_{\ell}(\vec{r}, t) \quad ; \quad \ell=1, N_{d} \tag{1.20}
\end{equation*}
$$

Using additional approximations, the new condensation relations are rewritten as

$$
\begin{equation*}
\nu \Sigma_{\mathrm{f}}(\vec{r}, E)=\sum_{j} \nu \Sigma_{\mathrm{f}, j}(\vec{r}, E)=\sum_{j} \nu_{j}^{\mathrm{ss}}(\vec{r}, E) \Sigma_{\mathrm{f}, j}(\vec{r}, E) \tag{1.21}
\end{equation*}
$$

$$
\begin{gather*}
\beta_{\ell}=\frac{\sum_{j} \beta_{\ell, j} \int_{0}^{\infty} d E \nu_{j}^{\mathrm{ss}}(\vec{r}, E) \Sigma_{\mathrm{f}, j}(\vec{r}, E) \phi(\vec{r}, E)}{\sum_{j} \int_{0}^{\infty} d E \nu_{j}^{\mathrm{ss}}(\vec{r}, E) \Sigma_{\mathrm{f}, j}(\vec{r}, E) \phi(\vec{r}, E)}=\frac{\sum_{j} \beta_{\ell, j} \sum_{g} \nu \Sigma_{\mathrm{f}, j}^{g}(\vec{r}) \phi^{g}(\vec{r})}{\sum_{j} \sum_{g} \nu \Sigma_{\mathrm{f}, j}^{g}(\vec{r}) \phi^{g}(\vec{r})} \tag{1.22}\\
\chi^{\mathrm{pr}, g}=\frac{\sum_{j}\left[1-\sum_{\ell} \beta_{\ell, j}\right] \int_{E_{g}}^{E_{g-1}} d E \chi_{j}^{\mathrm{pr}}(E) \int_{0}^{\infty} d E^{\prime} \nu_{j}^{\mathrm{ss}}\left(\vec{r}, E^{\prime}\right) \Sigma_{\mathrm{f}, j}\left(\vec{r}, E^{\prime}\right) \phi\left(\vec{r}, E^{\prime}\right)}{\left[1-\sum_{\ell} \beta_{\ell}\right] \sum_{j} \int_{0}^{\infty} d E \nu_{j}^{\mathrm{ss}(}(\vec{r}, E) \Sigma_{\mathrm{f}, j}(\vec{r}, E) \phi(\vec{r}, E)} \\
=\frac{\sum_{j}\left[1-\sum_{\ell} \beta_{\ell, j}\right] \chi_{j}^{\mathrm{pr}, g} \sum_{h} \nu \Sigma_{\mathrm{f}, j}^{h}(\vec{r}) \phi^{h}(\vec{r})}{\left[1-\sum_{\ell} \beta_{\ell}\right] \sum_{j} \sum_{h} \nu \Sigma_{\mathrm{f}, j}^{h}(\vec{r}) \phi^{h}(\vec{r})} \tag{1.23}
\end{gather*}
$$

and

$$
\begin{align*}
\chi_{\ell}^{\mathrm{D}, g} & =\frac{\sum_{j} \beta_{\ell, j} \int_{E_{g}}^{E_{g-1}} d E \chi_{\ell, j}^{\mathrm{D}}(E) \int_{0}^{\infty} d E^{\prime} \nu_{j}^{\mathrm{ss}}\left(\vec{r}, E^{\prime}\right) \Sigma_{\mathrm{f}, j}\left(\vec{r}, E^{\prime}\right) \phi\left(\vec{r}, E^{\prime}\right)}{\beta_{\ell} \sum_{j} \int_{0}^{\infty} d E \nu_{j}^{\mathrm{ss}}(\vec{r}, E) \Sigma_{\mathrm{f}, j}(\vec{r}, E) \phi(\vec{r}, E)} ; \ell=1, N_{d} \\
& =\frac{\sum_{j} \beta_{\ell, j} \chi_{\ell, j}^{\mathrm{D}, g} \sum_{h} \nu \Sigma_{\mathrm{f}, j}^{h}(\vec{r}) \phi^{h}(\vec{r})}{\beta_{\ell} \sum_{j} \sum_{h} \nu \Sigma_{\mathrm{f}, j}^{h}(\vec{r}) \phi^{h}(\vec{r})} ; \quad \ell=1, N_{d} \tag{1.24}
\end{align*}
$$

The above definitions ensure that the group-integrated steady-state fission spectrum is given as

$$
\begin{equation*}
\chi^{\mathrm{ss}, g}=\left[1-\sum_{\ell} \beta_{\ell}\right] \chi^{\mathrm{pr}, g}+\sum_{\ell} \beta_{\ell} \chi_{\ell}^{\mathrm{D}, g} \tag{1.25}
\end{equation*}
$$

A mean neutron generation time can also be written as

$$
\begin{equation*}
\Lambda=\frac{\int_{0}^{\infty} d E \frac{1}{v(E)} \phi(\vec{r}, E)}{\sum_{j} \int_{0}^{\infty} d E \nu_{j}^{\mathrm{ss}}(\vec{r}, E) \Sigma_{\mathrm{f}, j}(\vec{r}, E) \phi(\vec{r}, E)}=\frac{\sum_{g}<1 / v>^{g} \phi^{g}(\vec{r})}{\sum_{j} \sum_{g} \nu \Sigma_{\mathrm{f}, j}^{g}(\vec{r}) \phi^{g}(\vec{r})} \tag{1.26}
\end{equation*}
$$

2 Contents of a / microlib/ directory

A /microlib/ directory contains the set of multigroup microscopic cross sections associated with a set of isotopes. It also includes a /macrolib/ directory where the macroscopic cross sections for the mixtures to which are associated these isotopes are stored (see Section 1). Finally it may contains a / depletion/ directory (see Section 2.4) which is required for burnup calculation and a /selfshield/ directory which is generated by the SHI: or USS: operator (see Section 2.8). It is therefore multi-level, namely, it contains sub-directories. Note that the contents of such a directory will vary depending on the operator which was used to create or modify it. Here for convenience we will define the variable \mathcal{M} to identify the creation operator:

$$
\mathcal{M}= \begin{cases}1 & \text { if the microlib is created or modified by the LIB : or EVO : operator } \\ 2 & \text { if the microlib is created or modified by the EDI : or C2M : operator } \\ 3 & \text { if the microlib is modified by the SHI : or USS : operator } \\ 4 & \text { if the microlib is part of a COMPO object and is created by the COMPO: operator }\end{cases}
$$

In the case where the LIB: or C2M: operator is used to create the microlib, it appears on the root level of the data structure. For the other case it is embedded as a subdirectory of a surrounding data structure.

2.1 State vector content for the /microlib/ data structure

The dimensioning parameters for the /microlib/ data structure, which are stored in the state vector \mathcal{S}^{m}, represent:

- The maximum number of mixtures $M_{m}=\mathcal{S}_{1}^{m}$
- The number of isotopes $N_{I}=\mathcal{S}_{2}^{m}$
- The number of groups $G=\mathcal{S}_{3}^{m}$
- The order for the scattering anisotropy $L=\mathcal{S}_{4}^{m}(L=1$ is an isotropic collision; $L=2$ is a linearly anisotropic collision, etc.)
- The transport correction option $I_{t r}=\mathcal{S}_{5}^{m}$

$$
I_{t r}= \begin{cases}0 & \text { do not use a transport correction } \\ 1 & \text { use an APOLLO-type transport correction (micro-reversibility at all energies) } \\ 2 & \text { recover a transport correction from the cross-section library } \\ 3 & \text { use a WIMS-type transport correction (micro-reversibility below } 4 \mathrm{eV} \\ & \text { 1/E current spectrum elsewhere) } \\ 4 & \text { use a leakage correction based on NTOT1 data. }\end{cases}
$$

- Format of the included /macrolib/ $I_{p}=\mathcal{S}_{6}^{m}$

$$
I_{p}= \begin{cases}0 & \text { for the direct macroscopic cross sections } \\ 1 & \text { for the adjoint macroscopic cross sections }\end{cases}
$$

- Option for removing delayed neutron effects from the $/$ microlib/ $I_{t}=\mathcal{S}_{7}^{m}$

$$
I_{t}= \begin{cases}1 & \text { include the delayed and prompt neutron effect } \\ 2 & \text { consider only the prompt neutrons. This option is only available with } \\ & \text { MATXS-type libraries. }\end{cases}
$$

- The number of independent libraries $N_{\text {lib }}=\mathcal{S}_{8}^{m}$
- The number of fast groups without self-shielding $N_{g, f}=\mathcal{S}_{9}^{m}$

Represents the number of fast energy groups to be treated without including resonance effects. It is automatically determined from the cross-section libraries. This value, which is only used by the self-shielding operator, can be modified using the keyword GRMAX.

- The maximum index of all groups with self-shielding $N_{g, e}=\mathcal{S}_{10}^{m}$.

In the case of a WIMS-type library, it represents the total number of energy groups above 4.0 eV . Otherwise, it is automatically determined from the cross-section libraries. This value, is used by the self-shielding operator and can be modified locally in this operator using the keyword GRMIN.

- The number of depleting isotopes $N_{d}=\mathcal{S}_{11}^{m}$
- The number of depleting mixtures $N_{d, f}=\mathcal{S}_{12}^{m}$
- The number of additional ϕ-weighted editing cross sections $N_{e}=\mathcal{S}_{13}^{m}$
- The number of mixtures $N_{m}=\mathcal{S}_{14}^{m}$
- The number of resonant mixtures $N_{r}=\mathcal{S}_{15}^{m}$
- The number of energy-dependent fission spectra $G_{c h i}=\mathcal{S}_{16}^{m}$. By default $\left(G_{c h i}=0\right)$, a unique fission spectrum is used. The theory of multiple fission spectra is presented in Ref. 2.
- Option for processing the cross-section libraries $I_{\text {proc }}=\mathcal{S}_{17}^{m}$

$$
I_{\text {proc }}= \begin{cases}-1 & \text { skip the library processing (i.e., no interpolation). } \\
0 & \begin{array}{l}
\text { perform an interpolation in temperature and dilution. } \\
\text { perform an interpolation in temperature and compute probability } \\
\text { tables based on the tabulation in dilution. } \\
\text { perform an interpolation in temperature and build a new temperature- } \\
\text { independent cross-section library in DRAGON format. } \\
\text { perform an interpolation in temperature and compute CALENDF-type } \\
\text { mathematical probability tables based on BIN-type cross sections. Do } \\
\text { not compute the slowing-down correlated weight matrices. Option } \\
\text { compatible with the subgroup projection method (SPM). } \\
4
\end{array} \\
\begin{array}{l}
\text { perform an interpolation in temperature and compute CALENDF-type } \\
\text { mathematical probability tables and slowing-down correlated weight } \\
\text { matrices based on BIN-type cross sections. Option compatible with } \\
\text { the Ribon extended method. } \\
\text { perform an interpolation in temperature and compute CALENDF-type } \\
\text { mathematical probability tables based on BIN-type cross sections. This } \\
\text { option is similar to the } I_{\text {proc }}=3 \text { procedure. Here, the base points of the } \\
\text { probability tables corresponding to fission and scattering cross sections } \\
\text { and to components of the transfer scattering matrix are also obtained } \\
\text { using the CALENDF approach. }
\end{array}\end{cases}
$$

- Option for computing the macrolib $I_{\mathrm{mac}}=\mathcal{S}_{18}^{m}$

$$
I_{\mathrm{mac}}= \begin{cases}0 & \text { do not build an embedded macrolib. } \\ 1 & \text { build an embedded macrolib. Mandatory if the microlib is to be used to } \\ & \text { perform micro-depletion. }\end{cases}
$$

- The number of precursor groups producing delayed neutrons $N_{\text {del }}=\mathcal{S}_{19}^{m}$.
- The number of fissile isotopes producing fission products with PYIELD data $N_{\mathrm{dfi}}=\mathcal{S}_{20}^{m}$ (see Table 17).
- Option for completing the depletion chains with the missing isotopes $I_{\mathrm{cmp}}=\mathcal{S}_{21}^{m}$.

$$
I_{\mathrm{cmp}}= \begin{cases}0 & \text { complete } \\ 1 & \text { do not complete }\end{cases}
$$

- The maximum number of isotopes per mixture $M_{\mathrm{I}}=\mathcal{S}_{22}^{m}$.
- An integer index $(1,2,3$ or 4$)$ used to set the accuracy of the CALENDF probability tables. The highest the value, the more accurate are the tables. $N_{\text {ipreci }}=\mathcal{S}_{23}^{m}$.
- Discontinuity factor flag $I_{\mathrm{df}}=\mathcal{S}_{24}^{m}$. This information is available in /macrolib/ directory (see Section 1).

$$
I_{\mathrm{df}}= \begin{cases}0 & \text { no discontinuity factor information } \\ 1 & \text { ALBS-type information is available } \\ 2 & \text { discontinuity factor information (see Section 1.4) is available }\end{cases}
$$

2.2 The main /microlib/ directory

The following records and sub-directories will be found on the first level of a / microlib/ directory:
Table 9: Main records and sub-directories in /microlib/

Name	Type	Condition	Units	Comment
SIGNATURE பபப $^{\text {a }}$	$\mathrm{C} * 12$			Signature of the /microlib/ data structure (SIGNA =LLIBRARY ${ }_{\text {UபபU }}$).
STATE-VECTOR	$\mathrm{I}(40)$			Vector describing the various parameters associated with this data structure \mathcal{S}_{i}^{m}, as defined in Section 2.1.
ENERGY	$\mathrm{R}(G+1)$		eV	Energy groups limits E_{g}
DELTAUபபபபபப	$\mathrm{R}(G)$			Lethargy width of each group U_{g}
CHI-ENERGY $\sqcup \checkmark$	$\mathrm{R}\left(G_{\text {chi }}+1\right)$	$G_{\text {chi }} \neq 0$	eV	$E_{\text {chi }}(g)$: Group energy limits defining the energy-dependent fission spectra. By default, a unique fission spectra is used.
CHI-LIMITS பப	$\mathrm{I}\left(G_{\text {chi }}+1\right)$	$G_{\text {chi }} \neq 0$		$N_{\text {chi }}(g)$: Group limit indices defining the energy-dependent fission spectra. By default, a unique fission spectra is used.
ISOTOPESUSED	$\mathrm{C}\left(M_{I}\right) * 12$			Alias name of the isotopes NALIAS_{i}
ISOTOPERNAME	$\mathrm{C}\left(M_{I}\right) * 12$	$\mathcal{M}=1,3$		Reference name of the isotopes NISO_{i}
ISOTOPESMIX $_{\sqcup}$	$\mathrm{I}\left(M_{I}\right)$	$\mathcal{M} \neq 4$		Mixture number associated with each isotope M_{i}
ISOTOPESDENS	$\mathrm{R}\left(M_{I}\right)$		$(\mathrm{cm} \mathrm{b})^{-1}$	Isotopic density ρ_{i}
ISOTOPESTEMP	$\mathrm{R}\left(M_{I}\right)$		K	Isotope temperature T_{i}
ISOTOPESTODO	$\mathrm{I}\left(M_{I}\right)$	$\mathcal{M}=1,3$		$=0$: automatic detection of depletion for isotope $M_{i} ;=1$: isotope M_{i} is forced to be non depleting (keeps its capability to produce energy); $=2$: isotope M_{i} is at saturation.
ISOTOPESTYPE	$\mathrm{I}\left(M_{I}\right)$			Type index associated with each isotope $\mathrm{ITYP}_{i} .=1$: the isotope is not fissile and not a fission product; $=2$: fissile isotope; $=3$: fission product.
ISOTOPESAWR $_{\sqcup}$	$\mathrm{R}\left(M_{I}\right)$		nau	Ratio of the isotope mass divided by the neutron mass
ISOTOPESVOL ${ }_{\bullet}$	$\mathrm{R}\left(M_{I}\right)$	$\mathcal{M}=2,4$	cm^{3}	Volume occupied by isotope V_{i}
ILIBRARYTYPE	$\mathrm{C}\left(M_{I}\right) * 8$	$N_{\text {lib }} \geq 1$		Library type associated with each isotope NLTY $_{i}$
ILIBRARYNAME	$\mathrm{C}\left(N_{\text {lib }}\right) * 64$	$N_{\text {lib }} \geq 1$		Name associated with each cross-section library
ILIBRARYINDX	$\mathrm{I}\left(M_{I}\right)$	$N_{\text {lib }} \geq 1$		Index of the cross-section library associated with each isotope $1 \leq \operatorname{LLIB}_{i} \leq N_{\text {lib }}$
$\mathrm{ISOTOPESCOH}_{\sqcup}$	$\mathrm{C}\left(M_{I}\right) * 8$	$N_{\text {lib }} \geq 1$		Name of coherent scattering type at thermal energies NCOH_{i}
ISOTOPESINC $_{\sqcup}$	$\mathrm{C}\left(M_{I}\right) * 8$	$N_{\text {lib }} \geq 1$		Name of incoherent scattering type at thermal energies NINC_{i}

Main records and sub-directories in /microlib/
continued from last page

Name	Type	Condition	Units	Comment
ISOTOPESNTFG	$\mathrm{I}\left(M_{I}\right)$	$N_{\text {lib }} \geq 1$		Number of thermal groups involved in coherent or incoherent scattering $G_{s, i}$
ISOTOPESHIN $_{\sqcup}$	$\mathrm{C}\left(M_{I}\right) * 12$	$N_{\text {lib }} \geq 1$		Name of resonant isotope associated with each isotope NSHI_{i}
$\mathrm{ISOTOPESSHI}_{\sqcup}$	$\mathrm{I}\left(M_{I}\right)$	$N_{\text {lib }} \geq 1$		Resonant mixture associated with each isotope $I_{R, i}$
$\mathrm{ISOTOPESDSN}_{\sqcup}$	$\mathrm{R}\left(M_{I}\right)$	$\begin{aligned} & N_{\text {lib }} \geq 1 \\ & I_{\text {proc }}=0 \end{aligned}$	b	Standard dilution cross section for isotope $\sigma_{\text {dil }, i}$
ISOTOPESDSB $_{\sqcup}$	$\mathrm{R}\left(M_{I}\right)$	$\begin{aligned} & N_{\mathrm{lib}} \geq 1 \\ & I_{\mathrm{proc}}=0 \end{aligned}$	b	Livolant-Jeanpierre dilution cross section for isotope $\sigma_{\mathrm{LJ}, i}$
ISOTOPESNIR $_{\sqcup}$	$\mathrm{I}\left(M_{I}\right)$	$N_{\text {lib }} \geq 1$		Use Goldstein-Cohen factor λ_{i} in groups with index $\geq N_{i}^{\mathrm{ir}}$. Use $\lambda=1$ in other groups
ISOTOPESGIR $_{\sqcup}$	$\mathrm{R}\left(M_{I}\right)$	$N_{\text {lib }} \geq 1$	1	Goldstein-Cohen parameter in low-energy resonant groups λ_{i}. Set to -998.0 if $I_{\text {proc }}=3$, to -999.0 if $I_{\text {proc }}=4$ and to -1000.0 if $I_{\text {proc }}=5$.
MIXTURESVOL ${ }_{\square}$	$\mathrm{R}\left(M_{m}\right)$	$\mathcal{M}=2,4$	cm^{3}	Volume occupied by each mixture
ADDXSNAME-P0 TIMESPER	$\mathrm{C}\left(N_{e}\right) * 8$ $\mathrm{R}(2 \times 3)$	$N_{e} \geq 1$ $\mathcal{M}=2$		Names of the additional ϕ-weighted editing cross sections ADDXS $_{k}$ stored on /macrolib/ array $T_{j, i}$ that contains $T_{j, 1}=t, T_{j, 2}=B$ and $T_{j, 3}=w$, the lower $(j=1)$ and upper bounds $(j=2)$ for the reference time in days, burnup in MW day T^{-1} and irradiation in Kb^{-1} respectively for which the perturbative expansion is valid
K-EFFECTIVE ${ }_{\sqcup}$	$\mathrm{R}(1)$	*		Effective multiplication constant $k_{\text {eff }}$
B2பபB1HOM பபப $^{\text {b }}$	R(1)		cm^{-2}	Homogeneous Buckling $B_{\text {hom }}$
MACROLIBபபபப	Dir	$I_{\text {mac }}=1$		directory containing the /macrolib/ associated with this library, following the specification presented in Section 1.2.
DEPL-CHAIN	Dir	$N_{d} \geq 1$		directory containing the /depletion/ associated with this library, following the specification presented in Section 2.4.
SHIBA $_{\text {பபபபபபப }}$	Dir	$\mathcal{M}=3$		directory containing the /selfshield/ associated with this library, following the specification presented in Section 2.7. This data is used by the SHI: operator.
SHIBA_SGபபபப	Dir	$\mathcal{M}=3$		directory containing the /selfshield/ associated with this library, following the specification presented in Section 2.8. This data is used by the USS: operator.
INDEX $_{\text {பபபபபபப }}$	Dir	*		directory containing indexing or table-ofcontent data for specific library files

Main records and sub-directories in /microlib/
continued from last page

Name	Type	Condition Units	Comment
\{/isotope/\} Dir	Set of M_{I} sub-directories containing the cross section information associated with a specific isotope. The name of these directory is speci- fied by NALIAS ${ }_{i}$. The name of a macroscopic residual is set to $* * M A C * R E S '$. The description of this directory is described in Tables 14 to 20.		

One will find in Section 1 the description of a /macrolib/ directory and in Section 2.9 the contents of an /isotope/ directory. Note that if $N_{I}=2$ and

$$
\text { NALIAS }_{i}=\left\{\begin{array}{lll}
\text { U235 } 0001 & \text { for } & i=1 \\
\text { Pu239 } 0003 & \text { for } & i=2
\end{array}\right.
$$

then $\{/$ isotope/ $\}$ will correspond to the following two directories:

Table 10: Examples of isotopes directory in a /microlib/

Name	Type	Condition	Units	Comment
U235பபபப0001	Dir			Directory where the microscopic cross sections of ${ }^{235} \mathrm{U}$ are stored. These are self-shielded cross section already interpolated in temperature. They correspond to the properties of mixture 1
Pu239பபப0003	Dir			Directory where the microscopic cross sections of ${ }^{239} \mathrm{Pu}$ are stored. These are self-shielded cross section already interpolated in temperature. They correspond to the properties of mixture 3

2.3 State vector content for the depletion sub-directory

The dimensioning parameters for the depletion sub-directory, which are stored in the state vector \mathcal{S}^{d}, represent:

- The number of depleting isotopes $N_{\text {depl }}=\mathcal{S}_{1}^{d}$
- The number of direct fissile isotopes (i.e., producing fission products) $N_{\mathrm{dfi}}=\mathcal{S}_{2}^{d}$
- The number of fission fragments $N_{\mathrm{dfp}}=\mathcal{S}_{3}^{d}$. A fission fragment is produced directly by the fission reaction. A fission product is a fission fragment or a daughter isotope produced by decay or neutroninduced reaction.
- The number of heavy isotopes $N_{\mathrm{H}}=\mathcal{S}_{4}^{d}$

This number represents the combination of fissile isotopes and the other isotopes produced from these isotopes by reactions other than fission.

- The number of fission products $N_{\mathrm{fp}}=\mathcal{S}_{5}^{d}$

This number represents the combination of fission fragments and the other daughter isotopes produced by any reaction (decay or neutron induced).

- The number of other isotopes $N_{\mathrm{O}}=\mathcal{S}_{6}^{d}$

This number represents the other depleting isotopes which are not produced by fission or by reaction with fission isotopes or fission products but have a depletion chain.

- The number of stable isotopes $N_{\mathrm{H}}=\mathcal{S}_{7}^{d}$

This number represents the non-depleting isotopes producing energy (mainly by radiative capture). An isotope is considered to be stable if:

- its radioactive decay constant is zero
- the isotope has no father and no daughter
- energy is produced by the isotope.
- The maximum number of depleting reactions, including radioactive decay and neutron-induced reactions $M_{\mathrm{R}}=\mathcal{S}_{8}^{d}$
- The maximum number of parent isotopes leading to the production of an isotope in the depletion chain $M_{\mathrm{S}}=\mathcal{S}_{9}^{d}$

2.4 The depletion sub-directory /depletion/ in /microlib/

The following records and sub-directories will be found on the first level of a /depletion/ directory:

Table 11: Main records and sub-directories in /depletion/

Name	Type	Condition	Units	Comment
STATE-VECTOR	$\mathrm{I}(40)$			Vector describing the various parameters associated with this data structure \mathcal{S}_{i}^{d}, as defined in Section 2.3.
ISOTOPESDEPL	$\mathrm{C}\left(N_{\text {depl }}\right) * 12$			Reference name of the isotopes NISOD_{i} present in the depletion chain
CHARGEWEIGHT	$\mathrm{I}\left(N_{\text {depl }}\right)$			6 -digit (integer number) nuclide identifier with atomic number Z (2 digits), mass number A (3 digits) and energy state E (0 for ground state, 1 for first excited level, etc.). This identifier is not defined for pseudo fission products.
DEPLETE-IDEN	$\mathrm{C}\left(M_{\mathrm{R}}\right) * 8$			Reference name of the depletion reactions
DEPLETE-REAC	$\mathrm{I}\left(M_{\mathrm{R}} \times N_{\text {depl }}\right)$			List of identifier for the depletion of an isotope $K_{r, i}^{\mathrm{d}}$

Main records and sub-directories in /depletion/
continued from last page

Name	Type	Condition	Units	Comment
DEPLETE-ENER	$\mathrm{R}\left(M_{\mathrm{R}} \times N_{\text {depl }}\right)$		Mev	Energy per reaction associated with each depletion reaction $R_{r, i}^{\mathrm{d}}$
DEPLETE-DECA	$\mathrm{R}\left(N_{\text {depl }}\right)$		$10^{-8} \mathrm{~s}^{-1}$	Radioactive decay constants
PRODUCE-REAC	$\mathrm{I}\left(M_{\mathrm{S}} \times N_{\text {depl }}\right)$			List of identifier for the production of an isotope $K_{s, i}^{\mathrm{p}}$
PRODUCE-RATE	$\mathrm{R}\left(M_{\mathrm{S}} \times N_{\text {depl }}\right)$		1	Branching ratio associated with each production reaction $R_{s, i}^{\mathrm{p}}$
FISSIONYIELD	$\mathrm{R}\left(N_{\text {dfi }} \times N_{\text {dfp }}\right)$		1	Fission yield for each direct fissile isotope to each fission fragment $Y_{i \rightarrow j}$

An isotope NISO_{i} defined in Section 2.2 is considered to be part of the depletion chain only if one can find a value of $1 \leq j \leq N_{\text {depl }}$ such that $\mathrm{NISO}_{i}=\mathrm{NISOD}_{j}$. Some depleting isotopes may be automatically added to the /microlib/ directory. In this case, the reference name in record ISOTOPERNAME is taken equal to its reference name in ISOTOPESDEPL and the alias name in record ISOTOPESUSED is taken equal to the first 8 characters of its reference name in ISOTOPESDEPL, completed by a 4 -digit mixture identifier. If the reference name contains an underscore, the alias name is truncated at the first underscore. For example, an isotope present in mixture 2 with a reference name equal to D20_3_P5 is translated into an alias name equal to $\mathrm{D}_{2} 0_{ப ப ப \sqcup ப ~}^{0} 002$.

The contents of the variables $K_{r, i}^{\mathrm{d}}$ is used to identify the type of isotope under consideration. For each isotope i, r will take successively the values 1 to M_{D} depending on the type of reaction NREAD ${ }_{r}$ one wishes to analyze, namely

$\mathrm{NREAD}_{1}=$ DECAY	isotope may u
$\mathrm{NREAD}_{2}=\mathrm{NFTOT}_{\text {பபப }}$	isotope may undergo fission or is a fission fragment ${ }_{0}^{1} n+{ }_{Z}^{A} X \rightarrow{ }_{Z-Y}^{A+1-\nu-B} U+{ }_{Y}^{B} V+\nu{ }_{0}^{1} n+\gamma$
$\mathrm{NREAD}_{3}=\mathrm{NG}_{\text {பபபபபப }}$	isotope may undergo neutron capture ($\mathrm{mt}=102$) ${ }_{0}^{1} n+{ }_{Z}^{A} X \rightarrow{ }_{Z}^{A+1} X+\gamma$
	isotope may undergo ($\mathrm{n}, 2 \mathrm{n}$) reaction ($\mathrm{mt}=16$) ${ }_{0}^{1} n+{ }_{Z}^{A} X \rightarrow{ }_{Z}^{A-1} X+2{ }_{0}^{1} n+\gamma$
NREAD $_{5}=\mathrm{N}^{\text {N }}$ பபபபபப	isotope may undergo ($\mathrm{n}, 3 \mathrm{n}$) reaction ($\mathrm{mt}=17$)
$\mathrm{NREAD}_{6}=\mathrm{N} \mathrm{N}_{\text {பபபபப }}$	isotope may undergo ($\mathrm{n}, 4 \mathrm{n}$) reaction ($\mathrm{mt}=37$)
$\mathrm{NREAD}_{7}=\mathrm{NA}_{\text {பபபபபப }}$	isotope may undergo (n, α) reaction ($\mathrm{mt}=107$)
$\mathrm{NREAD}_{8}=\mathrm{NP}_{\text {பபபபபப }}$	isotope may undergo (n, p) reaction ($\mathrm{mt}=103$)
$\mathrm{NREAD}_{9}=\mathrm{N}^{2} \mathrm{~A}_{\text {பபபபப }}$	isotope may undergo ($\mathrm{n}, 2 \alpha$) reaction ($\mathrm{mt}=108$)
NREAD $_{10}=$ NNP $_{\text {பபபபப }}$	isotope may undergo (n, np) reaction ($\mathrm{mt}=28$)
NREAD $_{11}=$ ND $_{\text {பபபபபப }}$	isotope may undergo (n, d) reaction ($\mathrm{mt}=104$)
$\mathrm{NREAD}_{12}=\mathrm{NT}_{\text {பபபபபப }}$	isotope may undergo (n, t) reaction ($\mathrm{mt}=105$)

where symbols $\mathrm{n}, \alpha, \mathrm{p}, \mathrm{d}$ and t represent neutron, alpha particle, proton, deuteron and triton, respectively.
The contents of the variable $K_{r, i}^{\mathrm{d}}$ is used to specify the properties of reaction r for each isotope i under consideration. Here $K_{r, i}^{\mathrm{d}}$ contains two different types of informations, namely $d(r)$ and $i(r)$ which are defined as follows:

$$
\begin{equation*}
d(r)=K_{r, i}^{\mathrm{d}} \bmod 100 \quad \text { and } \quad i(r)=\frac{K_{r, i}^{\mathrm{d}}}{100} \tag{2.1}
\end{equation*}
$$

where

$$
d(r)= \begin{cases}0 & \text { isotope } i \text { does not deplete by reaction } \text { NREAD }_{r} \\ 1 & \text { isotope } i \text { will deplete by reaction NREAD } \\ 2 & \text { isotope } i \text { does not deplete by reaction NREAD } \\ 3 & \text { isotope } i \text { is fissile without fission yield. Valid only for } r \text { such that production } \text { NREAD }_{r}=\text { NFTOT }^{2} \\ 4 & \text { isotope } i \text { is fissile with fission yield. Valid only for } r \text { such that } \text { NREAD }_{r}=\text { NFTOT }^{2} \\ 5 & \text { isotope } i \text { is a fission fragment. Valid only for } r \text { such that NREAD } \\ r=\text { NFTOT }^{2}\end{cases}
$$

and $i(r)=0$ unless $4 \leq d(r) \leq 5$. When $d(r)=4, i(r)$ represents the fissile isotope index while for $d(r)=5, i(r)$ represents the fission fragment index. The fractional yield for the production of the fission fragment $i\left(r^{\prime}\right)$ from the fissile isotope $i(r)$ is stored in matrix $Y_{i(r) \rightarrow i\left(r^{\prime}\right)}$. The contents of the vector $R_{r, i}^{\mathrm{d}}$ is the energy in MeV emitted per decay or reaction.

The contents of the variables $K_{s, i}^{\mathrm{p}}$ is used to identify explicitly the parent isotope which can generate the current isotope i. The maximum number of parent reaction for this depletion chain is M_{S}. $K_{s, i}^{\mathrm{p}}$ contains two different types of information, namely $r(s)$ and $i(s)$ which are defined as follows:

$$
\begin{equation*}
r(s)=K_{s, i}^{\mathrm{p}} \bmod 100 \quad \text { and } \quad i(s)=\frac{K_{s, i}^{\mathrm{p}}}{100} \tag{2.2}
\end{equation*}
$$

where $r(s)=0$ indicates that the list of parent isotopes is complete while $r(s)>0$ refers to the reaction type $\operatorname{NREAD}_{r(s)}$ and can take the following values:

$$
r(s)= \begin{cases}1 & \text { isotope } i \text { produced by radioactive decay } \\ 2 & \text { isotope } i \text { produced by fission (this contribution is kept apart from record } \\ & \text { 'FISSIONYIELD') } \\ 3 & \text { isotope } i \text { produced by neutron capture } \\ \geq 4 & \text { isotope } i \text { produced by NREAD } \\ r(s) & \text { reaction }\end{cases}
$$

In the case where $r(s)>0, i(s)$ represents the isotope index associated with the parent isotope and $R_{s, i}^{\mathrm{p}}$ represents the branching ratio in fraction for the production of isotope NISOD_{i} from a neutron reaction with the parent isotope $\mathrm{NISOD}_{i(s)}$.

2.5 State vector content for the SHIBA self-shielding sub-directory

The dimensioning parameters for the self-shielding sub-directory, which are stored in the state vector \mathcal{S}^{s}, represent:

- The first group for which self-shielding takes place $G_{\min }=\mathcal{S}_{1}^{s}$ By default $G_{\min }=N_{g, f}+1$
- The last group for which self-shielding takes place $G_{\max }=\mathcal{S}_{2}^{s}$ By default $G_{\max }=N_{g, e}$
- The maximum number of iterations in the self-shielding calculation $M_{r}=\mathcal{S}_{3}^{s}$
- Enabling flag for the Livolant-Jeanpierre normalization $I_{\mathrm{lj}}=\mathcal{S}_{4}^{s}$
- Enabling flag for the use of Goldstein-Cohen parameters $I_{\mathrm{gc}}=\mathcal{S}_{5}^{s}$
- The transport correction option used in self-shielding $I_{\mathrm{tc}}=\mathcal{S}_{6}^{\mathcal{S}}$

$$
I_{\mathrm{tc}}= \begin{cases}0 & \text { no transport correction applied in self-shielding calculation } \\ 1 & \text { use transport corrected cross section in self-shielding calculation }\end{cases}
$$

- Type of self-shielding model $I_{\text {level }}=\mathcal{S}_{7}^{s}$

$$
I_{\text {level }}= \begin{cases}0 & \text { Stamm'ler model without distributed self-shielding effects } \\ 1 & \text { Stamm'ler model with the Nordheim (PIC) distributed self-shielding model } \\ 2 & \text { Stamm'ler model with both Nordheim (PIC) distributed self-shielding model } \\ & \text { and Riemann integration method. }\end{cases}
$$

- The option to indicate whether a specific flux solver or collision probability matrices are used to perform the self-shielding calculation $I_{\text {flux }}=\mathcal{S}_{8}^{s}$ (see PIJ and ARM keyword in SHI : operator input option)

$$
I_{\text {flux }}= \begin{cases}1 & \text { use a specific flux solver (the ARM keyword was selected) } \\ 2 & \text { use collision probability matrices (the PIJ keyword was selected) }\end{cases}
$$

2.6 State vector content for the subgroup self-shielding sub-directory

The dimensioning parameters for the self-shielding sub-directory, which are stored in the state vector \mathcal{S}^{s}, represent:

- The first group for which self-shielding takes place $G_{\min }=\mathcal{S}_{1}^{s}$ By default $G_{\min }=N_{g, f}+1$
- The last group for which self-shielding takes place $G_{\max }=\mathcal{S}_{2}^{s}$ By default $G_{\max }=N_{g, e}$
- SPH enabling flag $I_{\text {sph }}=\mathcal{S}_{3}^{s}$

$$
I_{\mathrm{sph}}= \begin{cases}0 & \text { skip the multigroup equivalence procedure } \\ 1 & \text { perform a multigroup equivalence procedure (SPH procedure or } \\ & \text { Livolant-Jeanpierre equivalence) }\end{cases}
$$

- The transport correction option used in self-shielding $I_{\mathrm{tc}}=\mathcal{S}_{4}^{s}$

$$
I_{\mathrm{tc}}= \begin{cases}0 & \text { no transport correction applied in self-shielding calculation } \\ 1 & \text { use transport corrected cross section in self-shielding calculation }\end{cases}
$$

- The number of iterations in the self-shielding calculation $M_{r}=\mathcal{S}_{5}^{s}$
- The option to indicate whether a specific flux solver or collision probability matrices are used to perform the self-shielding calculation $I_{\text {flux }}=\mathcal{S}_{6}^{s}$ (see PIJ and ARM keyword in USS: operator input option)

$$
I_{\text {flux }}= \begin{cases}1 & \text { use a specific flux solver (the ARM keyword was selected) } \\ 2 & \text { use collision probability matrices (the PIJ keyword was selected) }\end{cases}
$$

- The γ factor enabling flag $I_{\gamma}=\mathcal{S}_{7}^{s}$. These factors are used to represent the moderator absorption effect in the Sanchez-Coste self-shielding method.

$$
I_{\gamma}= \begin{cases}0 & \text { the } \gamma \text { factors are set to } 1.0 \\ 1 & \text { the } \gamma \text { factors are computed }\end{cases}
$$

- The simplified self-shielding enabling flag $I_{\text {calc }}=\mathcal{S}_{8}^{s}$

$$
I_{\text {calc }}= \begin{cases}0 & \text { perform a delailed self-shielding calculation } \\ 1 & \text { perform a simplified self-shielding calculation using data recovered from the } \\ & \text {-DATA - CALC- directory }\end{cases}
$$

- The flag for ignoring the activation of the mutual resonance shielding model $I_{\text {noco }}=\mathcal{S}_{9}^{s}$

$$
I_{\text {noco }}= \begin{cases}0 & \text { follow the directives set by LIB } \\ 1 & \text { ignore the directives set by LIB }\end{cases}
$$

- Maximum number of fixed point iterations for the ST scattering source convergence $I_{\max }=\mathcal{S}_{10}^{s}$

2.7 The SHIBA self-shielding sub-directory /selfshield/ in /microlib/

Table 12: Main records and sub-directories in /selfshield/

Name	Type Condition Units	Comment	
STATE-VECTOR	$\mathrm{I}(40)$	1	Vector describing the various parameters associ- ated with this data structure \mathcal{S}_{i}^{s}, as defined in Section 2.5. Value of the relative convergence criterion for the self-shielding iterations in SHI:

2.8 The subgroup self-shielding sub-directory /selfshield/ in /microlib/

Table 13: Main records and sub-directories in /selfshield/

| Name | Type Condition Units | Comment |
| :--- | :--- | :--- | :--- |
| STATE-VECTOR | $\mathrm{I}(40)$ | Vector describing the various parameters associ-
 ated with this data structure \mathcal{S}_{i}^{s}, as defined in
 Section 2.6.
 name of directory containing the data required by
 a simplified self-shielding calculation. This type
 of calculation allows the definition of a single self-
 shielded isotope in several resonant mixtures. |

2.9 Contents of an /isotope/ directory

Each isotope directory always contains a cross section identifier record SCAT-SAVED Si which must be used to verify if a given cross section type has been saved for this isotope.

Table 14: Isotopic cross section identifier records

Name	Type	Condition	Units	Comment
SCAT-SAVED பப	$\mathrm{I}(L)$			Vector $\kappa_{k}^{\text {scat }}$ to identify the various type of Legendre-dependent cross sections saved for this isotope
AWR ¢பபபபபபபப	$\mathrm{R}(1)$		nau	Ratio of the isotope mass divided by the neutron mass
PT-PHYS பபபபப	Dir	$I_{\text {proc }}=1, \geq 3$		Sub-directory containing probability table information, following the specification given in Section 2.9.1. $I_{\text {proc }}$ is defined in Section 2.

Delayed neutron data can be present for some fissile isotopes on the /isotope/ directory. If $N_{\text {del }} \geq 1$ precursor groups are used, the following information is available:

Table 15: Delayed neutron reaction records

Name	Type	Condition	Units	Comment
$\{$ nusid $\}$	$\mathrm{R}(G)$	$N_{\text {del }} \geq 1$	b	$\nu \sigma_{\mathrm{f}, \ell}^{\mathrm{D}, g}:$ The product of σ_{f}^{g}, the fission cross section with $\nu_{\ell}^{\mathrm{D}, g}$, the averaged number of fission-emitted delayed neutron produced in the precursor group $\ell \ell$
$\{$ chid $\}$	$\mathrm{R}(G)$	$N_{\text {del }} \geq 1$	1	$\chi_{\ell}^{\mathrm{D}, g}:$ Delayed fission spectrum, normalized to one, for the delayed fission neutrons in precursor group ℓ. $\lambda_{\ell}^{\mathrm{D}}:$ Decay constant associated with the precursor group ℓ. We must have $0<\lambda_{\ell}^{\mathrm{D}}<\lambda_{\ell+1}^{\mathrm{D}}$.
LAMBDA-D	$\mathrm{R}\left(N_{\text {del }}\right)$	$N_{\text {del }} \geq 1$	$\mathrm{~s}^{-1}$	

The delayed component of the fission yields in each precursor group ℓ is given as $\nu_{\ell}^{\mathrm{D}, g}$. The quantities $\pi^{\mathrm{D}, g}$ and $\nu_{\ell}^{\mathrm{D}, g} \sigma_{\mathrm{f}}^{g}$ are defined as

$$
\pi^{\mathrm{D}, g}=\frac{\nu^{\mathrm{D}, g} \sigma_{\mathrm{f}}^{g}}{\left(\nu^{g} \sigma_{\mathrm{f}}^{g}\right)^{\mathrm{ss}}}
$$

and

$$
\nu_{\ell}^{\mathrm{D}, g} \sigma_{\mathrm{f}}^{g}=\omega_{\ell} \pi^{\mathrm{D}, g}\left(\nu^{g} \sigma_{\mathrm{f}}^{g}\right)^{\mathrm{ss}}
$$

where the superscript ss indicates steady-state values. The delayed neutron records $\{$ nusid $\}$ and $\{$ chid $\}$ will be composed, using the following FORTRAN instructions, as NUSIGD and CHID:
WRITE(NUSIGD,' (A6, I2.2)') 'NUSIGF', ell

> WRITE(CHID,' (A3, I2.2)') 'CHI', ell
for $1 \leq$ ell $\leq N_{\text {del }}$. For example, in the case where two group cross sections are considered $\left(N_{\text {del }}=2\right)$, the following records would be generated:

Table 16: Example of delayed-neutron records in /isotope/

Name	Type	Condition	Units	Comment
NUSIGF01 பபபப $^{\text {l }}$	$\mathrm{R}(G)$	$N_{\text {del }} \geq 1$	b	$\nu \sigma_{\mathrm{f}, 1}^{\mathrm{D}, g}$: The product of σ_{f}^{g}, the fission cross section with $\nu_{1}^{\mathrm{D}, g}$, the averaged number of fission-emitted delayed neutron produced in the precursor group 1.
NUSIGF02பபபப	$\mathrm{R}(G)$	$N_{\text {del }} \geq 2$	b	$\nu \sigma_{\mathrm{f}, 2}^{\mathrm{D}, g}$: The product of σ_{f}^{g}, the fission cross section with $\nu_{2}^{\mathrm{D}, g}$, the averaged number of fission-emitted delayed neutron produced in the precursor group 2.
CHI01 பபபபபபப	$\mathrm{R}(G)$	$N_{\text {del }} \geq 1$	1	$\chi_{1}^{\mathrm{D}, g}$: Delayed fission spectrum, normalized to one, for the delayed fission neutrons in precursor group 1.
CHIO2பபபபபபப	$\mathrm{R}(G)$	$N_{\text {del }} \geq 2$	1	$\chi_{2}^{\mathrm{D}, g}$: Delayed fission spectrum, normalized to one, for the delayed fission neutrons in precursor group 2.

In cases where the /isotope/ directory is produced by the edition module, some depletion-related information may be available in this directory, in order to facilitate subsequent data processing. This information is described in Table 17.

Table 17: Depletion-related information

Name	Type	Condition	Units	Comment
MEVG $_{\text {Lபபபபபபப }}$	$\mathrm{R}(1)$	$N_{d} \geq 1$	MeV	Energy in MeV produced by radiative capture. N_{d} is defined in Section 2.
MEVF $_{\text {DELபபபபபப }}$	$\mathrm{R}(1)$	$N_{d} \geq 1$	MeV	Energy in MeV produced by fission. YIELDபபபபபப
$\mathrm{R}(1)$	$N_{d} \geq 1$	$10^{-8} \mathrm{~s}^{-1}$	Radioactive decay constant Fission fragment yield per energy group. The first value is the average yield over all the energy spec- trum. This record is given only for fission frag- ments. Position in ISOTOPESUSED of the mother fissile isotopes. This record is given only for fission frag- ments.	
	$\mathrm{R}(G+1)$	$N_{d} \geq 1$	1	$N_{\text {dfi }} \geq 1$

We will first consider the more usual case where constant vector reactions are stored on the isotopic directory. A typical example of the microscopic cross section directory may be:

Table 18: Example of isotopic vector reaction records

Name	Type	Condition	Units	Comment
NTOT0 பபபபபபப	$\mathrm{R}(G)$		b	The ϕ-weighted multigroup total cross section σ_{0}^{g}
TRANC	$\mathrm{R}(G)$		b	The multigroup transport correction $\sigma_{t c}^{g}$
NUSIGF பபபபபப	$\mathrm{R}(G)$		b	The product of σ_{f}^{g}, the multigroup fission cross section with ν^{g}, the steady-state number of neutron produced per fission, $\nu \sigma_{f}^{\mathrm{ss}, g}$
NFTOT பபபபபபப	$\mathrm{R}(G)$		b	The multigroup fission cross section σ_{f}^{g}
CHI	$\mathrm{R}(G)$	$G_{\text {chi }}=0$		The multigroup energy spectrum of the neutron emitted by fission χ^{g}
CHI--01 பபபபப	$\mathrm{R}(G)$	$G_{\text {chi }} \geq 1$		The first energy-dependent multigroup energy spectrum of the neutron emitted by fission $\chi^{g, 1}$
CHI--02பபபபப	$\mathrm{R}(G)$	$G_{\text {chi }} \geq 2$		The second energy-dependent multigroup energy spectrum of the neutron emitted by fission $\chi^{g, 2}$
CHI--03 பபபபப	$\mathrm{R}(G)$	$G_{\text {chi }} \geq 3$		The third energy-dependent multigroup energy spectrum of the neutron emitted by fission $\chi^{g, 3}$
CHI--04 $4_{\text {பபபபப }}$	$\mathrm{R}(G)$	$G_{\text {chi }} \geq 4$		The fourth energy-dependent multigroup energy spectrum of the neutron emitted by fission $\chi^{g, 4}$
$N G_{\text {பபபபபபபபபப }}$	$\mathrm{R}(G)$		b	The multigroup neutron capture cross section σ_{c}^{g}
H-FACTOR	$\mathrm{R}(G)$		J b	Energy production coefficients H^{g} (product of each microscopic cross section times the energy emitted by this reaction).
$\mathrm{N} 2 \mathrm{~N}_{\text {பபபபபபபபப }}$	$\mathrm{R}(G)$		b	The multigroup cross section $\sigma_{(n, 2 n)}^{g}$ for the reaction ${ }_{Z}^{A} X+n \rightarrow{ }_{Z}^{A-1} X+2 n$
N3N $\mathrm{L}_{\text {பபபபபபபபப }}$	$\mathrm{R}(G)$		b	The multigroup cross section $\sigma_{(n, 3 n)}^{g}$ for the reaction ${ }_{Z}^{A} X+n \rightarrow{ }_{Z}^{A-2} X+3 n$
$\mathrm{N} 4 \mathrm{~N}_{\text {பபபபபபபபப }}$	$\mathrm{R}(G)$		b	The multigroup cross section $\sigma_{(n, 4 n)}^{g}$ for the reaction ${ }_{Z}^{A} X+n \rightarrow{ }_{Z}^{A-3} X+4 n$
$N P_{\text {பபபபபபபபபப }}$	$\mathrm{R}(G)$		b	The multigroup cross section $\sigma_{(n, p)}^{g}$ for the reaction ${ }_{Z}^{A} X+n \rightarrow{ }_{Z-1}^{A} X+p$
$N A_{\text {பபபபபபபபபப }}$	$\mathrm{R}(G)$		b	The multigroup cross section $\sigma_{(n, \alpha)}^{g}$ for the reaction ${ }_{Z}^{A} X+n \rightarrow{ }_{Z-2}^{A-3} X+\alpha$
NGOLD பபபபபபப	$\mathrm{R}(G)$			The multigroup Goldstein-Cohen parameters as recovered from GIR array in main $/ \mathrm{mi}-$ crolib/ directory λ^{g}

Example of isotopic vector reaction records
continued from last page

Name	Type	Condition	Units	Comment
NWT0 பபபபபபபப	$\mathrm{R}(G)$		$\mathrm{s}^{-1} \mathrm{~cm}^{-2}$	The multigroup neutron flux spectrum ϕ_{w}^{g}
STRD	$\mathrm{R}(G)$		b	The multigroup transport cross section homogenized over all directions $\sigma_{\text {strd }}^{g}$
STRD-X ¢பபபபப	$\mathrm{R}(G)$		b	The x-directed multigroup transport cross section $\sigma_{\text {strd }, x}^{g}$
STRD-Y	$\mathrm{R}(G)$		b	The y-directed multigroup transport cross section $\sigma_{\text {strd, } y}^{g}$
STRD-Z பபபபபப	$\mathrm{R}(G)$		b	The z-directed multigroup transport cross section $\sigma_{\mathrm{strd}, z}^{g}$
OVERV பபபபபபப $^{\text {a }}$	$\mathrm{R}(G)$		$\mathrm{cm}^{-1} \mathrm{~S}$	The average of the inverse neutron velocity $<1 / v>{ }_{m}^{g}$
NTOT1 பபபபபபப	$\mathrm{R}(G)$		b	The \mathcal{J}-weighted multigroup total cross section σ_{1}^{g}
NWT1 பபபபபபபப	$\mathrm{R}(G)$		$\mathrm{s}^{-1} \mathrm{~cm}^{-2}$	The multigroup fundamental current spectrum \mathcal{J}_{w}^{g}
NWAT0_பபபபபபப	$\mathrm{R}(G)$		1	The multigroup neutron adjoint flux spectrum $\phi_{w}^{* g}$
NWAT1 பபபபபபப	$\mathrm{R}(G)$		1	The multigroup fundamental adjoint current spectrum $\mathcal{J}_{w}^{* g}$

We can also use this isotopic directory to store time dependent cross sections in the form of a power series expansion:

$$
\begin{equation*}
v_{k}^{g}(t)=\sum_{i=0}^{I} v_{k, i}^{g} t^{i} \tag{2.3}
\end{equation*}
$$

where the presence of these various terms is specified using κ_{k}. Note that the last three characters of each of the records in Table 18 correspond to the extension EXT='பபப' that is associated with term $i=0$ in the power series expansion for the cross sections (see Eq. (2.3)). For $i=1,2$, the extension takes successively the value EXT = 'LIN' and EXT = 'QUA'. For example, if one considers the total cross section and assumes that $F_{i}\left(\kappa_{1}\right)=1$ for $i=0,2$, then this implies the presence of the following additional records in the /isotope/:

Table 19: Additional total cross section records for $I=2$

Name	Type Condition Units	Comment			
TOTAL	RUபபLIN	$R(G)$	$\mathrm{d}^{-1} \mathrm{~b}$		array $v_{1,1}^{g}=\Delta \sigma^{g}$ containing the first
:---					
order coefficients in the power series ex-					
pansion for the multigroup total cross					
section					
array $v_{1,2}^{g}=\Delta^{2} \sigma^{g}$ containing the sec-					
ond order coefficients in the power se-					
ries expansion for the multigroup total					
cross section					

The multigroup scattering cross section matrix, which gives the probability for a neutron in group h to appear in group g after a collision with this isotope is represented by the form:

$$
\sigma_{s}^{h \rightarrow g}\left(\vec{\Omega} \rightarrow \vec{\Omega}^{\prime}\right)=\sum_{\ell=0}^{L} \frac{2 \ell+1}{4 \pi} P_{\ell}\left(\vec{\Omega} \cdot \vec{\Omega}^{\prime}\right) \sigma_{\ell}^{h \rightarrow g}=\sum_{\ell=0}^{L} \sum_{m=-\ell}^{\ell} Y_{\ell}^{m}(\vec{\Omega}) Y_{\ell}^{m}\left(\vec{\Omega}^{\prime}\right) \sigma_{\ell}^{h \rightarrow g}
$$

using a spherical harmonic series expansion to order $L-1$. Assuming these spherical harmonic are orthonormalized, namely:

$$
\int_{4 \pi} d^{2} \Omega Y_{\ell}^{m}(\vec{\Omega}) Y_{l^{\prime}}^{m^{\prime}}(\vec{\Omega})=\delta_{m, m^{\prime}} \delta_{\ell, \ell^{\prime}}
$$

we can define $\sigma_{\ell}^{h \rightarrow g}$ in terms of $\sigma_{s}^{h \rightarrow g}\left(\vec{\Omega} \rightarrow \vec{\Omega}^{\prime}\right)$ using the following integral:

$$
\sigma_{\ell}^{h \rightarrow g}=\int_{4 \pi} d^{2} \Omega \sigma_{s}^{h \rightarrow g}\left(\vec{\Omega} \rightarrow \vec{\Omega}^{\prime}\right) P_{\ell}\left(\vec{\Omega} \cdot \vec{\Omega}^{\prime}\right)
$$

Note that this definition of $\sigma_{\ell}^{h \rightarrow g}$ is not unique and some authors include the factor $2 l+1$ directly in different angular moments of the scattering cross section.

Here instead of storing on these $G \times G$ matrices $\sigma_{\ell}^{h \rightarrow g}$, a vector which contains a compress form for this matrix will be considered. This choice is justified by the fact that the number of energy groups which will lead to scattering in a specific group is generally relatively small compared to the total number of groups in the library and that these groups are clustered around the final energy group. Here we will first define two different integer vectors n_{ℓ}^{g} and h_{ℓ}^{g} for each order in the scattering cross section and for each final energy group g which will contain respectively the number of successive initial energy groups for which the scattering cross section does not vanish and the maximum energy group number for which scattering to the final group g does not vanishes. Accordingly, for a scattering cross section of the form:

$\sigma_{0}^{h \rightarrow g}$	$g=1$	$g=2$	$g=3$	$g=4$
$h=1$	a_{1}	a_{2}	0	0
$h=2$	0	a_{3}	a_{4}	a_{5}
$h=3$	0	a_{6}	a_{7}	0
$h=4$	0	a_{8}	0	a_{9}
h_{0}^{g}	1	4	3	4
n_{0}^{g}	1	4	2	3

The compress scattering matrix will then contain the following information:

$$
\sigma_{\ell, c}=\left(\sigma_{\ell}^{h^{1} \rightarrow 1}, \sigma_{\ell}^{h^{1}-1 \rightarrow 1}, \ldots, \sigma_{\ell}^{h^{1}-n_{1}+1 \rightarrow 1}, \sigma_{\ell}^{h^{2} \rightarrow 2}, \ldots, \sigma_{\ell}^{h^{G}-n_{G}+1 \rightarrow G}\right)
$$

which for the example above leads to

$$
\sigma_{\ell, c}=\left(a_{1}, a_{8}, a_{6}, a_{3}, a_{2}, a_{7}, a_{4}, a_{9}, 0, a_{5}\right)
$$

As a result $\sigma_{\ell}^{h \rightarrow g}$ can be reconstructed using

$$
\sigma_{\ell}^{h \rightarrow g}=\left\{\begin{array}{lll}
0 & \text { if } & h>h_{\ell}^{g} \\
0 & \text { if } & h<h_{\ell}^{g}-n_{\ell}^{g}+1 \\
\sigma_{\ell, c}^{k} & \text { otherwise } & k=\sum_{h=1}^{g-1} n_{\ell}^{h}+h_{\ell}^{g}-h+1
\end{array}\right.
$$

Finally, we will also save the total scattering cross section vector of order ℓ which is defined as

$$
\sigma_{\ell, s}^{h}=\sum_{g=1}^{G} \sigma_{\ell}^{h \rightarrow g}
$$

In the case where only the order $\ell=0$ moment of scattering cross section is non vanishing (isotropic scattering) the following records can be found on the isotopic directory.

Table 20: Optional scattering records

Name	Type	Condition	Units	Comment
SIGS00_பபபபபப	$\mathrm{R}(G)$	b	The isotropic component $(\ell=0)$ of the multi- group total scattering cross section $\sigma_{0, s}^{g}$ Highest energy group number for which the isotropic component of the scattering cross section to group g does not vanish, h_{0}^{g}	
NJJS00_பபபபபப	$\mathrm{I}(G)$	$\mathrm{I}(G)$	b	Number of energy groups for which the isotropic component of the scattering cross section to group g does not vanish, n_{0}^{g} Compressed isotropic component of the scat- tering matrix $\sigma_{0, c}^{k}$
SCAT00_பபபபபப	$\mathrm{R}\left(\sum_{g=1}^{G} n_{0}^{g}\right)$			

If the scattering cross section is expanded to order $L>1$ in Legendre polynomials, additional set of scattering records similar to those described above will be presentin the cross section directory. The first four characters and last 6 characters in the names of these records will again be identical to those described above while character 5 and 6 will differ from level to level. For example, the order $\ell=5$ compressed scattering matrix will be identified by SCAT05பபபபபப while for order $\ell=50$ we will use SCAT50_பபபபபப.

The STRD cross sections are normalized in such a way to permit the calculation of a diffusion coefficient
using the following formula:

$$
\begin{equation*}
D^{g}=\frac{1}{3 \sum_{i} N_{i} \sigma_{\mathrm{strd}, i}^{g}} \tag{2.4}
\end{equation*}
$$

where N_{i} is the isotopic density of isotope i and $\sigma_{\text {strd }, i}^{g}$ is the STRD cross section of isotope i in energy group g. The sum is performed over all isotopes present in the mixture. The STRD cross sections for isotope i are defined as

$$
\begin{align*}
\sigma_{\mathrm{strd}, i}^{g} & =\frac{1}{\left(\mu^{g}\right)^{2}} \frac{\langle\phi\rangle_{g}}{3\left\langle\left(\Sigma_{1}-\Sigma_{\mathrm{s} 1}\right) \mathcal{J}\right\rangle_{g}}\left(\sigma_{1, i}^{g}-\sigma_{\mathrm{s} 1, i}^{g}\right) \quad \text { if a streaming model is used } \tag{2.5}\\
& =\frac{1}{\left(\mu^{g}\right)^{2}} \frac{\langle\phi\rangle_{g}^{2}}{3\langle D \phi\rangle_{g}\left\langle\left(\Sigma_{0}-\Sigma_{\mathrm{s} 1}\right) \phi\right\rangle_{g}}\left(\sigma_{0, i}^{g}-\sigma_{\mathrm{si} 1, i}^{g}\right) \quad \text { if no streaming model used } \tag{2.6}
\end{align*}
$$

where
ϕ^{g} fundamental flux
\mathcal{J}^{g} fundamental current
μ^{g} SPH equivalence factor
$\Sigma_{0}^{g} \phi$-weighted macroscopic total cross section of the mixture
$\Sigma_{1}^{g} \mathcal{J}$-weighted macroscopic total cross section of the mixture
$\Sigma_{\mathrm{s} 1}^{g}$ macroscopic P_{1} scattering cross section of the mixture (\mathcal{J}-weighted if a streaming model is used; ϕ-weighted if no streaming model used)
D^{g} diffusion coefficient
$\sigma_{0, i}^{g} \phi$-weighted microscopic total cross section for isotope i
$\sigma_{1, i}^{g} \mathcal{J}$-weighted microscopic total cross section for isotope i
$\sigma_{\mathrm{s} 1 . i}^{g}$ microscopic P_{1} scattering cross section for isotope i (\mathcal{J}-weighted if a streaming model is used; ϕ-weighted if no streaming model used)

On the other hand the so-called directional cross section $\operatorname{STRD}_{\cup} X, S_{T R D}^{\cup} \mathrm{Y}$ and $\operatorname{STRD}_{\cup} Z$ are obtained in such a way that

$$
\begin{equation*}
D_{k}^{g}=\frac{1}{3 \sum_{i} N_{i} \sigma_{\mathrm{strd}, k, i}^{g}} ; \quad k=x, y \text { or } z . \tag{2.7}
\end{equation*}
$$

For example, for an isotope with only total and scattering cross sections, we will find the following records on the cross section directory.

Table 21: Example of cross section records

Name	Type	Condition	Units	Comment
NTOT0 பபபபபபப	$\mathrm{R}(G)$		b	The multigroup total cross section σ^{g}
SIGS00பபபபபப	$\mathrm{R}(G)$		b	The isotropic component $(\ell=1)$ of the multigroup total scattering cross section $\sigma_{0, s}^{g}$
IJJS00_பபபபபப	$\mathrm{I}(G)$			Highest energy group number for which the isotropic component of the scattering cross section to group g does not vanishes, h_{0}^{g}
IJJS00பபப	$\mathrm{I}(G)$			Highest energy group number for which the first order perturbation in the isotropic component of the scattering cross section to group g does not vanishes, $h_{0,1}^{g}$
NJJS00_பபபபபப	$\mathrm{I}(G)$			Number of energy groups for which the isotropic component of the scattering cross section to group g does not vanishes, n_{0}^{g}
SCAT00பபபபபப	$\mathrm{R}\left(\sum_{g=1}^{G} n_{0}^{g}\right)$		b	Compressed isotropic component of the scattering matrix $\sigma_{0, c}^{k}$
SIGS01 பபபபபப	$\mathrm{R}(G)$		b	The linearly anisotropic component $(\ell=1)$ of the multigroup total scattering cross section $\sigma_{1, s}^{g}$
IJJS01 பபபபபப	$\mathrm{I}(G)$			Highest energy group number for which the linearly anisotropic component of the scattering cross section to group g does not vanishes, h_{1}^{g}
NJJS01 $\downarrow \sqcup \sqcup \sqcup \sqcup \sqcup ~$	$\mathrm{I}(G)$			Number of energy groups for which the linearly anisotropic component of the scattering cross section to group g does not vanishes, n_{1}^{g}
SCAT01	$\mathrm{R}\left(\sum_{g=1}^{G} n_{1}^{g}\right)$		b	Compressed linearly anisotropic component of the scattering matrix $\sigma_{1, c}^{k}$

Note that most of these cross sections are not required to perform a cell calculation. In fact, in a typical transport calculation, only $\sigma^{g}, \sigma_{t c}^{g}, \nu \sigma_{f}^{g}, \chi^{g}$ and the isotropic and linearly anisotropic scattering matrix are used. For burnup calculations, depending on the depletion chain prescribed, the following cross sections may be required: $\sigma_{f}^{g}, \sigma_{c}^{g}, \sigma_{(n, 2 n)}^{g}, \sigma_{(n, 3 n)}^{g}, \sigma_{(n, 4 n)}^{g}, \sigma_{(n, p)}^{g}, \sigma_{(n, \alpha)}^{g}$. Finally, when editing isotopic cross sections, all the cross sections types in the library will be processed.

A final note on the use of the transport correction and the homogenized and directional transport cross section. In DARGON, the transport correction cross section is used to correct the total and isotropic scattering cross section using the relations

$$
\begin{aligned}
\sigma_{c}^{g} & =\sigma^{g}-\sigma_{t c}^{g} \\
\sigma_{c, 0}^{g \rightarrow g} & =\sigma_{0}^{g \rightarrow g}-\sigma_{t c}^{g}
\end{aligned}
$$

2.9.1 The probability table directory PT-PHYS in /isotope/

Physical probability tables $\left(I_{\text {proc }}=1\right)$ are obtained from a least-square fit of the self-shielded cross sections against dilution. Mathematical probability tables $\left(I_{\text {proc }} \geq 3\right)$ are obtained from Autolib data using the CALENDF formalism.

Table 22: Physical probability tables

Name	Type Condition Units	Comment
GROUP \quad Lபபபபபப	$\operatorname{Dir}(G)$	List of energy-group sub-directories. Each com- ponent of the list is a directory containing the probability-table information associated with a specific group. Order n_{G} of the probability table in each energy group

Table 23: Group-dependent probability table directories

Name	Type	Condition	Units	Comment
PROB-TABLE பப	$\mathrm{R}\left(12, N_{\text {react }}\right)$			Probability tables. $N_{\text {react }}$ is the total number of reactions represented by probability tables. 12 is the maximum allowed order of a probability table.
SIGQT-SIGS	$\mathrm{R}\left(n_{g}\right)$	$I_{\text {proc }}=4$	b	Probability table in secondary slowing-down cross section.
SIGQT-SLOW U	$\mathrm{R}\left(n_{g}, n_{g}\right)$	$I_{*}^{\text {proc }}$ ($=4$	b	Slowing-down correlated weight matrix.
\{/isotope/\}	$\mathrm{R}\left(n_{g}, m_{g}\right)$		1	Set of records, each containing the correlated weights between the current total xs and the total xs of isotope. m_{g} is the order of the probability table for isotope. (*) This data is optional and is provided only if $I_{\text {proc }} \geq 3$ and if the mutual self-shielding effect is to be taken into account.
ISM-LIMITS $_{\text {ப }}$	$\mathrm{I}(2, L)$			Minimum (index 1) and maximum (index 2) secondary group for each Legendre order of the scattering matrices

3 Contents of a / geometry/ directory

The L_GEOM specification is used to store structured geometric data, i.e., data characterized by some regularity in space. Sub-geometries can be embedded at specific node positions to build a more complex geometry. The following regular geometries can be described with the L_GEOM specification:

- Cartesian geometries in 1D, 2D and 3D
- Cylindrical geometries in 1D and 2D $(R-Z$ or $R-\theta)$
- Spherical geometries in 1D
- Hexagonal geometries in 2D/3D
- Various types of cells in 2D/3D Cartesian or hexagonal geometry
- Cells with clusters of fuel rods
- Various synthetic geometries (Do-it-yourself Apollo1 assembly and double-heterogeneity).

This directory contains a compact description of a geometry.

3.1 State vector content for the /geometry/ data structure

The dimensioning parameters for this data structure, which are stored in the state vector \mathcal{S}^{G}, represent:

- The type of of geometry $F_{t}=\mathcal{S}_{1}^{G}$

$$
F_{t}= \begin{cases}0 & \text { Virtual geometry } \\ 1 & \text { Homogeneous geometry } \\ 2 & \text { Cartesian 1-D geometry } \\ 3 & \text { Tube 1-D geometry } \\ 4 & \text { Sphere 1-D geometry } \\ 5 & \text { Cartesian 2-D geometry } \\ 6 & \text { Tube }(R-Z) \text { geometry } \\ 7 & \text { Cartesian 3-D geometry } \\ 8 & \text { Hexagonal 2-D geometry } \\ 9 & \text { Hexagonal 3-D geometry } \\ 10 & \text { Tube }(R-X) \text { geometry } \\ 11 & \text { Tube }(R-Y) \text { geometry } \\ 12 & \text { hexagonal 2-D geometry with triangular mesh } \\ 13 & z \text {-directed hexagonal 3-D geometry with triangular mesh } \\ 15 & \text { Tube (} R-\theta) \text { 2-D geometry } \\ 16 & \text { Triangular 2-D geometry } \\ 17 & \text { Triangular 3-D geometry } \\ 20 & \text { Cartesian 2-D geometry with annular sub-mesh } \\ 21 & \text { Cartesian 3-D geometry with } x-\text { directed cylindrical sub-mesh } \\ 22 & \text { Cartesian 3-D geometry with } y \text {-directed cylindrical sub-mesh } \\ 23 & \text { Cartesian 3-D geometry with } z-\text { directed cylindrical sub-mesh } \\ 24 & \text { Hexagonal 2-D geometry with annular sub-mesh } \\ 25 & \text { Hexagonal 3-D geometry with } z \text {-directed cylindrical sub-mesh } \\ 30 & \text { Do-it-yourself geometry }\end{cases}
$$

- The number of annular or cylindric mesh intervals in the geometry $N_{r}=\mathcal{S}_{2}^{G}$
- The number of x-directed mesh intervals, hexagon or triangles in the geometry $N_{x}=\mathcal{S}_{3}^{G}$
- The number of y-directed mesh intervals in the geometry $N_{y}=\mathcal{S}_{4}^{G}$
- The number of z-directed mesh intervals in the geometry $N_{z}=\mathcal{S}_{5}^{G}$
- The total number of mesh intervals in the geometry $N_{k}=\mathcal{S}_{6}^{G}$
- for $F_{t}=0$ or $1, N_{k}=1$;
- for $F_{t}=2,5$ or $7, N_{k}=\max \left(N_{x}, 1\right) \times \max \left(N_{y}, 1\right) \times \max \left(N_{z}, 1\right)$;
- for $F_{t}=3,6,10$ or $11, N_{k}=N_{r} \times \max \left(N_{x}, 1\right) \times \max \left(N_{y}, 1\right) \times \max \left(N_{z}, 1\right)$
- for $F_{t}=4, N_{k}=N_{r}$;
- for $F_{t}=8$ or $9, N_{k}=N_{x} \times \max \left(N_{z}, 1\right)$;
- for $F_{t}=12$ or $13, N_{k}=6 \times N_{x}^{2} \times \max \left(N_{z}, 1\right)$;
- for $F_{t}=20,21,22$ or $23, N_{k}=\left(N_{r}+1\right) \times \max \left(N_{x}, 1\right) \times \max \left(N_{y}, 1\right) \times \max \left(N_{z}, 1\right)$;
- for $F_{t}=24$ or $25, N_{k}=\left(N_{r}+1\right) \times \max \left(N_{z}, 1\right)$.
- The maximum number of mixtures used in this geometry $M_{m}=\mathcal{S}_{7}^{G}$
- The cell flag $F_{c}=\mathcal{S}_{8}^{G}$

$$
F_{c}= \begin{cases}0 & \text { Cell option not activated } \\ 1 & \text { Cell option present }\end{cases}
$$

- The number of sub-geometries defined in this geometry $F_{g}=\mathcal{S}_{9}^{G}$
- The merge flag $F_{m}=\mathcal{S}_{10}^{G}$

$$
F_{m}= \begin{cases}0 & \text { Merge option not activated } \\ 1 & \text { Merge option present }\end{cases}
$$

- The split flag $F_{s}=\mathcal{S}_{11}^{G}$

$$
F_{s}= \begin{cases}0 & \text { Split option not activated } \\ 1 & \text { Split option present } \\ 2 & \text { Split option present. The embedded tubes are not splitted. }\end{cases}
$$

- The double heterogeneity flag $F_{\mathrm{dh}}=\mathcal{S}_{12}^{G}$

$$
F_{\mathrm{dh}}= \begin{cases}0 & \text { Double heterogeneity option not activated } \\ 1 & \text { Double heterogeneity option present }\end{cases}
$$

- The number of cluster sub-geometry $N_{\mathrm{cl}}=\mathcal{S}_{13}^{G}$
- The type of sectorizarion $F_{\mathrm{sec}}=\mathcal{S}_{14}^{G}$. This information may be given only if $F_{t} \geq 20$.

$$
F_{\text {sec }}=\left\{\begin{aligned}
-999 & \text { non-sectorized cell processed as a sectorized cell } \\
-1 & \times \text {-type sectorization } \\
0 & \text { non-sectorized cell } \\
1 & \text { +-type sectorization } \\
2 & \text { simultaneous } \times- \text { and }+ \text {-type sectorization } \\
3 & \text { simultaneous } \times- \text { and }+ \text {-type sectorization shifted by } 22.5^{\circ} \\
4 & \text { windmill-type sectorization. }
\end{aligned}\right.
$$

- Number of tubes that are not splitted by the sectors if $F_{\text {sec }} \neq 0$. This integer is selected in interval $0 \leq F_{\mathrm{sec} 2} \leq N_{r} . F_{\mathrm{sec} 2}=\mathcal{S}_{15}^{G}$.
- The pin location option \mathcal{S}_{18}^{G}. When $\mathcal{S}_{18}^{G}>0$, the pin are located according to (r, θ) in 2-D and 3-D (center along the cylinder axis in the cell into which they are inserted) while for $\mathcal{S}_{18}^{G}<0$, the pin are located according to (x, y) in 2-D and (x, y, z) in $3-\mathrm{D}$. A value of $\mathcal{S}_{18}^{G}=0$, implies that there is no pin in the geometry.

The radii of a CARCEL- or HEXCEL-type geometry are defined as shown in the following figure:

In case where $F_{\text {sec }} \neq 0$, the elementary cell is splitted with sectors. Mixture indices are specific in each splitted region. They are defined as in the following two figures (isect $\equiv F_{\text {sec }}$ and jsect $\equiv F_{\text {sec2 }}$):

In case of an automatic geometry definition using the NAP: module, the number of mixtures corresponding to assembly in the original core definition is named $N_{m x a}$ and the number of assembly along X and Y directions are $N_{a x}$ and $N_{a y}$ respectively.

3.2 The main / geometry/ directory

On its first level, the following records and sub-directories will be found in the / geometry/ directory:

Table 24: Main records and sub-directories in / geometry/

Main records and sub-directories in /geometry/
continued from last page

Name	Type	Condition	UnitsComment
SPLITR $_{\text {பபபபபப }}$	$\mathrm{I}\left(N_{r}+1\right)$	$F_{s} \times N_{r} \geq 1$	Record containing the radial mesh splitting $S_{r, i}$. A negative value permits a splitting into equal sub-volumes; a positive value permits a splitting into equal sub-radius spacings
SPLITX $_{\text {பபபபபப }}$	$\mathrm{I}\left(N_{x}\right)$	$F_{s} \times N_{x} \geq 1$	Record containing the x-directed mesh splitting $S_{x, i}$
SPLITY $_{\text {பபபபபப }}$	$\mathrm{I}\left(N_{y}\right)$	$F_{s} \times N_{y} \geq 1$	Record containing the y-directed mesh splitting $S_{y, i}$
SPLITZ ■பபபபப $^{\text {det }}$	$\mathrm{I}\left(N_{z}\right)$	$F_{s} \times N_{z} \geq 1$	Record containing the z-directed mesh splitting $S_{z, i}$
SPLITH $_{\text {பபபபபப }}$	$\mathrm{I}(1)$	$F_{t}=12,13$	value S_{h} of the triangular mesh splitting for triangular hexagons in the geometry. This will lead to a spatial triangular mesh spacing of $H_{s}=H / N_{x}$
IHEX பபபபபபபப	I(1)	$F_{t}=8,9,12,13,24,25$	The type of hexagonal symmetry β_{h}
NCODE பபபபபபப $^{\text {a }}$	I(6)		Record containing the types of boundary conditions on each surface $N_{\beta, j}$. $\operatorname{NCODE}(1)$: X- or HBC condition; $\mathrm{NCODE}(2)$: $\mathrm{X}+$ or $\mathrm{R}+$ condition; NCODE (3) : Y- condition; NCODE (4): Y+ condition; $\operatorname{NCODE}(5): Z-$ condition; $\operatorname{NCODE}(6): Z+$ condition
ZCODE பபபபபபப	R(6)		Record containing the albedo value on each surface β_{j}
ICODE பபபபபபப $^{\text {l }}$	$\mathrm{I}(6)$		Record containing the albedo index on each surface $I_{\beta, j}$. The vector β_{j} is used only if $I_{\beta, j}>0$ and $N_{\beta, j}=6$. In the case where $I_{\beta, j}<0$ and $N_{\beta, j}=6$ the vector $\beta_{p, j}$ in the directory /macrolib/ is used
NPIN பபபபபபபப	I(1)	$\left\|\mathcal{S}_{18}^{G}\right\| \neq 0$	Number $N_{\text {pin }}$ of identical pins in a cluster. All the pins will see identical flux
DPIN பபபபபபபப	$\mathrm{R}(1)$	$\left\|\mathcal{S}_{18}^{G}\right\| \neq 0$	cm^{-3} Relative density $d_{p, r}$ of pins in a cluster. In this case $N_{\text {pin }}=-1$
RPIN $\mathrm{Luபபபபபபப}$	$\mathrm{R}(k)$	$\mathcal{S}_{18}^{G}=1$	cm array $R_{\text {pin, } j}$ containing the radial positions at which the center of the pins in the cluster are located with respect to the center of the cell ($k=N_{\text {pin }}$). In the case where $R_{\text {pin }, j}$ contains a single element $(k=1)$, it is assumed that the pins are all located at the same radial position $R_{\text {ref }}=R_{\text {pin }, 1}$
APIN பபபபபபபப	$\mathrm{R}(k)$	$\mathcal{S}_{18}^{G}=1$	rad array $\theta_{\text {pin,j }}$ containing the angular positions at which the center of the pins in the cluster are located with respect to the x, y or z axis respectively for TUBEX, TUBEY and TUBEZ geometry ($k=N_{\text {pin }}$). In the case where $\theta_{\text {pin }, j}$ contains a single element $(k=1)$, it is assumed that the first pin is located at $\theta_{\text {ref }}=\theta_{\text {pin, } 1}$, the remaining pins being located at $\theta_{\text {pin }, j}=\theta_{\text {ref }}+2(j-1) \pi / N_{\text {pin }}$

Main records and sub-directories in /geometry/
continued from last page

Name	Type	Condition	UnitsComment
CPINX பபபபபபப $^{\text {a }}$	$\mathrm{R}\left(N_{\text {pin }}\right)$	$\mathcal{S}_{18}^{G}=-1$	cm array $X_{\text {pin, } j}$ containing the x positions at which the pins in the cluster are centered with respect to the center of the cell
CPINY	$\mathrm{R}\left(N_{\text {pin }}\right)$	$\mathcal{S}_{18}^{G}=-1$	cm array $Y_{\text {pin }, j}$ containing the y positions at which the pins in the cluster are centered with respect to the center of the cell
CPINZபபபபபபப	$\mathrm{R}\left(N_{\text {pin }}\right)$	$\mathcal{S}_{18}^{G}=-1$	cm array $Z_{\text {pin, } j}$ containing the z positions at which the pins in the cluster are centered with respect to the center of the cell
BIHET பபபபபபப	Dir	$F_{d h}=1$	Directory containing double-heterogeneity related data. This directory can only be present on the root directory.
POURCE பபபபபப	$\mathrm{R}\left(\mathcal{S}_{3}^{G}\right)$	$F_{t}=30$	The proportion of each cell type in the lattice P_{j}
PROCEL $+ப \sqcup ப \sqcup \sqcup ~$	$\mathrm{R}\left(\mathcal{S}_{3}^{G}, \mathcal{S}_{3}^{G}\right)$	$F_{t}=30$	The pre-calculated probability for a neutron leaving a cell of type i to enter in a cell of type j without crossing any other cell $P_{i, j}$
CELL பபபபபபபப $^{\text {a }}$	$\mathrm{C}\left(F_{g}\right) * 12$	$F_{c}=1$	The names of the sub-geometries $\left(C E L L_{k}\right)$.
MERGEபபபபபபப	$\mathrm{I}\left(N_{k}\right)$	$F_{m}=1$	The merging index corresponding to each region $G_{m, i}$
TURN பபபபபபபப	$\mathrm{I}\left(N_{k}\right)$	$F_{c}=1$	The orientation index corresponding to each region $G_{t, i}$. Negative values are used to turn a cell in the Z direction.
CLUSTER	$\mathrm{C}\left(F_{c l}\right) * 12$	$F_{c l} \geq 1$	The names of the sub-geometries making up the cluster $\left(\right.$ CLUSTER $\left._{k}\right)$
\{/subgeo/\}	Dir	$F_{g} \geq 1$	Set of sub-directories containing a subgeometry
MIX-NAMES பபப	$\mathrm{C}\left(M_{m}\right) * 12$	*	The names of the mixtures
A-NX	$\mathrm{I}\left(N_{a y}\right)$		Number of assemblies on each row
A-IBX	$\mathrm{I}\left(N_{a y}\right)$		Position of the first assembly on each row
A-ZONE - -பபபபப $^{\text {a }}$	$\mathrm{I}\left(N_{c h}\right)$		Number of the assembly associated with each channel. Each assembly may be represented by several channels if they have been heterogeneously homogenized.
A-NMIXP பபபபப	I(1)		The number of mixtures in one heterogeneously homogenized assembly. $N_{m x p}$. Note for homogeneously homogenized assembly $N_{m x p}=1$.

In the case where a cylindrical correction is applied over a full-core Cartesian calculation, the following additional data is provided. It is provided if and only if type 20 (CYLI) boundary conditions are set in the $X-Y$ plane (see Figure 2).

Figure 2: Cylindrical correction in Cartesian geometry

Table 25: Cylindrical correction related records in /geometry/

Name	Type	Condition	Units	Comment
XR0_பபபபபபபபu	$\mathrm{R}\left(N_{\text {cyl }}\right)$		cm	Record containing the coordinate of the Z axis from which the cylindrical correction is applied to Cartesian geometries. $N_{\text {cyl }}$ is the number of radii.
$\mathrm{RRO}_{\text {பபபUபUபUப }}$	$\mathrm{R}\left(N_{\text {cyl }}\right)$		cm	Record containing the radius of the real cylindrical boundary (rrad).
ANG பபபபபபபபப $^{\text {a }}$	$\mathrm{R}\left(N_{\text {cyl }}\right)$		1	Record containing the angle (in radian) of the cylindrical notch. ang(ir) $=\frac{\pi}{2}$ by default (i.e. the correction is applied at every angle).

The type of hexagonal symmetry β_{h} is defined as:

$$
\beta_{h}= \begin{cases}1 & \text { S30 } \\ 2 & \text { SA60 } \\ 3 & \text { SB60 } \\ 4 & \text { S90 } \\ 5 & \text { R120 } \\ 6 & \text { R180 } \\ 7 & \text { SA180 } \\ 8 & \text { SB180 } \\ 9 & \text { COMPLETE }\end{cases}
$$

S30, SA60 and COMPLETE symmetries are depicted in the following figures. The other types of hexagonal symmetries are defined in the DRAGON users guide. ${ }^{[1]}$

NCODE is a record containing the types of boundary conditions on each surface. In Cartesian geometry, the 6 components of NCODE are related to sides $\mathrm{X}-, \mathrm{X}+, \mathrm{Y}-, \mathrm{Y}+, \mathrm{Z}^{-}$and $\mathrm{Z}+$, respectively. The possibilities are:

In cylindrical geometry, the 3 components of NCODE are related to sides $\mathrm{R}+$, $\mathrm{Z}-$ and $\mathrm{Z}+$, respectively. The possibilities are: VOID, REFL, ALBE and/or ZERO.

In hexagonal geometry, the 3 components of NCODE are related to sides $\mathrm{H}+$ (the surface surrounding the hexagonal domain in the $\mathrm{X}-\mathrm{Y}$ plane), $\mathrm{Z}-$ and $\mathrm{Z}+$, respectively. The possibilities are: VOID, REFL, SYME, ALBE and/or ZERO.

We will now describe the exact meaning of the orientation index $G_{t, i}$. For Cartesian geometries, the eight possible orientations are shown in the following figure:

For hexagonal geometries, the twelve possible orientations are shown in the following figure:

In the case where $F_{c}=1$, the set of directory $\{/$ subgeo $/\}$ will have the same name as the variable $C E L L_{k}$. For example, in the case where $F_{g}=2$ and

$$
\mathrm{CELL}_{k}=\left\{\begin{array}{lll}
\mathrm{GEO} & \text { for } & k=1 \\
\mathrm{GEO2} & \text { for } & k=2
\end{array}\right.
$$

then the following directories will also be present in the main geometry directory:

Table 26: Cell sub-geometry directory

Name	Type	Condition	Units	Comment
GE01 பபபபபபபப	Dir			A first / geometry/ directory
GE02பபபபபபபப	Dir			A second / geometry/ directory

In the case where $F_{c l} \geq 1$, the set of directory $\{/$ subgeo $/\}$ will have the same name as the variable

CLUSTER $_{k}$. For example, in the case where $F_{c l}=2$ and

$$
\text { CLUSTER }_{k}=\left\{\begin{array}{lll}
\text { RODS1 } & \text { for } & k=1 \\
\text { RODS2 } & \text { for } & k=2
\end{array}\right.
$$

then the following directories will also be present in the main geometry directory:

Table 27: Cluster sub-geometry directory

Name	Type	Condition Units	Comment
RODS1			
RODSபபபபப	Dir	$F_{g} \geq 1$	A first / geometry/ directory
	Dir	$F_{g} \geq 1$	A second/geometry/ directory

3.3 The /BIHET/ sub-directory in /geometry/

The first level of the geometry directory may contains a double-heterogeneity directory /BIHET/ made of the following records:

Table 28: Records in the /BIHET/ sub-directory

Name	Type	Condition	Units	Comment
STATE-VECTOR	$\mathrm{I}(40)$			Vector describing the various parameters associated with this data structure $\mathcal{S}_{i}^{d h}$
NS $S_{\text {பபபபபபபபபப }}$	$\mathrm{I}\left(\mathcal{S}_{1}^{\text {dh }}\right)$			The number of sub-regions in the microstructures $N_{\text {micro }, i}$
RS $\mathrm{S}_{\text {பபபபபபபபபப }}$	$\mathrm{R}\left(\mathcal{S}_{2}^{d h}, \mathcal{S}_{1}^{d h}\right)$		cm	The radii of the tubes or spherical shells making up the micro-structures $R_{\text {micro }, i, j}$
MILIE பபபபபபப	$\mathrm{I}\left(\mathcal{S}_{3}^{\text {dh }}\right)$			The composite mixture indices used in the definition of the macro-geometry $C_{\text {micro }, i, j}$
MIXDIL பபபபபப	$\mathrm{I}\left(\mathcal{S}_{3}^{d h}\right)$			The mixture indices associated with the diluent in each composite mixtures of the macro-geometry $D_{\text {micro, }, i, j}$
MIXGR பபபபபபப	$\mathrm{I}\left(\mathcal{S}_{4}^{\text {dh }}, \mathcal{S}_{3}^{\text {dh }}\right)$			The mixture indices associated with each region of the micro-structures $M_{\text {micro }, i, j}$
FRACT பபபபபபப	$\mathrm{R}\left(\mathcal{S}_{1}^{d h}, \mathcal{S}_{3}^{d h}\right)$			The volumetric concentration of each microstructure $\rho_{\text {micro }, i, j}$

The dimensioning parameters for this data structure, which are stored in the state vector $\mathcal{S}^{b h}$, represent:

- The number of different kinds of macro-structures $\mathcal{S}_{1}^{d h}$
- 1 plus the maximum number of annular sub-regions in any micro-structure $\mathcal{S}_{2}^{d h}$
- The number of composite mixtures to be included the macro-geometry $\mathcal{S}_{3}^{d h}$
- The maximum number of annular sub-regions in the micro-structure $\mathcal{S}_{4}^{d h}=\left(\mathcal{S}_{2}^{d h}-1\right) \times \mathcal{S}_{1}^{d h}$
- The type of micro-structure $\mathcal{S}_{5}^{d h}$ where

$$
\mathcal{S}_{5}^{d h}= \begin{cases}3 & \text { Tubular micro-structure } \\ 4 & \text { Spherical micro-structure }\end{cases}
$$

4 Contents of a /tracking/ directory

This directory contains the information resulting from an analysis of a geometry using a specific calculation operator of DRAGON.

4.1 State vector content for the /tracking/ data structure

The dimensioning parameters for this data structure, which are stored in the state vector \mathcal{S}, represent:

- The number of regions $N_{r}=\mathcal{S}_{1}^{t}$
- The number of unknown $N_{u}=\mathcal{S}_{2}^{t}$
- The leakage flag $I_{L}=\mathcal{S}_{3}^{t}$

$$
I_{L}= \begin{cases}0 & \text { Leakage is present } \\ 1 & \text { Leakage is absent }\end{cases}
$$

- The maximum number of mixture used $M_{m}=\mathcal{S}_{4}^{t}$
- The number of outer surfaces $N_{s}=\mathcal{S}_{5}^{t}$
- Flag related to the double-heterogeneity option \mathcal{S}_{40}^{t} where

$$
\mathcal{S}_{40}^{t}= \begin{cases}0 & \text { the double-heterogeneity option is not used } \\ 1 & \text { the double-heterogeneity option is used. }\end{cases}
$$

4.2 The main /tracking/ directory

On its first level, the following records and sub-directories will be found in the /tracking/ directory:

Table 29: Main records and sub-directories in /tracking/

Name	Type	Condition	Units	Comment
SIGNATURE பபப	$\mathrm{C} * 12$			Signature of the data structure (SIGNA =L_TRACK
STATE-VECTOR	$\mathrm{I}(40)$			Vector describing the various parameters associated with this data structure \mathcal{S}_{i}^{t}, as defined in Section 4.1.
TRACK-TYPE பப	$\mathrm{C} * 12$			Type of tracking considered (CDOOR). Allowed values are: 'EXCELL', 'SYBIL', 'MCCG', 'BIVAC' and 'TRIVAC'.
LINK. GEOM	$\mathrm{C} * 12$			Name of the GEOMETRY on which the tracking is based.
TITLE பபபபபபப $^{\text {a }}$	$\mathrm{C} * 72$			Identification title (TITLE)
MATCOD பபபபபப	$\mathrm{I}\left(\mathcal{S}_{1}^{t}\right)$			Region material M_{r}

Main records and sub-directories in /tracking/
continued from last page

Name	Type	Condition	Units	Comment
KEYFLX ${ }_{\text {பபபபபப }}$	$\mathrm{I}\left(\mathcal{S}_{1}^{t}, \mathcal{E}, \mathcal{F}\right)$			Location in unknown vector of averaged regional flux I_{r} The second dimension of this array is
				$\mathcal{E}= \begin{cases}\mathcal{M}_{20}^{t} & \text { if MCCG; } \\ 1 & \text { otherwise }\end{cases}$
				The third dimension of this array is
				$\mathcal{F}= \begin{cases}\mathcal{M}_{19}^{t} & \text { if MCCG; } \\ 1 & \text { otherwise }\end{cases}$
VOLUME	$\mathrm{R}\left(\mathcal{S}_{1}^{t}\right)$		cm^{3}	Region volumes V_{r}
BC-REFL+TRAN	$\mathrm{I}\left(\mathcal{S}_{5}^{t}\right)$	$\mathcal{S}_{5}^{t} \geq 1$		Reflection/transmission matrix localisation operator T_{s}
	Dir	*		Directory containing Bickey or/and exponential function tables.
$\mathrm{BIHET}_{\text {பபபபபபப }}$	Dir	$\mathcal{S}_{40}^{t}=1$		Sub-directory containing the data related to a double heterogeneity geometry. The specification of this directory is given in Section 4.9

In addition to the above records, the main /tracking/ directory will also contain information which is specific to each tracking module. This information will be described in the following sub-sections. Also note that the contents of the \mathcal{S}_{i}^{t} vector for $i \geq 6$ will depend on the specific tracking module and will be defined in the next sub-sections.

4.3 The sybilt dependent records and sub-directories on a /tracking/ directory

When the SYBILT: operator is used (CDOOR='SYBIL'), the following elements in the vector \mathcal{S}_{i}^{t} will also be defined.

- The main SYBIL model \mathcal{S}_{6}^{t}

$$
\mathcal{S}_{6}^{t}= \begin{cases}2 & \text { Pure geometry } \\ 3 & \text { Do-it-yourself geometry } \\ 4 & \text { 2-D assembly geometry }\end{cases}
$$

- Minimum space required to store tracks for assembly geometry \mathcal{S}_{7}^{t}
- Minimum space required to store interface currents for assembly geometry \mathcal{S}_{8}^{t}
- Number of additional unknowns holding the interface currents \mathcal{S}_{9}^{t}. These unknowns are used if and only if a current-based inner iterative method is set (with option ARM).

The following sub-directories will also be present on the main level of a /tracking/ directory.

Table 30: The sybilt records and sub-directories in /tracking/

Name	Type	Condition Units	Comment
PURE-GEOM	Dir	$\mathcal{S}_{6}^{t}=2$	
DOITYOURSELF	Dir	$\mathcal{S}_{6}^{t}=3$	Sub-directory containing the data related to a pure geometry Sub-directory containing the data related to a do-it- yourself geometry Sub-directory containing the data related to an as- sembly geometry

where the sub-directories in Table 30 are described in the following subsections.
4.3.1 The /PURE-GEOM/ sub-directory in sybilt

Table 31: The contents of the sybilt /PURE-GEOM/ sub-directory

Name	Type	Condition	Units	Comment
$\mathrm{PARAM}_{\text {பபபபபபப }}$	$\mathrm{I}(6)$			Record containing the parameters for a SYBIL tracking on a pure geometry \mathcal{P}_{i}
NCODE பபபபபபப	$\mathrm{I}(6)$			Record containing the types of boundary conditions on each surface $N_{\beta, j}$
ZCODE	R (6)		1	Record containing the albedo value on each surface
XXX $\mathrm{C}_{\text {பபபபபபபபப }}$	$\mathrm{R}\left(\mathcal{P}_{4}+1\right)$	$\mathcal{P}_{4} \geq 1$	cm	x-directed mesh coordinates after mesh-splitting for type 2,5 and 7 geometries. Region-ordered radius after mesh-splitting for type 3 and 6 geometries
YYY பபபபபபபபப $^{\text {l }}$	$\mathrm{R}\left(\mathcal{P}_{5}+1\right)$	$\mathcal{P}_{5} \geq 1$	cm	y-directed mesh coordinates after mesh-splitting for type 5, 6 and 7 geometries
ZZZபபபபபபபபப	$\mathrm{R}\left(\mathcal{P}_{6}+1\right)$	$\mathcal{P}_{6} \geq 1$	cm	z-directed mesh coordinates after mesh-splitting for type 7 and 9 geometries
SIDE பபபபபபபப	R(1)	$\mathcal{P}_{1} \geq 8$	cm	Side of a hexagon for type 8 and 9 geometries

with the dimension parameter \mathcal{P}_{i}, representing:

- The type of geometry \mathcal{P}_{1}

$$
\mathcal{P}_{1}= \begin{cases}2 & \text { Cartesian 1-D geometry } \\ 3 & \text { Tube 1-D geometry } \\ 4 & \text { Spherical 1-D geometry } \\ 5 & \text { Cartesian 2-D geometry } \\ 6 & \text { Tube 2-D geometry } \\ 7 & \text { Cartesian 3-D geometry } \\ 8 & \text { Hexagonal 2-D geometry } \\ 9 & \text { Hexagonal 3-D geometry }\end{cases}
$$

- The type of hexagonal symmetry $\beta_{h}=\mathcal{P}_{2}$

$$
\beta_{h}= \begin{cases}1 & \text { S30 } \\ 2 & \text { SA60 } \\ 3 & \text { SB60 } \\ 4 & \text { S90 } \\ 5 & \text { R120 } \\ 6 & \text { R180 } \\ 7 & \text { SA180 } \\ 8 & \text { SB180 } \\ 9 & \text { COMPLETE }\end{cases}
$$

- The quadrature parameter \mathcal{P}_{3}
- The number of x-directed or radial mesh intervals in the geometry \mathcal{P}_{4}
- The number of y-directed mesh intervals in the geometry \mathcal{P}_{5}
- The number of z-directed mesh intervals in the geometry \mathcal{P}_{6}

The type of boundary conditions used will be defined in the following way
$N_{\beta, j}= \begin{cases}0 & \text { Not used } \\ 1 & \text { Void boundary condition } \\ 2 & \text { Reflection boundary condition } \\ 3 & \text { Diagonal reflection boundary condition } \\ 4 & \text { Translation boundary condition condition } \\ 5 & \text { Symmetric reflection boundary condition } \\ 6 & \text { Albedo boundary condition }\end{cases}$
4.3.2 The /DOITYOURSELF/ sub-directory in sybilt

Table 32: The contents of the sybilt /DOITYOURSELF/ subdirectory

Name	Type	Condition	UnitsComment	
PARAM பபபபபபப $^{\text {a }}$	$\mathrm{I}(3)$			Record containing the parameters for a SYBIL tracking on a do-it-yourself geometry \mathcal{P}_{i}
NMC பபபபபபபபப $^{\text {a }}$	$\mathrm{I}(M+1)$			Offset of the first region in each cell
RAYRE	$\mathrm{R}\left(N_{r}+M\right)$		cm	Radius of the tubes in each cell
PROCEL	$\mathrm{R}(M, M)$			Geometric matrix
POURCE	$\mathrm{R}(M)$			Weight assigned to each cell
SURFA பபபபபபப $^{\text {S }}$	$\mathrm{R}(M)$		cm^{2}	Surface of each cell

with the dimension parameter \mathcal{P}_{i}, representing:

- The number of cells $\mathcal{P}_{1}=M$
- The quadrature parameter \mathcal{P}_{2}
- The statistical option \mathcal{P}_{3}

$$
\mathcal{P}_{3}= \begin{cases}0 & \text { the statistical approximation is not used. Record 'PROCEL' is used. } \\ 1 & \text { use the statistical approximation. Record 'PROCEL' is not used. }\end{cases}
$$

4.3.3 The /EURYDICE/ sub-directory in sybilt

Table 33: The contents of the sybilt /EURYDICE/ sub-directory

Name	Type	Condition	Unit	Comment
PARAM பபபபபபப	$\mathrm{I}(16)$			Record containing the parameters for a SYBIL tracking on an assembly geometry \mathcal{P}_{i}
$\mathrm{XX}_{\text {பபபபபபபபபப }}$	$\mathrm{R}\left(\mathcal{P}_{6}\right)$		cm	x-thickness of the generating cells
YY	$\mathrm{R}\left(\mathcal{P}_{6}\right)$		cm	y-thickness of the generating cells
$\mathrm{LSECT}_{\text {பபபபபபப }}$	$\mathrm{I}\left(\mathcal{P}_{6}\right)$			Type of sectorization for each each generating cell. Equal to zero for non-sectorized cells. Allowed values are defined as $F_{\text {sec }}$ in Section 3.2
NMC	$\mathrm{I}\left(\mathcal{P}_{6}+1\right)$			Offset of the first region index in each generating cell
NMCR	$\mathrm{I}\left(\mathcal{P}_{6}+1\right)$			Offset of the first radius index in each generating cell. Equal to NMC, unless the cell is sectorized.
RAYRE பபபபபபப $^{\text {l }}$	$\mathrm{R}\left(M_{r}\right)$		cm	Radius of the tubes in each generating cell. $M_{r}=\operatorname{NMCR}\left(\mathcal{P}_{6}+1\right)$
MAIL பபபபபபபப $^{\text {l }}$	$\mathrm{I}\left(2, \mathcal{P}_{6}\right)$			Offsets of the first tracking information in each generating cell. MAIL ($1,:$) contains offsets for the integer array ZMAILI; MAIL ($2,:$) contains offsets for the real array ZMAILR.
ZMAILI பபபபபப	$\mathrm{I}\left(\mathcal{P}_{15}\right)$			The integer tracking information
ZMAILRபபபபபப	$\mathrm{R}\left(\mathcal{P}_{16}\right)$		cm	The tracking lengths
IFR $\mathrm{L}_{\text {பபபபபபபபப }}$	$\mathrm{I}\left(\mathcal{P}_{4}, \mathcal{P}_{14}\right)$			Index numbers of incoming currents
ALB பபபபபபபபப $^{\text {a }}$	$\mathrm{R}\left(\mathcal{P}_{4}, \mathcal{P}_{14}\right)$			Albedo or transmission factors corresponding to incoming currents
INUM பபபபபபபப	$\mathrm{I}\left(\mathcal{P}_{4}\right)$			Index number of the merge cell associated to each cell of the assembly
MIX ${ }_{\text {பபபபபபபபப }}$	$\mathrm{I}\left(\mathcal{P}_{5}, \mathcal{P}_{14}\right)$			Index numbers of outgoing currents
DVX	$\mathrm{R}\left(\mathcal{P}_{5}, \mathcal{P}_{14}\right)$			Weights corresponding to outgoing currents
IGEN பபபபபபபப $^{\text {a }}$	$\mathrm{I}\left(\mathcal{P}_{5}\right)$			Index number of the generating cell associated to each merged cell

with the dimension parameter \mathcal{P}_{i}, representing:

- The type of hexagonal symmetry \mathcal{P}_{1}

$$
\mathcal{P}_{1}= \begin{cases}0 & \text { Cartesian assembly } \\ 1 & \text { S30 } \\ 2 & \text { SA60 } \\ 3 & \text { SB60 } \\ 4 & \text { S90 } \\ 5 & \text { R120 } \\ 6 & \text { R180 } \\ 7 & \text { SA180 } \\ 8 & \text { SB180 } \\ 9 & \text { COMPLETE }\end{cases}
$$

- The type of multicell approximation \mathcal{P}_{2}

$$
\mathcal{P}_{2}= \begin{cases}1 & \text { Roth approximation } \\ 2 & \text { Roth } \times 4 \text { or Roth } \times 6 \text { approximation } \\ 3 & \text { DP-0 approximation } \\ 4 & \text { DP-1 approximation }\end{cases}
$$

- The type of cylinderization \mathcal{P}_{3}

$$
\mathcal{P}_{3}= \begin{cases}1 & \text { Askew cylinderization } \\ 2 & \text { Wigner cylinderization } \\ 3 & \text { Sanchez cylinderization }\end{cases}
$$

- The total number of cells \mathcal{P}_{4}
- The number of merged cells \mathcal{P}_{5}
- The number of generating cells \mathcal{P}_{6}
- The number of distinct interface currents \mathcal{P}_{7}
- The number of angles for $2-\mathrm{D}$ quadrature \mathcal{P}_{8}
- The number of segments for 2-D quadrature \mathcal{P}_{9}
- The number of segments for homogeneous 2-D cells \mathcal{P}_{10}
- The number of segments for 1-D cells \mathcal{P}_{11}
- The track normalization option \mathcal{P}_{12}

$$
\mathcal{P}_{12}= \begin{cases}0 & \text { Normalize the tracks } \\ 1 & \text { Do not normalize the tracks }\end{cases}
$$

- The type of quadrature in angle and space \mathcal{P}_{13}

$$
\mathcal{P}_{13}= \begin{cases}0 & \text { Gauss quadrature } \\ 1 & \text { Equal weight quadrature }\end{cases}
$$

- The number of outgoing interface currents per cell \mathcal{P}_{14}
- The number of integer array elements in the tracking arrays \mathcal{P}_{15}
- The number of real array elements in the tracking arrays \mathcal{P}_{16}

4.4 The excelt dependent records on a /tracking/ directory

When the EXCELT: modules is used (CDOOR='EXCELL'), the following elements in the vector \mathcal{S}_{i}^{t} will also be defined.

- \mathcal{S}_{6}^{t} is the number of Legendre orders used for the flux expansions, where

$$
\mathcal{S}_{6}^{t}= \begin{cases}1 & \text { isotropic } \\ 2 & \text { linearly anisotropic }\end{cases}
$$

- \mathcal{S}_{7}^{t} is the specific EXCELL tracking procedure considered where

$$
\mathcal{S}_{7}^{t}= \begin{cases}1 & \text { Cartesian 2D/3D assembly using EXCELT: } \\ 2 & \text { hexagonal 2D/3D assembly using EXCELT: } \\ 3 & \text { 2D cluster geometry using EXCELT: } \\ 4 & \text { 2D and 3D Cartesian assemblies with clusters using NXT: }\end{cases}
$$

- \mathcal{S}_{8}^{t} is the track normalization flag where

$$
\mathcal{S}_{8}^{t}=\left\{\begin{aligned}
-1 & \text { direction dependent track normalization to exact volumes; } \\
0 & \text { global track normalization to exact volumes; } \\
1 & \text { no normalization. }
\end{aligned}\right.
$$

- \mathcal{S}_{9}^{t} is the tracking type where

$$
\mathcal{S}_{9}^{t}= \begin{cases}0 & \text { means that a standard tracking procedure was considered (TISO) } \\ 1 & \text { means that a cyclic tracking procedure was considered (TSPC) }\end{cases}
$$

- \mathcal{S}_{10}^{t} is the type of boundary conditions where

$$
\mathcal{S}_{10}^{t}= \begin{cases}0 & \text { means that isotropic (white) boundary conditions will be considered (PISO); } \\ 1 & \text { means that mirror-like (specular) boundary conditions will be considered (PSPC) }\end{cases}
$$

Note that mirror-like boundary conditions $\left(\mathcal{S}_{10}^{t}=1\right)$ can be used only if a cyclic tracking procedure was considered $\left(\mathcal{S}_{9}^{t}=1\right)$.

- $\mathcal{S}_{11}^{t}=N_{\Omega}$ is the order of the azimuthal (2-D) or solid (3-D) angular quadrature. For 2-D geometry, the order of the azimuthal quadrature represents:
- the number of equal sectors (trapezoidal quadrature) in the $[0, \pi]$ range when the EXCELT: module is used for Cartesian assemblies;
- the number of equal sectors (trapezoidal quadrature) in the $[0,2 \pi / 3]$ range when the EXCELT: module is used for hexagonal geometries;
- the number of equal sectors (trapezoidal quadrature) in the $\left[0, \max \left(\mathcal{S}_{12}^{t}, 2\right) \pi\right]$ range when the EXCELT: module is used for cluster geometries;
- the number of trapezoidal sectors in the $[0, \pi / 2]$ range when the NXT: module is used.

For 3-D geometry, the order of the solid angle quadrature is:

- the order n of the $E Q_{n}$ quadrature in a quadrant $(0 \leq \varphi \leq \pi / 2$ and $0 \leq \theta \leq \pi / 2)$ when the EXCELT: module is used for Cartesian assemblies for $N_{\text {dir }}=n(n+2) / 8$ direction in each quadrant;
- the number of equal sectors (trapezoidal quadrature) in the $[0,2 \pi / 3]$ range when the EXCELT: module is used for hexagonal geometries;
- not used for the EXCELT: module in cluster geometries;
- the order n of the $E Q_{n}, L C_{n}$ or $L T_{n}$ quadrature in a quadrant with $0 \leq \varphi \leq \pi / 2$ and $0 \leq \theta \leq \pi / 2$. When the NXT : modules is used, the number $N_{\text {dir }}$ of directions for the azimuthal (2-D) or solid (3-D) angle quadrature results in $N_{\text {dir }}=n(n+2) / 8$ directions for the $E Q_{n}$ quadrature, $N_{\text {dir }}=3 n(n+2) / 8$ for the $L C_{n}$ quadrature and $N_{\text {dir }}=3 n^{2} / 2$ for the $L T_{n}$ quadrature.
- \mathcal{S}_{12}^{t} is the angular symmetry factor;
- \mathcal{S}_{13}^{t} is the polar quadrature type:

$$
\mathcal{S}_{13}^{t}= \begin{cases}0 & \text { Gauss-Legendre } \\ 1 & \text { CACTUS type 1 } \\ 2 & \text { CACTUS type } 2 \\ 3 & \text { McDaniel } \\ 4 & \text { McDaniel with } P_{1} \text { constraint } \\ 5 & \text { Gauss optimized }\end{cases}
$$

- \mathcal{S}_{14}^{t} is the order of the polar quadrature.
- \mathcal{S}_{15}^{t} is the azimuthal (2-D) or solid (3-D) angle quadrature type where

$$
\mathcal{S}_{15}^{t}= \begin{cases}1 & \text { for a } E Q_{n}(3-\mathrm{D}) \text { or trapezoidal (2-D) quadrature; } \\ 2 & \text { for a Gauss quadrature (2-D hexagonal geometries) } \\ 3 & \text { for a median angle quadrature; } \\ 4 & \text { for a } L C_{n} 3-\mathrm{D} \text { quadrature; } \\ 5 & \text { for a } L T_{n} \text { 3-D quadrature; } \\ 6 & \text { for a } \mu_{1} \text {-optimized level-symmetric 3-D quadrature; } \\ 7 & \text { for a quadrupole range (QR) 3-D quadrature. }\end{cases}
$$

- \mathcal{S}_{16}^{t} is the number of geometric dimensions (1, 2 or 3).
- \mathcal{S}_{17}^{t} is the number of tracking points on a line.
- \mathcal{S}_{18}^{t} is the maximum length of a track.
- \mathcal{S}_{19}^{t} is the total number of tracks generated.
- \mathcal{S}_{20}^{t} is the total number of track directions processed.
- \mathcal{S}_{21}^{t} is the line format option for TLM: module, where

$$
\mathcal{S}_{21}^{t}= \begin{cases}0 & \text { short format } \\ 1 & \text { complete format }\end{cases}
$$

- \mathcal{S}_{22}^{t} is the vectorization option for computing collision probability matrices where

$$
\mathcal{S}_{22}^{t}= \begin{cases}0 & \text { scalar algorithm. The tracking is readed for each energy group. } \\
1 & \text { vectorial algorithm. The tracking is readed once and the collision probability } \\
\text { matrices are computed in many energy groups. } \\
2 & \begin{array}{l}
\text { vectorial algorithm of type EXCELL: The tracking is computed in DOORVP } \\
\text { and the collision probability matrices are computed in many energy groups. }
\end{array} \\
3 & \begin{array}{l}
\text { vectorial algorithm of type NXT: The tracking is computed in DOORVP } \\
\text { and the collision probability matrices are computed in many energy groups. }
\end{array}\end{cases}
$$

- \mathcal{S}_{23}^{t} is the tracking flag, where

$$
\mathcal{S}_{23}^{t}= \begin{cases}-1 & \text { the LCM object information is used for Monte-Carlo calculations. No } \\
& \begin{array}{l}
\text { tracking file produced. } \\
0
\end{array} \\
\begin{array}{l}
\text { this option de-activates the tracking file production if TISO or TSPC are } \\
\text { specified. }
\end{array} \\
1 & \text { this option produces the tracking file. }\end{cases}
$$

- \mathcal{S}_{39}^{t} is the number in a prismatic 3D geometry when a prismatic tracking is considered (0 otherwise).

The following records will also be present on the main level of a /tracking/ directory.

Table 34: The EXCELT : records in /tracking/

Name	Type	Condition	Units	Comment
EXCELTRACKOP	$\mathrm{R}(40)$			array \mathcal{R}_{i} containing additional EXCELL or NXT tracking parameters.
ICODE பபபபபபப $^{\text {l }}$	$\mathrm{I}(6)$			array $\mathcal{I}_{\beta, k}$ containing the surface albedo index (geometric surface albedo $\beta_{\mathrm{g}, k}$ are used if $\mathcal{I}_{\beta, k}<0$ while physical surface albedo $\beta_{\mathrm{p}, k}$ are used if $\mathcal{I}_{\beta, k}>0$).
ALBEDOபபபபபப	R (6)			array $\beta_{\mathrm{g}, k}$ containing the geometric surface albedo (used only if $\mathcal{I}_{\beta, k} \geq 0$).
EXCELL பபபபபப $^{\text {der }}$	Dir	$\mathcal{S}_{7}^{t}<4$		directory containing additional EXCELT: records for the cases where $\mathcal{S}_{7}^{t}=1$ or $\mathcal{S}_{7}^{t}=3$.
NXTRecords ${ }_{\text {ப }}$	Dir	$\mathcal{S}_{7}^{t}=4$		directory containing additional NXT: records.
PROJECTION	Dir	$\mathcal{S}_{39}^{t}>0$		directory containing the analysis of the projection of a 3 D prismatic geometry.

The record \mathcal{R}_{i} contains the following information:

- \mathcal{R}_{1} is the maximum error allowed on the exponential function.
- \mathcal{R}_{2} is the user requested tracking density in cm^{-1} and in cm^{-2} respectively for 2 D and 3 D calculations.
- \mathcal{R}_{3} is the maximum distance in cm between an integration line and a surface.
- \mathcal{R}_{4} is the computed tracking density in cm^{-1} and in cm^{-2} respectively for 2 D and 3 D calculations (used only if $\mathcal{S}_{7}^{t}=4$).
- \mathcal{R}_{5} is the computed line spacing in cm (used only if $\mathcal{S}_{7}^{t}=4$).
- \mathcal{R}_{6} is the weight of the spatial quadrature (used only if $\mathcal{S}_{7}^{t}=4$).
- \mathcal{R}_{7} is the minimal radius of the circle (2-D) or sphere (3-D) containing the geometry (used only if $\left.\mathcal{S}_{7}^{t}=4\right)$.
- \mathcal{R}_{8} is the x position of the center of the minimal circle (2-D) or sphere (3-D) containing the geometry (used only if $\mathcal{S}_{7}^{t}=4$).
- \mathcal{R}_{9} is the y position of the center of the minimal circle (2-D) or sphere (3-D) containing the geometry (used only if $\mathcal{S}_{7}^{t}=4$).
- \mathcal{R}_{10} is the z position of the center of the minimal circle (2-D) or sphere (3-D) containing the geometry (used only if $\mathcal{S}_{7}^{t}=4$).
- \mathcal{R}_{40} user requested tracking density in cm^{-1} for inline contruction of 3 D tracks when a prismatic tracking is considered (only used if $\mathcal{S}_{39}^{t}>0$).

The /NXTRecords/ directory contains the information required to track the geometry using the NXT: module module once it has been analyzed. The contents of this directory is presented in Table 35 .

Table 35: Global geometry records in /NXTRecords/

Name	Type	Condition	Unit	sComment
G00000001DIM	$\mathrm{I}(40)$			array N_{i}^{GG} containing the dimensioning information required to rebuilt the assembly
G00000001CUF	$\mathrm{I}\left(2, N_{5}^{\mathrm{GG}}\right)$			array $D_{i, j}^{\mathrm{GG}}$ containing the assembly description of the geometry in terms of cells and rotations. The first element $(i=1)$ identifies the cell number while the second element identifies the cell rotation
G00000001CIS	$\mathrm{I}\left(4, N_{4}^{\mathrm{GG}}\right)$			array $S_{i, j}^{\mathrm{GG}}$ containing the cell intrinsic symmetry properties. A value of 1 indicates that a center cell reflexion symmetry is present while a value of 0 indicates that the symmetry is not considered (see below for a more complete description of this array)
G00000001CFE	$\mathrm{I}\left(0: 8, N_{4}^{\mathrm{GG}}\right)$			array $F_{i, j}^{\mathrm{GG}}$ containing the assembly external surface identification index (see below for a more complete description of this array)
G00000001SMX	$\mathrm{D}\left(0: N_{13}^{\mathrm{GG}}\right)$			array x^{GG} containing the x-directed mesh for the cell assembly in a Cartesian or Cylindrical geometry and the x position of the cell center for an hexagonal assembly (see below for more explanations)
G00000001SMY	$\mathrm{D}\left(0: N_{14}^{\mathrm{GG}}\right)$		cm	array y^{GG} containing the y-directed mesh for the cell assembly in a Cartesian or Cylindrical geometry and the y position of the cell center for an hexagonal assembly (see below for more explanations)
G00000001SMZ	$\mathrm{D}\left(0: N_{15}^{\mathrm{GG}}\right)$	$N_{1}^{\mathrm{GG}}=3$	cm	array z^{GG} containing the z-directed mesh for the cell assembly (see below for more explanations)
G00000001SMR	$\mathrm{D}(0: 1)$	$N_{2}^{\mathrm{GG}}=1$		the radius r^{GG} of the outer assembly boundary (see below for more explanations)
KEYMRGபபபபபப	$\mathrm{I}\left(-N_{23}^{\mathrm{GG}}: N_{22}^{\mathrm{GG}}\right)$			array MRG_{i} containing the merged surface and region number associated with each individual surfaces and regions in this geometry
MATALBபபபபபப	$\mathrm{I}\left(-N_{23}^{\mathrm{GG}}: N_{22}^{\mathrm{GG}}\right)$			array containing the albedo number associated with each surface and the physical mixture number associated with each region in this geometry

Global geometry records in /NXTRecords/
continued from last page

Name	Type	Condition	UnitsComment
HOMMATALB	$\mathrm{I}\left(-N_{23}^{\mathrm{GG}}: N_{22}^{\mathrm{GG}}\right)$	array containing the albedo number associated with each surface and the virtual (homogenization) mix- ture number associated with each region in this ge- ometry array containing the area $\left(S_{\alpha}\right.$ in cm for 2-D and cm^{2} fareaRvolume 3-D problems) and volume $\left(V_{i} \mathrm{~cm}^{2}\right.$ for 2-D and cm^{3} for 3-D problems) associated with each surface and region in this geometry	

The dimensioning vector for the global geometry contains the following information:

- N_{1}^{GG} number of dimensions for the problem.
- $N_{2}^{\text {GG }}$ type of boundary. A value of 0 indicates a Cartesian geometry, a value of 1 indicates a cylindrical geometry and a value of 2 an hexagonal geometry.
- N_{3}^{GG} first direction to process in the analysis. For cylinder, this is the direction of the first axis of the plane normal to the cylinder axis. For Cartesian and hexagonal geometries a value of 1 (x-axis) is selected by default.
- N_{4}^{GG} number of cells in the original geometry (before unfolding).
- $N_{5}^{\text {GG }}$ number of cells in the geometry after the original geometry is unfolded according to the symmetries.
- $N_{6}^{\text {GG }}$ diagonal symmetry flag. A value of 0 indicates that this symmetry is not used. A value of -1 indicates that the symmetry is used for the $x_{-}=y_{+}$plane and a value of 1 that the symmetry is used for the $x_{+}=y$ plane.
- $N_{7}^{G G}$ flag to identify symmetries with respect to the x-axis (x_{-}or x_{+}). A value of 0 indicates that no symmetry is present, $N_{7}^{\mathrm{GG}}= \pm 1$ is for a SYME symmetry at the $x_{ \pm}$plane, $N_{7}^{\mathrm{GG}}= \pm 2$ represents a SSYM symmetry at the $x_{ \pm}$plane and $N_{7}^{\mathrm{GG}}=3$ implies a translation symmetry is the x direction $\left(x_{-}=x_{+}\right)$.
- N_{8}^{GG} flag to identify symmetries with respect to the y-axis (y_{-}or y_{+}). A value of 0 indicates that no symmetry is present, $N_{7}^{\mathrm{GG}}= \pm 1$ is for a SYME symmetry at the $y_{ \pm}$plane, $N_{7}^{\mathrm{GG}}= \pm 2$ represents a SSYM symmetry at the $y_{ \pm}$plane and $N_{7}^{\mathrm{GG}}=3$ implies a translation symmetry is the y direction $\left(y_{-}=y_{+}\right)$.
- N_{9}^{GG} flag to identify symmetries with respect to the z-axis $\left(z_{-}\right.$or $\left.z_{+}\right)$. A value of 0 indicates that no symmetry is present, $N_{7}^{\mathrm{GG}}= \pm 1$ is for a SYME symmetry at the $z_{ \pm}$plane, $N_{7}^{\mathrm{GG}}= \pm 2$ represents a SSYM symmetry at the $z_{ \pm}$plane and $N_{7}^{\mathrm{GG}}=3$ implies a translation symmetry is the z direction $\left(z_{-}=z_{+}\right)$.
- N_{10}^{GG} number of x mesh subdivisions or hexagons in the original geometry.
- N_{11}^{GG} number of y mesh subdivisions or hexagons in the original geometry.
- $N_{12}^{\text {GG }}$ number of z mesh subdivisions in the original geometry.
- $N_{13}^{\text {GG }}$ number of x mesh subdivisions or hexagons in the unfolded geometry.
- N_{14}^{GG} number of y mesh subdivisions or hexagons in the unfolded geometry.
- $N_{15}^{\text {GG }}$ number of z mesh subdivisions in the unfolded geometry.
- N_{16}^{GG} maximum number cells required to represent this geometry.
- N_{17}^{GG} maximum number of region for this geometry.
- N_{18}^{GG} total number of clusters in this geometry.
- N_{19}^{GG} maximum number of pins in this geometry.
- N_{20}^{GG} maximum dimensions of any mesh array for a cell in this geometry.
- N_{21}^{GG} maximum dimensions of any mesh array for a pin in this geometry.
- N_{22}^{GG} number of external surfaces for this geometry.
- N_{23}^{GG} number of regions for this geometry.
- N_{24}^{GG} maximum number of external surfaces in a sub-geometry included in this geometry.
- N_{25}^{GG} maximum number of regions in a sub-geometry included in this geometry.

The indexing of array $S_{i, j}^{\mathrm{GG}}$ for the axis of symmetry is as follows

1. Cartesian assemblies:

- $i=1$ refers to a reflexion of the geometry on a plane normal the x-axis;
- $i=2$ refers to a reflexion of the geometry on a plane normal the y-axis;
- $i=3$ refers to a reflexion of the geometry on the plane $x=y$;
- $i=4$ refers to a reflexion of the geometry on a plane normal the z-axis.

2. Hexagonal assemblies (symmetries not yet programmed).

- $i=1$ refers to a reflexion of the geometry on a plane normal the u-axis;
- $i=2$ refers to a reflexion of the geometry on a plane normal the v-axis;
- $i=3$ refers to a reflexion of the geometry on the plane w;
- $i=4$ refers to a reflexion of the geometry on a plane normal the z axis.

The indexing of array $F_{i, j}^{\mathrm{GG}}$ for external surface identification is as follows. First $F_{0, j}^{\mathrm{GG}}$ represents the number of times the cell appears in the geometry after it has been unfolded. For $i>0, F_{i, j}^{\mathrm{GG}}$ can take the following values

$$
F_{i, j}^{\mathrm{GG}}= \begin{cases}1 & \text { surface associated with direction } i \text { of cell } j \text { is an external boundary of the assembly } \\ 0 & \text { surface associated with direction } i \text { of cell } j \text { is not an external boundary of the assembly }\end{cases}
$$

with the following planes associated with different values of i :

1. Cartesian assemblies:

- $i=1$ surfaces on the x_{-}plane for cell $j ;$
- $i=2$ surfaces on the x_{+}plane for cell j;
- $i=3$ surfaces on the y_{-}plane for cell j;
- $i=4$ surfaces on the y_{+}plane for cell j;

Figure 3: Example of an assembly of hexagons (left) and external faces identification for an hexagon

- $i=5$ surfaces on the z_{-}plane for cell j;
- $i=6$ surfaces on the z_{+}plane for cell j.

2. Hexagonal assemblies (see Figure 3):

- $i=1$ surfaces on the u_{-}plane for cell j;
- $i=2$ surfaces on the u_{+}plane for cell j;
- $i=3$ surfaces on the v_{-}plane for cell $j ;$
- $i=4$ surfaces on the v_{+}plane for cell j;
- $i=5$ surfaces on the z_{-}plane for cell j;
- $i=6$ surfaces on the z_{+}plane for cell j;
- $i=7$ surfaces on the w_{-}plane for cell j;
- $i=8$ surfaces on the w_{+}plane for cell j.

The arrays $x^{\mathrm{GG}}, y^{\mathrm{GG}}, z^{\mathrm{GG}}$ and r^{GG} contain the following information:

1. Cartesian assemblies:

- x_{i-1}^{GG} and x_{i}^{GG} are the lower and upper x limits of mesh element $i\left(i=1, n^{x}\right)$;
- y_{j-1}^{GG} and y_{j}^{GG} are the lower and upper y limits of mesh element $j\left(j=1, n^{y}\right)$;
- z_{k-1}^{GG} and z_{k}^{GG} are the lower and upper z limits of mesh element $k\left(k=1, n^{z}\right)$.

2. Hexagonal assemblies (see Figure 3):

- $x_{0}^{\mathrm{GG}}=h$ is the width of one face of the hexagon and x_{i}^{GG} is the position in x of the center of cell i in the assembly;
- $y_{0}^{\mathrm{GG}}=h$ is the width of one face of the hexagon and y_{j}^{GG} is the position in y of the center of cell j in the assembly;
- z_{k-1}^{GG} and z_{k}^{GG} are the lower and upper z limits of mesh element $k\left(k=1, n^{z}\right)$.

As we noted above, the global geometry is always an assembly containing cells. For each cell i in this assembly, several records will be generated in the /NXTRecords/ directory. These records are identified using a FORTRAN CHARACTER*12 variable as follows

```
INTEGER I
CHARACTER*12 NAMREC
CHARACTER*3 NREC
WRITE(NAMREC,'(A1,I8.8,A3)') 'C',I,NREC
```

where the variable NREC can take the following values:

- DIM for dimensioning information;
- SMR for the radial mesh description;
- SMX for the x-directed mesh description;
- SMY for the y-directed mesh description;
- SMZ for the z-directed mesh description;
- MIX for physical mixture description;
- HOM for virtual mixture description;
- VSE for areas and volumes results;
- VSI for local surfaces and regions identification;
- RID for final region numbering;
- SID for final surface numbering
- PNT for pin contents description;
- PIN for pins location.

In Table 36, a description of the additional /NXTRecords/ records associated with cell $i=1$ can be found.

Table 36: Cell $i=1$ records in /NXTRecords/

Name	Type	Condition	UnitsComment	
C00000001DIM	I(40)			array N_{j}^{GC} containing the dimensioning information required to rebuilt the cell
C00000001SMR	$\mathrm{D}\left(N_{2}^{\mathrm{GC}}\right)$			array r_{j}^{GC} containing the cell radial mesh description
C00000001SMX	$\mathrm{D}\left(N_{3}^{\mathrm{GC}}\right)$			array $x_{j}^{\text {GC }}$ containing the cell x-directed mesh description
C00000001SMY	$\mathrm{D}\left(N_{4}^{\mathrm{GC}}\right)$			array y_{j}^{GC} containing the cell y-directed mesh description
C00000001SMZ	$\mathrm{D}\left(N_{5}^{\mathrm{GC}}\right)$			array z_{j}^{GC} containing the cell z-directed mesh description
C00000001MIX	$\mathrm{I}\left(N_{6}^{\mathrm{GC}}\right)$			array M_{j}^{GC} containing the cell physical mixture for each region
C00000001HOM	$\mathrm{I}\left(N_{6}^{\mathrm{GC}}\right)$			array H_{j}^{GC} containing the cell virtual mixture for each region

Cell $i=1$ records in /NXTRecords/
continued from last page

Name	Type	Condition	UnitsComment
C00000001VSE	$\mathrm{D}\left(-N_{9}^{\mathrm{GC}}: N_{8}^{\mathrm{GC}}\right)$		array $\mathrm{SV}_{j}^{\mathrm{GC}}$ containing surface area $j\left(\mathrm{SV}_{-j}^{\mathrm{GC}}=S_{j}^{\mathrm{GC}}\right.$ in cm for 2-D and cm^{2} for 3-D problems) and regional volumes $j\left(\mathrm{SV}_{j}^{\mathrm{GC}}=V_{j}^{\mathrm{GC}}\right.$ in cm^{2} for 2-D and cm^{3} for 3-D problems)
C00000001VSI	$\mathrm{I}\left(4,-N_{9}^{\mathrm{GC}}: N_{8}^{\mathrm{GC}}\right)$		array $\mathrm{VSI}_{k, j}^{\mathrm{GC}}$ containing the location of a surface $(j<$ $0)$ and a region $(j>0)$
C00000001RID	$\mathrm{I}\left(N_{8}^{\mathrm{GC}}\right)$		index array $\mathrm{RID}_{j}^{\mathrm{GC}}$ associating local and global region numbering
C00000001SID	$\mathrm{I}\left(N_{9}^{\mathrm{GC}}\right)$		index array SID $_{j, i}^{\mathrm{GC}}$ associating local and global outer surface numbering
C00000001PNT	$\mathrm{I}\left(3, N_{18}^{\mathrm{GC}}\right)$		array $\mathrm{PC}_{k, j}^{\mathrm{GC}}$ containing the cell pin contents
C00000001PIN	$\mathrm{D}\left(-1: 4, N_{18}^{\mathrm{GC}}\right)$		array $\mathrm{p}_{k, j}^{\mathrm{GC}}$ containing the location of the pins in cell

Note that the record names above are built using the following FORTRAN instructions:

```
WRITE(NAMREC,'(A1,I8.8,A3)') 'C', i,NAMEXT
```

The cell dimensioning array N_{i}^{GC} for cell i contains the following information:

- N_{1}^{GC} cell geometry type (see the definition of \mathcal{S}_{1}^{G} in Section 3.2);
- N_{2}^{GC} dimensions of the radial mesh array;
- N_{3}^{GC} dimensions of the x-directed mesh array;
- N_{4}^{GC} dimensions of the y-directed mesh array;
- N_{5}^{GC} dimensions of the z-directed mesh array;
- N_{6}^{GC} dimensions of the mixture record;
- N_{7}^{GC} geometry level (1 for cell);
- N_{8}^{GC} number of regions in the cell before symmetry considerations;
- N_{9}^{GC} number of surfaces in the cell before symmetry considerations;
- N_{10}^{GC} number of regions in the cell after symmetry considerations;
- N_{11}^{GC} number of surfaces in the cell after symmetry considerations;
- N_{12}^{GC} first global region number for cell;
- N_{13}^{GC} last global region number for cell;
- N_{14}^{GC} first global surface number for cell;
- N_{15}^{GC} last global surface number for cell;
- N_{16}^{GC} number of pin cluster geometries in cell;
- N_{17}^{GC} first pin cluster geometry associated with cell;
- N_{18}^{GC} total number of pins in cell;
- N_{19}^{GC} number of times this cell is used in the global cell.
while the remaining elements are not used.
The array x_{j}^{GC} contains the following information:
- x_{-1}^{GC} contains the displacement of the center of the cylindrical region with respect to the center of the Cartesian mesh in direction x. This center is located at:

$$
x_{c}=\frac{x_{n^{x}}^{\mathrm{Gc}}+x_{0}^{\mathrm{GC}}}{2}
$$

where we have used $n^{x}=N_{3}^{\mathrm{GC}}$.

- x_{j-1}^{GC} and x_{j}^{GC} are the lower and upper x limits of mesh element $j\left(j=1, n^{x}\right)$.

The array y_{j}^{GC} contains the following information:

- y_{-1}^{GC} contains the displacement of the center of the cylindrical region with respect to the center of the Cartesian mesh in direction y. This center is located at:

$$
y_{c}=\frac{y_{n^{y}}^{\mathrm{GC}}+y_{0}^{\mathrm{GC}}}{2}
$$

where we have used $n^{y}=N_{4}^{\mathrm{GC}}$.

- y_{j-1}^{GC} and y_{j}^{GC} are the lower and upper y limits of mesh element $j\left(j=1, n^{y}\right)$.

The array z_{j}^{GC} contains the following information:

- z_{-1}^{GC} contains the displacement of the center of the cylindrical region with respect to the center of the Cartesian mesh in direction z. This center is located at:

$$
z_{c}=\frac{z_{n^{z}}^{\mathrm{GC}}+z_{0}^{\mathrm{GC}}}{2}
$$

where we have used $n^{z}=N_{5}^{\mathrm{GC}}$.

- z_{j-1}^{GC} and z_{j}^{GC} are the lower and upper z limits of mesh element $j\left(j=1, n^{z}\right)$.

The array r_{j}^{GC} contains the following information:

- $r_{-1}^{\mathrm{GC}}=r_{0}^{\mathrm{GC}}=0$.
- $r_{j-1}^{\mathrm{GC}} \leq r \leq r_{j}^{\mathrm{GC}}$ describes the position in r of mesh element $j\left(j=1, N_{2}^{\mathrm{GC}}\right)$.

The array p_{j}^{GC} contains the following information:

- p_{-1}^{GC} is the angular position of $z-, x$ - or y-directed pin with respect to the x, y or z axis.
- p_{0}^{GC} is the radial position of z-, x - or y-directed pin with respect to the $x-y, y-z$ or $z-x$ center of the cell where the pin is located.
- p_{1}^{GC} is the height of a x-directed pin.
- p_{2}^{GC} is the height of a y-directed pin.
- p_{3}^{GC} is the height of a z-directed pin.
- p_{4}^{GC} is the outer radius of the pin.

In Table 37, a description of the additional /NXTRecords/ records associated with pin $i=1$ can be found. These records are identified using a procedure similar to that used for cell records, namely

```
INTEGER I
CHARACTER*12 NAMREC
CHARACTER*3 NREC
WRITE(NAMREC,'(A1,I8.8,A3)') 'P',I,NREC
```

where the variable NREC can take the same values as for cell records, except for NREC $=$ PNT and NREC $=$ PIN which are now forbidden.

Table 37: Pin $i=1$ records in /NXTRecords/

Name	Type	Condition	UnitsComment	
P00000001DIM	$\mathrm{I}(40)$			array $N_{j}^{\text {GP }}$ containing the dimensioning information required to rebuilt the pin
P00000001SMR	$\mathrm{D}\left(N_{2}^{\mathrm{GP}}\right)$			array $r_{j}^{\text {GP }}$ containing the pin radial mesh description
P00000001SMX	$\mathrm{D}\left(N_{3}^{\mathrm{GP}}\right)$			array x_{j}^{GP} containing the pin x-directed mesh description
P00000001SMY	$\mathrm{D}\left(N_{4}^{\mathrm{GP}}\right)$			array $y_{j}^{\text {GP }}$ containing the pin y-directed mesh description
P00000001SMZ	$\mathrm{D}\left(N_{5}^{\mathrm{GP}}\right)$			array z_{j}^{GP} containing the pin z-directed mesh description
P00000001MIX	$\mathrm{I}\left(N_{6}^{\mathrm{GP}}\right)$			array M_{j}^{GP} containing the pin physical mixture for each region
P00000001HOM	$\mathrm{I}\left(N_{6}^{\mathrm{GP}}\right)$			array $H_{j}^{\text {GP }}$ containing the pin virtual mixture for each region
P00000001VSE	$\mathrm{D}\left(-N_{9}^{\mathrm{GP}}: N_{8}^{\mathrm{GP}}\right)$			array $\mathrm{SV}_{j}^{\mathrm{GP}}$ containing surface area $j\left(\mathrm{SV}_{-j}^{\mathrm{GP}}=S_{j}^{\mathrm{GP}}\right.$ in cm for 2-D and cm^{2} for 3-D problems) and regional volumes $j\left(\mathrm{SV}_{j}^{\mathrm{GP}}=V_{j}^{\mathrm{GP}}\right.$ in cm^{2} for 2-D and cm^{3} for 3-D problems)
P00000001VSI	$\mathrm{I}\left(4,-N_{9}^{\mathrm{GP}}: N_{8}^{\mathrm{GP}}\right)$			array $\mathrm{VSI}_{k, j}^{\mathrm{GP}}$ containing the location of a surface $(j<$ $0)$ and a region $(j>0)$
P00000001RID	$\mathrm{I}\left(N_{8}^{\mathrm{GP}}\right)$			index array $\mathrm{RID}_{j}^{\mathrm{GP}}$ associating local and global region numbering
P00000001SID	$\mathrm{I}\left(N_{9}^{\mathrm{GP}}\right)$			index array $\operatorname{SID}_{j, i}^{\mathrm{GP}}$ associating local and global outer surface numbering

The pin dimensioning array N^{GP} contains the following information:

- $N_{1,}^{\mathrm{GP}}$ pin geometry type (see the definition of \mathcal{S}_{1}^{G} in Section 3.2);
- N_{2}^{GP} dimensions of the radial mesh array;
- N_{3}^{GP} dimensions of the x-directed mesh array;
- $N_{4,}^{\mathrm{GP}}$ dimensions of the y-directed mesh array;
- N_{5}^{GP} dimensions of the z-directed mesh array;
- N_{6}^{GP} dimensions of the mixture record;
- $N_{7,}^{\mathrm{GP}}$ geometry level (2 for pins);
- $N_{8,}^{\mathrm{GP}}$ number of regions in the pin before symmetry considerations;
- N_{9}^{GP} number of surfaces in the pin before symmetry considerations;
- N_{10}^{GP} number of regions in the pin after symmetry considerations;
- N_{11}^{GP} number of surfaces in the pin after symmetry considerations;
- N_{12}^{GP} first global region number for pins in cluster;
- N_{13}^{GP} last global region number for pins in cluster;
- N_{14}^{GP} first global surface number for pins in cluster;
- $N_{15}^{\text {GP }}$ last global surface number for pins in cluster;
- $N_{16}^{\text {GP }}$ first pin cluster geometry for pins in cluster.
- N_{17}^{GP} total number of pins in cluster.
while the remaining elements are not used. The array $x_{j}^{\text {GP }}$ contains the following information:
- x_{-1}^{GP} contains the displacement of the center of the cylindrical region with respect to the center of the Cartesian mesh in direction x. This center is located at:

$$
x_{c}=\frac{x_{n^{x}}^{\mathrm{GP}}+x_{0}^{\mathrm{GP}}}{2}
$$

where we have used $n^{x}=N_{3}^{\mathrm{GP}}$.

- x_{j-1}^{GP} and x_{j}^{GP} re the lower and upper x limits of mesh element $j\left(j=1, n^{x}\right)$.

The array $y_{j}^{\text {GP }}$ contains the following information:

- y_{-1}^{GP} contains the displacement of the center of the cylindrical region with respect to the center of the Cartesian mesh in direction y. This center is located at:

$$
y_{c}=\frac{y_{n^{y}}^{\mathrm{GP}}+y_{0}^{\mathrm{GP}}}{2}
$$

where we have used $n^{y}=N_{4}^{\mathrm{GP}}$.

- y_{j-1}^{GP} and y_{j}^{GP} are the lower and upper y limits of mesh element $j\left(j=1, n^{y}\right)$.

The array z_{j}^{GP} contains the following information:

- z_{-1}^{GP} contains the displacement of the center of the cylindrical region with respect to the center of the Cartesian mesh in direction z. This center is located at:

$$
z_{c}=\frac{z_{n^{z}}^{\mathrm{GP}}+z_{0}^{\mathrm{GP}}}{2}
$$

where we have used $n^{z}=N_{5}^{\mathrm{GP}}$.

- z_{j-1}^{GP} and z_{j}^{GP} are the lower and upper z limits of mesh element $j\left(j=1, n^{z}\right)$.

The array $r_{j}^{\text {GP }}$ contains the following information:

- $r_{-1}^{\mathrm{GP}}=r_{0}^{\mathrm{GP}}=0$.
- $r_{j-1}^{\mathrm{GP}} \leq r \leq r_{j}^{\mathrm{GP}}$ describes the position in r of mesh element j with $j=1, N_{2}^{\mathrm{GP}}$.

Finally the /NXTRecords/ directory also contains records associated with global identification of the surfaces and volumes as illustrated in Table 38.

Table 38: Global geometry records in /NXTRecords/

Name	Type	Condition	UnitsComment	
TrackingDnsA	$\mathrm{D}\left(\mathcal{S}_{20}^{t}\right)$			array D_{i} containing the spatial spacing for each track direction
TrackingDirc	$\mathrm{D}\left(N_{1}^{\mathrm{GG}}, \mathcal{S}_{20}^{t}\right)$			array $\alpha_{j, i}$ containing the director cosine for axis j for each track direction
TrackingOrig	$\mathrm{D}\left(N_{1}^{\mathrm{GG}}, N_{p}, \mathcal{S}_{20}^{t}\right)$			array $L_{k, j, i}$ containing the origin in space $(k=$ $\left.1, N_{1}^{\mathrm{GG}}\right)$ and the direction of the normal plan for each plane j and track direction i
TrackingWgtD	$\mathrm{D}\left(\mathcal{S}_{20}^{t}\right)$			array W_{i} containing the integration weight for each track direction
VTNormalize ${ }_{\sqcup}$	$\mathrm{D}\left(N_{22}^{\mathrm{GG}}\right)$			array R_{i} containing the ratio of the analytical and numerical volume for each region
VTNormalizeD	$\mathrm{D}\left(N_{22}^{\mathrm{GG}}, \mathcal{S}_{20}^{t}\right)$	$\mathcal{S}_{8}^{t}=-1$		array R_{i} containing the ratio of the analytical and numerical volume for region i for each track direction
KEYMRG பபபபபப	$\mathrm{I}\left(-N_{23}^{\mathrm{GG}}, N_{22}^{\mathrm{GG}}\right)$			array MRG_{i} containing the global merging index
MATALB பபபபபப $^{\text {b }}$	$\mathrm{I}\left(-N_{23}^{\mathrm{GG}}, N_{22}^{\mathrm{GG}}\right)$			array containing the albedo number associated with each surface and the physical mixture number associated with each region
HOMMATALB $_{\text {பபப }}$	$\mathrm{I}\left(-N_{23}^{\mathrm{GG}}, N_{22}^{\mathrm{GG}}\right)$			array containing the albedo number associated with each surface and the virtual mixture number associated with each region
SAreaRvolume	$\mathrm{D}\left(-N_{23}^{\mathrm{GG}}, N_{22}^{\mathrm{GG}}\right)$			array containing the area (S_{α} in cm for 2-D and cm^{2} for 3-D problems) and volumes ($V_{i} \mathrm{~cm}^{2}$ for 2-D and cm^{3} for 3-D problems) of each external surface and region in the geometry

4.5 The mccgt dependent records on a /tracking/ directory

When the MCCGT: module is used (CDOOR $={ }^{\prime}$ MCCG' $)$, an additional state vector named MCCG-STATE is set in EXCELT: data structure. The components \mathcal{M}_{i}^{t} of MCCG-STATE are:

- $\mathcal{M}_{1}^{t}:(\mathrm{LCACT})$ The polar quadrature type used with the method of characteristics

$$
\mathcal{M}_{1}^{t}= \begin{cases}0 & \text { Gauss-Legendre } \\ 1 & \text { CACTUS type } 1 \\ 2 & \text { CACTUS type } 2 \\ 3 & \text { McDaniel } \\ 4 & \text { McDaniel with } P_{1} \text { constraint } \\ 5 & \text { Gauss optimized. }\end{cases}
$$

- $\mathcal{M}_{2}^{t}:(\mathrm{NMU})$ The order of the polar quadrature.
- $\mathcal{M}_{3}^{t}:($ KRYL $)$ GMRES acceleration switch:

$$
\mathcal{M}_{3}^{t}=\left\{\begin{aligned}
0 & \text { free inner iterations } \\
\geq 1 & \text { GMRES }\left(\mathcal{M}_{3}^{t}\right) \text { acceleration of inner iterations } \\
\leq 1 & \text { Bi-CGSTAB acceleration of inner iterations }
\end{aligned}\right.
$$

- \mathcal{M}_{4}^{t} : (IDIFC) Type of solution operator:
$\mathcal{M}_{4}^{t}= \begin{cases}0 & \text { transport flux solution selected } \\ 1 & \text { CDD diffusion flux solution selected (no inner iterations are performed } \\ & \text { in this case, only an ACA resolution is performed) }\end{cases}$
- \mathcal{M}_{5}^{t} : (NMAX) The maximum number of elements in a single track.
- $\mathcal{M}_{6}^{t}:($ LMCU $)$ The dimension of the connection matrix MCU.
- $\mathcal{M}_{7}^{t}:$ (IACC) ACA preconditioning switch:

$$
\mathcal{M}_{7}^{t}=\left\{\begin{aligned}
0 & \text { no ACA preconditioning } \\
\geq 1 & \text { ACA preconditioning of inner/multigroup iterations }
\end{aligned}\right.
$$

If the number of inner iterations is set to $1, \mathrm{ACA}$ is used as a rebalancing technique for multigroup iterations and \mathcal{M}_{7}^{t} is the maximum number of iterations allowed to solve the ACA system.

- $\mathcal{M}_{8}^{t}:($ ISCR $)$ SCR preconditioning switch:

$$
\mathcal{M}_{8}^{t}=\left\{\begin{aligned}
0 & \text { no SCR preconditioning } \\
\geq 1 & \text { SCR preconditioning of inner/multigroup iterations }
\end{aligned}\right.
$$

If the number of inner iterations is set to $1, \mathrm{SCR}$ is used as a rebalancing technique for multigroup iterations and \mathcal{M}_{8}^{t} is the maximum number of iterations allowed to solve the SCR system.

- $\mathcal{M}_{9}^{t}:($ LPS $)$ The dimension of the surface-to-region collision probabilities array if SCR is used.
- $\mathcal{M}_{10}^{t}:$ (ILU) The type of preconditioning for the resolution with BICGSTAB of the ACA corrective system if ACA is used:

$$
\mathcal{M}_{10}^{t}=\left\{\begin{aligned}
0 & \text { no preconditioning } \\
1 & \text { diagonal preconditioning } \\
\geq 2 & \text { ILU0 preconditioning }
\end{aligned}\right.
$$

- $\mathcal{M}_{11}^{t}:($ ILEXA $)$ Flag to force the usage of exact exponentials for preconditioner calculation:

$$
\mathcal{M}_{11}^{t}= \begin{cases}0 & \text { not forced } \\ 1 & \text { forced }\end{cases}
$$

- $\mathcal{M}_{12}^{t}:$ (ILEXF) Flag to force the usage of exact exponentials for flux calculation:

$$
\mathcal{M}_{12}^{t}= \begin{cases}0 & \text { not forced } \\ 1 & \text { forced }\end{cases}
$$

- \mathcal{M}_{13}^{t} : (MAXI) Maximum number of inner iterations.
- \mathcal{M}_{14}^{t} : (LTMT) Flag for the usage of a tracking merging technique while building the ACA matrices in order to obtain a two-step ACA acceleration:

$$
\mathcal{M}_{14}^{t}= \begin{cases}0 & \text { no tracking merging } \\ 1 & \text { tracking merging }\end{cases}
$$

- $\mathcal{M}_{15}^{t}:($ STIS $)$ Flag for the flux integration strategy by the characteristics method:

$$
\mathcal{M}_{15}^{t}=\left\{\begin{aligned}
0 & \text { direct approach with asymptotical treatment } \\
1 & \text { "Source term isolation" approach: optimized strategy with asymptotical treatment } \\
-1 & \text { "MOCC/MCI"-like approach: optimized strategy without asymptotical treatment }
\end{aligned}\right.
$$

- $\mathcal{M}_{16}^{t}:($ NPJJM $)$ Effective number of angular mode-to-mode self-collision probabilities to be calculated per group and region if $\mathcal{M}_{15}^{t}=1$ e.g.

anisotropy	2 D	3 D
P_{0}	1	1
P_{1}	4	7
P_{2}	13	27
P_{3}	31	76

- $\mathcal{M}_{17}^{t}:($ LMCU0) Effective number of non-diagonal elements to store for the ILU0 decomposition for ACA preconditioning.
- $\mathcal{M}_{18}^{t}:($ IFORW) Flag to set the solution type for the ACA and characteristics system:

$$
\mathcal{M}_{18}^{t}= \begin{cases}0 & \text { direct solution } \\ 1 & \text { adjoint solution }\end{cases}
$$

- $\mathcal{M}_{19}^{t}:($ NFUNL $)$ Number of spherical harmonics components used to expand the flux and the sources.
- $\mathcal{M}_{20}^{t}:($ NLIN $)$ Number of polynomial components used to expand the flux and the sources in space.

The following records will also be present on the main level of a /tracking/ directory.

Table 39: The MCCGT: records in /tracking/

Name	Type	Condition	UnitsComment
MCCG-STATE Uu	I(40)		Vector describing the various parameters associated with this data structure \mathcal{M}_{i}^{t}, as defined in Section 4.5.
REAL-PARAMu	R(4)		Real parameters \mathcal{R}_{i} for the MCCG tracking.
XMU\$MCCGபபபナ	$\mathrm{R}\left(\mathcal{M}_{2}^{t}\right)$		Inverse of the polar quadrature sines.
ZMU\$MCCG	$\mathrm{R}\left(\mathcal{M}_{2}^{t}\right)$		Cosines of the polar quadrature set.
WZMU\$MCCGUபบ	$\mathrm{R}\left(\mathcal{M}_{2}^{t}\right)$		Weights of the polar quadrature set.
PI\$MCCG	$\mathrm{I}\left(N_{\text {dim }}\right)$	$\mathcal{S}_{15}^{t}>0$	Permutation array for ACA according to $i_{\text {old }}=$ $\Pi\left(i_{\text {new }}\right)$. The dimension of this array is
			$N_{\mathrm{dim}}= \begin{cases}\mathcal{S}_{1}^{t}+\mathcal{S}_{5}^{t} & \text { if } \mathcal{S}_{9}^{t}=0 ; \\ \mathcal{S}_{1}^{t} & \text { if } \mathcal{S}_{9}^{t}=1\end{cases}$
INVPI\$MCCG பu	$\mathrm{I}\left(\mathcal{S}_{1}^{t}+\mathcal{S}_{5}^{t}\right)$	$\mathcal{S}_{15}^{t}>0$	Inverse permutation array for $\mathrm{ACA} i_{\text {new }}=\Pi\left(i_{\text {old }}\right)$
NZON\$MCCG	$\mathrm{I}\left(\mathcal{S}_{1}^{t}+\mathcal{S}_{5}^{t}\right)$		Index-number of the mixture type assigned to each volume and the albedo number assigned to each surface.
NZONA\$MCCG $\cup \cup$	$\mathrm{I}\left(\mathcal{S}_{1}^{t}+\mathcal{S}_{5}^{t}\right)$	$\mathcal{S}_{15}^{t}>0$	Index-number of the mixture type assigned to each volume and the albedo number assigned to each surface (-7 for void boundary conditions).
V\$MCCG	$\mathrm{R}\left(\mathcal{S}_{1}^{t}+\mathcal{S}_{5}^{t}\right)$		Volumes and numerical surfaces.
VA\$MCCG	$\mathrm{R}\left(\mathcal{S}_{1}^{t}+\mathcal{S}_{5}^{t}\right)$	$\mathcal{S}_{15}^{t}>0$	Renumbered Volumes and numerical surfaces.
KM\$MCCG	$\mathrm{I}\left(N_{\text {dim }}\right)$	$\mathcal{M}_{7}^{t}>0$	Connection matrix for ACA.
IM\$MCCG	$\mathrm{I}\left(N_{\text {dim }}+1\right)$	$\mathcal{M}_{7}^{t}>0$	Connection matrix for ACA.
MCU\$MCCG	$\mathrm{I}\left(\mathcal{M}_{6}^{t}\right)$	$\mathcal{M}_{7}^{t}>0$	Connection matrix for ACA.
JU\$MCCG	$\mathrm{I}\left(N_{\text {dim }}\right)$	$\left\{\begin{array}{l} \mathcal{S}_{15}^{t}>0 \\ \mathcal{M}_{3}^{t} \geq 2 \end{array}\right.$	Used for ILU0 decomposition in the preconditioning of ACA system.
IS\$MCCG பuபபu	$\mathrm{I}\left(\mathcal{S}_{5}^{t}\right)$	$\mathcal{M}_{1}^{t}>0$	Connection matrix for surface-to-volume probability in SCR.
JS\$MCCG	$\mathrm{I}\left(\mathcal{M}_{7}^{t}\right)$	$\mathcal{M}_{1}^{t}>0$	Connection matrix for surface-to-volume probability in SCR.
ISGNR\$MCCG பบ $^{\text {I }}$	$\mathrm{I}\left(8\left(\mathcal{S}_{6}^{t}\right)^{2}\right)$		Signs for spherical harmonics on the 8 octant angular modes.
KEYCUR\$MCCG ${ }_{\text {U }}$	$\mathrm{I}\left(\mathcal{S}_{5}^{t}\right)$	$\mathcal{S}_{9}^{t}=1$	Index for outgoing currents at the domain boundaries.
KEYFLX\$MCCG ${ }_{\text {U }}$	$\mathrm{I}\left(\mathcal{S}_{1}^{t}, \mathcal{F}\right)$		Index for flux moments. The second dimension of this array is
			$\mathcal{F}= \begin{cases}\mathcal{S}_{6}^{t} & \text { if } \mathcal{S}_{19}^{t}=1 ; \\ \mathcal{S}_{6}^{t} \times\left(\mathcal{S}_{6}^{t}+1\right) / 2 & \text { if } \mathcal{S}_{19}^{t}=2 \\ \left(\mathcal{S}_{6}^{t}\right)^{2} & \text { if } \mathcal{S}_{19}^{t}=3\end{cases}$
KEYANI\$MCCG ${ }_{\sqcup}$	$\mathrm{I}\left(\left(\mathcal{S}_{6}^{t}\right)^{2}\right)$	$\mathcal{S}_{9}^{t}=1$	Index for currents.

The MCCGT: records in /tracking/ continued from last page

Name	Type	Condition	UnitsComment
PJJIND\$MCCG ${ }_{\sqcup}$	$\mathrm{I}\left(2 \mathcal{M}_{16}^{t}\right)$	$\mathcal{M}_{15}^{t}=1$	Index of modes connection for non vanishing angular mode-to-mode self-collision probabilities
IMO\$MCCG பபபப $^{\text {I }}$	$\mathrm{I}\left(N_{\text {dim }}+1\right)$	$\left\{\begin{array}{l} \mathcal{M}_{7}^{t}>0 \\ \mathcal{M}_{3}^{t}=3 \end{array}\right.$	Connection matrix for non-diagonal elements of ILU0-ACA.
MCU0\$MCCG ${ }_{\text {பபப }}$	$\mathrm{I}\left(\mathcal{M}_{17}^{t}\right)$	$\left\{\begin{array}{l} \mathcal{M}_{7}^{t}>0 \\ \mathcal{M}_{3}^{t}=3 \end{array}\right.$	Connection matrix for non-diagonal elements of ILU0-ACA.

with the real parameter \mathcal{R}_{i}, representing:

- \mathcal{R}_{1}^{t} : Convergence criterion on inner iterations.
- \mathcal{R}_{2}^{t} : Step characteristics selection criterion:

$$
\mathcal{R}_{2}^{t}=\left\{\begin{aligned}
0.0 & \text { step characteristics scheme } \\
>0.0 & \text { diamond differencing scheme }
\end{aligned}\right.
$$

- \mathcal{R}_{3}^{t} : Track spacing in cm for 3D prismatic tracking.
- \mathcal{R}_{4}^{t} : Tracking symmetry factor for maximum track length calculation during the calculation of a 3D prismatic tracking.

The following records will also be present in the /PROJECTION/ directory of a /tracking/ directory when a prismatic tracking is considered.

Table 40: The MCCGT : records in /PROJECTION/

Name	Type	Condition	UnitsComment	
ZCOORD பபபபபப	$\mathrm{R}\left(\mathcal{M}_{18}^{t}+1\right)$	$\mathcal{S}_{39}^{t}>0$	cm	The z-directed mesh position
IND2T3 பபபபபப	$\mathrm{I}\left(N_{\text {ind }}\right)$	$\mathcal{S}_{39}^{t}>0$		Volume and surfaces index for a 3D prismatic geometry. Its size is $N_{\text {ind }}=\left(N_{2 D}+1\right)\left(\mathcal{M}_{18}^{t}+2\right)$ where $N_{2 D}$ is the number of volumes and surfaces in the initial 2D tracking
VNORF பபபபபபப	$\mathrm{D}\left(N_{\text {nor }}\right)$	$\mathcal{S}_{39}^{t}>0$		Angular dependent normalization factors for a 3D prismatic extended tracking. Its size is $N_{n o r}=$ $2 \mathcal{S}_{1}^{t} \mathcal{M}_{2}^{t} N_{\text {angl }}$ where $N_{\text {angl }}$ is the number of tracking angles in the initial 2D tracking

4.6 The snt dependent records on a /tracking/ directory

When the SNT: operator is used (CDOOR='SN'), the following elements in the vector \mathcal{S}_{i}^{t} will also be defined.

- \mathcal{S}_{6}^{t} : (ITYPE) Type of SN geometry:

$$
\mathcal{S}_{6}^{t}= \begin{cases}2 & \text { Cartesian 1-D geometry } \\ 3 & \text { Tube 1-D geometry } \\ 4 & \text { Spherical 1-D geometry } \\ 5 & \text { Cartesian 2-D geometry } \\ 6 & \text { Tube 2-D geometry (R-Z geometry) } \\ 7 & \text { Cartesian 3-D geometry }\end{cases}
$$

- \mathcal{S}_{7}^{t} : (NSCT) Number of spherical harmonics components used to expand the flux and the sources.
- \mathcal{S}_{8}^{t} : (IELEM) Order of the spatial approximation:

$$
\mathcal{S}_{8}^{t}= \begin{cases}1 & \text { Classical diamond scheme } \\ 2 & \text { Parabolic diamond scheme } \\ 3 & \text { Cubic diamond scheme }\end{cases}
$$

- $\mathcal{S}_{9}^{t}:($ not used)
- \mathcal{S}_{10}^{t} : (not used)
- \mathcal{S}_{11}^{t} : (LL4) Number of mesh-centered flux components in one energy group. Generally equal to \mathcal{S}_{2}^{t} except in cases where surfacic fluxes are appended to the unknown vector. $\mathcal{S}_{11}^{t} \leq \mathcal{S}_{2}^{t}$.
- \mathcal{S}_{12}^{t} : (LX) Number of elements along the X axis.
- $\mathcal{S}_{13}^{t}:(\mathrm{LY})$ Number of elements along the Y axis.
- $\mathcal{S}_{14}^{t}:(\mathrm{LZ})$ Number of elements along the Z axis.
- $\mathcal{S}_{15}^{t}:(\mathrm{NLF})$ Order of the S_{N} approximation (even number ≥ 2).
- $\mathcal{S}_{16}^{t}:($ ISCAT $)$ Number of terms in the scattering sources:

$$
\mathcal{S}_{16}^{t}= \begin{cases}1 & \text { Isotropic scattering in the laboratory system } \\ 2 & \text { Linearly anisotropic scattering in the laboratory system } \\ \mathrm{n} & \text { order } n-1 \text { anisotropic scattering in the laboratory system }\end{cases}
$$

- $\mathcal{S}_{17}^{t}:($ IQUAD $)$ Type of angular quadrature:

$$
\mathcal{S}_{17}^{t}=\left\{\begin{aligned}
1 & \text { Level symmetric, Lathrop and Carlson type } \\
2 & \text { Level symmetric, optimized } \mu_{1} \text { values } \\
3 & \text { Level symmetric, compatible with code SNOW } \\
4 & \text { Legendre-Chebyshev quadrature } \\
5 & \text { symmetric Legendre-Chebyshev quadrature } \\
6 & \text { quadrupole range (QR) quadrature } \\
10 & \text { Gauss-Legendre and Gauss-Chebyshev product quadrature }
\end{aligned}\right.
$$

- $\mathcal{S}_{18}^{t}:$ (IFIX) Flag for negative flux fixup:

$$
\mathcal{S}_{18}^{t}=\left\{\begin{array}{cl}
0 & \text { Non enabled } \\
1 & \text { Enabled }
\end{array}\right.
$$

- $\mathcal{S}_{19}^{t}:($ IDSA $)$ Flag for synthetic diffusion acceleration:

$$
\mathcal{S}_{19}^{t}= \begin{cases}0 & \text { Non enabled } \\ 1 & \text { Enabled }\end{cases}
$$

- $\mathcal{S}_{20}^{t}:($ NSTART $)$ Type of acceleration for the scattering iterations:
$\mathcal{S}_{20}^{t}=\left\{\begin{aligned} 0 & \text { GMRES non enabled; use a one-parameter Livolant acceleration } \\ >0 & \text { Restarts the GMRES method every NSTART iterations }\end{aligned}\right.$
- $\mathcal{S}_{21}^{t}:($ NSDSA $)$ Number if inner flux iterations without DSA in 3-D cases if $\mathcal{S}_{8}^{t} \geq 2$.
- \mathcal{S}_{22}^{t} : (MAXI) Maximum number of inner iterations (resp. maximum number of GMRES(m) iterations if $\left.\mathcal{S}_{20}^{t}>0\right)$.
- $\mathcal{S}_{23}^{t}:($ ILIVOL $)$ Flag for enabling/disabling Livolant acceleration method.
$\mathcal{S}_{23}^{t}= \begin{cases}0 & \text { Non enabled } \\ 1 & \text { Enabled }\end{cases}$
- $\mathcal{S}_{24}^{t}:(i c l 1)$ number of free iterations in the Livolant method.
- \mathcal{S}_{25}^{t} : (icl2) number of accelerated iterations in the Livolant method.

The following records will also be present on the main level of a /tracking/ directory.
Table 41: The snt records in /tracking/

Name	Type	Condition	Units	Comment
NCODE	I (6)			Record containing the types of boundary conditions on each surface. $=0$ side not used; $=1$ VOID; $=2$ REFL; $=4$ TRAN. NOODE (5) and NOODE (6) are not used.
ZCODE $\$ பபபபபபப & $\mathrm{R}(6)$ & & 1 & Record containing the albedo value (real number) on each surface. ZOODE (5) and ZOODE (6) are not used. \hline DSAபபபபபபபபப & Dir & $\mathcal{S}_{19}^{t}=1$		Sub-directory containing the data related to the diffusion synthetic acceleration using BIVAC (2D) or TRIVAC (3D). The specification of this directory is given in Section 4.7 or in Section 4.8		
EPSI பபபபபபபப $^{\text {l }}$	$\mathrm{R}(1)$		1	Record containing the convergence criterion on inner iterations.

If $\mathcal{S}_{6}^{t}=2$ (Cartesian 1-D geometry), the following records will also be present on the main level of a /tracking/ directory.

Table 42: The snt records in /tracking/ (Cartesian 1-D geometry)

Name	Type	Condition	UnitsComment	
Uபபபபபபபபபபப	$\mathrm{R}\left(\mathcal{S}_{15}^{t}\right)$		1	Base points of the angular Gauss-Legendre quadrature.
W	$\mathrm{R}\left(\mathcal{S}_{15}^{t}\right)$		1	Weights of the angular Gauss-Legendre quadrature.
PL	$\mathrm{R}\left(\mathcal{S}_{16}^{t}, \mathcal{S}_{15}^{t}\right)$		1	Discrete values of the Legendre polynomials on the quadrature base points.

If $\mathcal{S}_{6}^{t}=3$ (Tube 1-D geometry), the following records will also be present on the main level of a /tracking/ directory. The number of discrete directions in two octants $N_{\text {angl }}$ and the number of spherical harmonics components of the flux N_{pn} are given in term of the S_{N} order $N=\mathcal{S}_{15}^{t}$ as

$$
\begin{gathered}
N_{\text {angl }}= \begin{cases}\frac{1}{2} N\left(1+\frac{N}{2}\right), & \text { if } \mathcal{S}_{17}^{t}<10 \\
\frac{1}{2} N^{2}, & \text { otherwise }\end{cases} \\
N_{\mathrm{pn}}=\frac{\mathcal{S}_{16}^{t}}{2}\left(1+\frac{\mathcal{S}_{16}^{t}}{2}\right)+\frac{1}{2}\left(1+\mathcal{S}_{16}^{t}\right)\left(\mathcal{S}_{16}^{t} \bmod 2\right)
\end{gathered}
$$

Table 43: The snt records in /tracking/ (tube 1-D geometry)

Name	Type	Condition	UnitsComment	
JOP பபபபபபபபப $^{\text {l }}$	$\mathrm{I}(N / 2)$			Number of base points in each ξ level.
Uபபபபபபபபபபப	$\mathrm{R}(N / 2)$		1	Base points (levels) of the angular quadrature in ξ (positive values).
UPQபபபபபபபபப	$\mathrm{R}\left(N_{\text {angl }}\right)$		1	Direction cosines of the angular two-octants spherical harmonics quadrature in μ.
WPQபபபபபபபபப	$\mathrm{R}\left(N_{\text {angl }}\right)$		1	Weights of the angular two-octants spherical harmonics quadrature.
ALPHA	$\mathrm{R}\left(N_{\text {angl }}\right)$		1	Angular redistribution parameters.
PLZ ¢பபபபபபபப $^{\text {a }}$	$\mathrm{R}\left(N_{\mathrm{pn}}, N / 2\right)$		1	Discrete values of the real spherical harmonics on the zero-weight base points.
PL	$\mathrm{R}\left(N_{\mathrm{pn}}, N_{\text {angl }}\right)$		1	Discrete values of the real spherical harmonics on the quadrature base points.
SURF பபபபபபபப $^{\text {der }}$	$\mathrm{R}\left(\mathcal{S}_{12}^{t}+1\right)$		1	Surfaces.

If $\mathcal{S}_{6}^{t}=4$ (Spherical 1-D geometry), the following records will also be present on the main level of a /tracking/ directory.

Table 44: The snt records in /tracking/ (spherical 1-D geometry)

Name	Type	Condition	UnitsComment	
Uபபபபபபபபபபப	$\mathrm{R}\left(\mathcal{S}_{15}^{t}\right)$		1	Base points of the angular Gauss-Legendre quadrature.
Wutuiubuiulu	$\mathrm{R}\left(\mathcal{S}_{15}^{t}\right)$		1	Weights of the angular Gauss-Legendre quadrature.
ALPHA	$\mathrm{R}\left(\mathcal{S}_{15}^{t}\right)$,	Angular redistribution parameters.
PLZ பபபபபபபபப $^{\text {a }}$	$\mathrm{R}\left(\mathcal{S}_{16}^{t}\right)$		1	Discrete values of the Legendre polynomials on the zero-weight base points at $\mu=-1$.
	$\mathrm{R}\left(\mathcal{S}_{16}^{t}, \mathcal{S}_{15}^{t}\right)$		1	Discrete values of the Legendre polynomials on the quadrature base points.
SURF	$\mathrm{R}\left(\mathcal{S}_{12}^{t}+1\right)$		1	Surfaces.
XxX பபபபபபபபப	$\mathrm{R}\left(\mathcal{S}_{12}^{t}+1\right)$		1	Mesh-edge radii.

If $\mathcal{S}_{6}^{t}=5$ (Cartesian 2-D geometry) or $\mathcal{S}_{6}^{t}=6$ (R-Z geometry), the following records will also be present on the main level of a /tracking/ directory. The number of discrete directions in four octants (including zero-weight points) $N_{\text {angl }}$ and the number of spherical harmonics components of the flux $N_{\text {pn }}$ are given in term of the S_{N} order $N=\mathcal{S}_{15}^{t}$ as

$$
\begin{aligned}
& N_{\text {angl }}=\frac{1}{2}(N+4) N \\
& N_{\mathrm{pn}}=\frac{\mathcal{S}_{16}^{t}}{2}\left(1+\mathcal{S}_{16}^{t}\right)
\end{aligned}
$$

Table 45: The snt records in /tracking/ (Cartesian 2-D and R-Z geometries)

Name	Type	Condition	UnitsComment	
DUபபபபபபபபபப	$\mathrm{R}\left(N_{\text {angl }}\right)$		1	Direction cosines of the angular four-octants spherical harmonics quadrature in μ.
DEபபபபபபபபபப	$\mathrm{R}\left(N_{\text {angl }}\right)$		1	Direction cosines of the angular four-octants spherical harmonics quadrature in η.
Wபபபபபபபபபபப	$\mathrm{R}\left(N_{\text {angl }}\right)$		1	Weights of the angular four-octants spherical harmonics quadrature.
MRM பபபபபபபபப	$\mathrm{I}\left(N_{\text {angl }}\right)$			Quadrature offsets.
MRMY	$\mathrm{I}\left(N_{\text {angl }}\right)$			Quadrature offsets.
DB Bபபபபபபபபப $^{\text {a }}$	$\mathrm{R}\left(\mathcal{S}_{12}^{t}, N_{\text {angl }}\right)$		1	Diamond-scheme parameter.
DA	$\mathrm{R}\left(\mathcal{S}_{12}^{t}, \mathcal{S}_{13}^{t}, N_{\text {angl }}\right)$		1	Diamond-scheme parameter.
DAL	$\mathrm{R}\left(\mathcal{S}_{12}^{t}, \mathcal{S}_{13}^{t}, N_{\text {angl }}\right)$	$\mathcal{S}_{6}^{t}=6$	1	Angular redistribution parameters.
PLபபபபபபபபபப	$\mathrm{R}\left(N_{\mathrm{pn}}, N_{\text {angl }}\right)$		1	Discrete values of the real spherical harmonics on the quadrature base points.

If $\mathcal{S}_{6}^{t}=7$ (Cartesian 3-D geometry), the following records will also be present on the main level of a /tracking/ directory. The number of discrete directions in height octants $N_{\text {angl }}$ and the number of spherical harmonics components of the flux $N_{\text {pn }}$ are given in term of the S_{N} order $N=\mathcal{S}_{15}^{t}$ as

$$
\begin{aligned}
& N_{\mathrm{angl}}=(N+2) N \\
& N_{\mathrm{pn}}=\left(1+\mathcal{S}_{16}^{t}\right)^{2}
\end{aligned}
$$

Table 46: The snt records in /tracking/ (Cartesian 3-D geometry)

Name	Type	Condition	UnitsComment	
DUபபபபபபபபபப	$\mathrm{R}\left(N_{\text {angl }}\right)$		1	Direction cosines of the angular height-octants spherical harmonics quadrature in μ.
DEபபபபபபபபபப	$\mathrm{R}\left(N_{\text {angl }}\right)$		1	Direction cosines of the angular height-octants spherical harmonics quadrature in η.
DZ பபபபபபபபபப	$\mathrm{R}\left(N_{\text {angl }}\right)$		1	Direction cosines of the angular height-octants spherical harmonics quadrature in ξ.
Wபபபபபபபபபபப	$\mathrm{R}\left(N_{\text {angl }}\right)$		1	Weights of the angular height-octants spherical harmonics quadrature.
MRMX ${ }_{\text {பபபபபபபபப }}$	$\mathrm{I}\left(N_{\text {angl }}\right)$			Quadrature offsets.
MRMY	$\mathrm{I}\left(N_{\text {angl }}\right)$			Quadrature offsets.
MRMZ பபபபபபபப $^{\text {a }}$	$\mathrm{I}\left(N_{\text {angl }}\right)$			Quadrature offsets.
DC $\mathrm{B}_{\text {பபபபபபபபபப }}$	$\mathrm{R}\left(\mathcal{S}_{12}^{t}, \mathcal{S}_{13}^{t}, N_{\text {angl }}\right)$		1	Diamond-scheme parameter.
DB Bபபபபபபபபப $^{\text {a }}$	$\mathrm{R}\left(\mathcal{S}_{12}^{t}, \mathcal{S}_{14}^{t}, N_{\text {angl }}\right)$		1	Diamond-scheme parameter.
DA பபபபபபபபபப $^{\text {a }}$	$\mathrm{R}\left(\mathcal{S}_{13}^{t}, \mathcal{S}_{14}^{t}, N_{\text {angl }}\right)$		1	Diamond-scheme parameter.
PL	$\mathrm{R}\left(N_{\mathrm{pn}}, N_{\text {angl }}\right)$		1	Discrete values of the real spherical harmonics on the quadrature base points.

4.7 The bivact dependent records on a /tracking/ directory

When the BIVACT: operator is used (CDOOR='BIVAC'), the following elements in the vector \mathcal{S}_{i}^{t} will also be defined.

- \mathcal{S}_{6}^{t} : (ITYPE) Type of BIVAC geometry:

$$
\mathcal{S}_{6}^{t}= \begin{cases}2 & \text { Cartesian 1-D geometry } \\ 3 & \text { Tube 1-D geometry } \\ 4 & \text { Spherical 1-D geometry } \\ 5 & \text { Cartesian 2-D geometry } \\ 6 & \text { Tube 2-D geometry } \\ 8 & \text { Hexagonal 2-D geometry }\end{cases}
$$

- $\mathcal{S}_{7}^{t}:($ IHEX $)$ Type of hexagonal symmetry if $\mathcal{S}_{6}^{t}=8$:

$$
\mathcal{S}_{7}^{t}= \begin{cases}0 & \text { non-hexagonal geometry } \\ 1 & \text { S30 } \\ 2 & \text { SA60 } \\ 3 & \text { SB60 } \\ 4 & \text { S90 } \\ 5 & \text { R120 } \\ 6 & \text { R180 } \\ 7 & \text { SA180 } \\ 8 & \text { SB180 } \\ 9 & \text { COMPLETE }\end{cases}
$$

- $\mathcal{S}_{8}^{t}:$ (IELEM) Type of finite elements:
$\mathcal{S}_{8}^{t}= \begin{cases}<0 & \text { Order }-\mathcal{S}_{8}^{t} \text { primal finite elements } \\ >0 & \text { Order } \mathcal{S}_{8}^{t} \text { dual finite elements. The Thomas-Raviart or Thomas-Raviart-Schneider } \\ & \begin{array}{l}\text { method is used except if } \mathcal{S}_{9}^{t}=4 \text { in which case a mesh-centered finite difference } \\ \\ \text { approximation is used }\end{array}\end{cases}$
- $\mathcal{S}_{9}^{t}:$ (ICOL) Type of quadrature used to integrate the mass matrix:

$$
\mathcal{S}_{9}^{t}= \begin{cases}1 & \text { Analytical integration } \\ 2 & \text { Gauss-Lobatto quadrature (finite difference/collocation method) } \\ 3 & \text { Gauss-Legendre quadrature (superconvergent approximation) } \\ 4 & \text { mesh-centered finite difference approximation in hexagonal geometry }\end{cases}
$$

- $\mathcal{S}_{10}^{t}:($ ISPLH $)$ Type of hexagonal mesh splitting:
$\mathcal{S}_{10}^{t}=\left\{\begin{array}{rl}1 & \text { No mesh splitting } \\ K & 6 \times(K-1) \times(K-1) \text { triangles per hexagon with finite-difference approximations } \\ & 3 \times K \times K \text { losanges per hexagon with Thomas-Raviart-Schneider approximation }\end{array}\right.$
- \mathcal{S}_{11}^{t} : (LL4) Order of the group-wise matrices. Generally equal to \mathcal{S}_{2}^{t} except in cases where averaged fluxes are appended to the unknown vector. $\mathcal{S}_{11}^{t} \leq \mathcal{S}_{2}^{t}$.
- \mathcal{S}_{12}^{t} : (LX) Number of elements along the X axis in Cartesian geometry or number of hexagons.
- \mathcal{S}_{13}^{t} : (LY) Number of elements along the Y axis.
- \mathcal{S}_{14}^{t} : (NLF) Number of components in the angular expansion of the flux. Must be a positive even number. Set to zero for diffusion theory. Set to 2 for P_{1} method.
- $\mathcal{S}_{15}^{t}:($ ISPN $)$ Type of transport approximation if NLF $\neq 0$:

$$
\mathcal{S}_{15}^{t}= \begin{cases}0 & \text { Complete } P_{n} \text { approximation of order NLF-1 } \\ 1 & \text { Simplified } P_{n} \text { approximation of order NLF-1 }\end{cases}
$$

- $\mathcal{S}_{16}^{t}:($ ISCAT $)$ Number of terms in the scattering sources if NLF $\neq 0$:

$$
\mathcal{S}_{16}^{t}= \begin{cases}1 & \text { Isotropic scattering in the laboratory system } \\ 2 & \text { Linearly anisotropic scattering in the laboratory system } \\ \mathrm{n} & \text { order } n-1 \text { anisotropic scattering in the laboratory system }\end{cases}
$$

A negative value of \mathcal{S}_{16}^{t} indicates that $1 / 3 D^{g}$ values are used as Σ_{1}^{g} cross sections.

- $\mathcal{S}_{17}^{t}:(\mathrm{NVD})$ Number of base points in the Gauss-Legendre quadrature used to integrate void boundary conditions if ICOL $=3$ and NLF $\neq 0$:

$$
\mathcal{S}_{17}^{t}= \begin{cases}0 & \text { Use a (NLF }+1) \text {-point quadrature consistent with } P_{\mathrm{NLF-1}} \text { theory } \\ 1 & \text { Use a NLF-point quadrature consistent with } S_{\text {NLF }} \text { theory } \\ 2 & \text { Use an analytical integration consistent with diffusion theory }\end{cases}
$$

The following records will also be present on the main level of a /tracking/ directory.

Table 47: The bivact records in /tracking/

Name	Type	Condition	Unit	sComment
NCODE பபபபபபப $^{\text {d }}$	I (6)			Record containing the types of boundary conditions on each surface. $=0$ side not used; $=1$ VOID; $=2$ REFL; $=4$ TRAN; $=5$ SYME; $=7$ ZERO. NOODE (5) and NOODE (6) are not used.
ZCODE $+\sqcup \sqcup \sqcup \sqcup ப ப ~$	R(6)		1	Record containing the albedo value (real number) on each surface. ZOODE (5) and ZOODE (6) are not used.
SIDEபபபபபபபப	$\mathrm{R}(1)$	$\mathcal{S}_{6}^{t}=8$	cm	Side of a hexagon.
XX பபபபபபபபபப $^{\text {I }}$	$\mathrm{R}\left(\mathcal{S}_{1}^{t}\right)$	$\mathcal{S}_{6}^{t} \neq 8$	cm	Element-ordered X-directed mesh spacings after mesh-splitting for type 2 and 5 geometries. Elementordered radius after mesh-splitting for type 3 and 6 geometries.
Y $\mathrm{Y}_{\text {பபபபபபபபபப }}$	$\mathrm{R}\left(\mathcal{S}_{1}^{t}\right)$	$\mathcal{S}_{6}^{t}=5$ or 6		Element-ordered Y-directed mesh spacings after mesh-splitting for type 5 and 6 geometries.
DDபபபபபபபபபப	$\mathrm{R}\left(\mathcal{S}_{1}^{t}\right)$	$\mathcal{S}_{6}^{t}=3$ or 6		Element-ordered position used with type 3 and 6 geometries.
KN $\mathrm{U}^{\text {Uபபபபபபபப }}$	$\mathrm{I}\left(\mathcal{S}_{1}^{t} \times N_{\mathrm{kn}}\right)$			Element-ordered unknown list. N_{kn} is the number of unknowns per element.
QFR $\mathrm{R}_{\text {பபபபபபபபப }}$	$\mathrm{R}\left(\mathcal{S}_{1}^{t} \times N_{\text {surf }}\right)$			Element-ordered boundary condition. $N_{\text {surf }}=4$ in Cartesian geometry and $=6$ in hexagonal geometry.

The bivact records in /tracking/
continued from last page

Name	Type	Condition	UnitsComment
$\mathrm{BFR}_{\text {பபபபபபபபப }}$	$\mathrm{R}\left(\mathcal{S}_{1}^{t} \times N_{\text {surf }}\right)$		Element-ordered boundary surface fractions.
MUபபபபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right)$		Indices used with compressed diagonal storage mode matrices.
ZGLOBபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{12}^{t} \times\left(\mathcal{S}_{10}^{t}\right)^{2}\right)$	*	Hexagon index assigned to each losange. This information is provided if and only if $\mathcal{S}_{6}^{t}=8, \mathcal{S}_{8}^{t}>$ 0 and $\mathcal{S}_{9}^{t} \leq 3$.
BIVCOL	Dir		Sub-directory containing the unit matrices (mass, stiffness, nodal coupling, etc.) for a finite element discretization.

The following records will be present on the /BIVCOL/ sub-directory:

Table 48: Description of the /BIVCOL/ sub-directory

Name	Type	Condition	UnitsComment
T	$\mathrm{R}(L)$		Cartesian linear product vector. $L=\left\|\mathcal{S}_{8}^{t}\right\|+1$
TS பபபபபபபபபப $^{\text {a }}$	$\mathrm{R}(L)$		Cylindrical linear product vector.
R	$\mathrm{R}(L \times L)$		Cartesian mass matrix.
$\mathrm{R}_{\text {பபபபபபபபபப }}$	$\mathrm{R}(L \times L)$		Cylindrical mass matrix.
Q	$\mathrm{R}(L \times L)$		Cartesian stiffness matrix.
Q $S_{\text {பபபபபபபபபப }}$	$\mathrm{R}(L \times L)$		Cylindrical stiffness matrix.
V	$\mathrm{R}(L \times(L-1))$		Nodal coupling matrix.
Hபபபபபபபபபபப	$\mathrm{R}(L \times(L-1))$		Piolat transform coupling matrix (used with Thomas-Raviart-Schneider method).
Eபபபபபபபபபபப	$\mathrm{R}(L \times L)$		Polynomial coefficients.
RHபபபபபபபபபப	$\mathrm{R}(6 \times 6)$		Hexagonal mass matrix.
QHபபபபபபபபபப	$\mathrm{R}(6 \times 6)$		Hexagonal stiffness matrix.
$R T_{\text {பபபபபபபபபப }}$	$\mathrm{R}(3 \times 3)$		Triangular mass matrix.
QTபபபபபபபபபப	$\mathrm{R}(3 \times 3)$		Triangular stiffness matrix.

4.8 The trivat dependent records on a /tracking/ directory

A TRIVAC-type tracking data structure is holding the information related to the ADI partitionning of the system matrices in $1 \mathrm{D}, 2 \mathrm{D}$ or 3 D . A one-speed discretizarion of the diffusion equation leads to a matrix system of the form

$$
\begin{equation*}
\mathbf{A} \overrightarrow{\boldsymbol{\Phi}}=\overrightarrow{\mathbf{S}} \tag{4.1}
\end{equation*}
$$

where Φ may contains different types of unknowns: flux values, current values, polynomial coefficients, etc.

The matrix A can be splitted in different ways. Many TRIVAC discretizations in Cartesian geometry are based on the following ADI splitting:

$$
\begin{equation*}
\mathbf{A}=\mathbf{U}+\mathbf{P}_{\mathbf{x}} \mathbf{X} \mathbf{P}_{\mathbf{x}}^{\top}+\mathbf{P}_{\mathbf{y}} \mathbf{Y} \mathbf{P}_{\mathbf{y}}^{\top}+\mathbf{P}_{\mathbf{z}} \mathbf{Z} \mathbf{P}_{\mathbf{z}}^{\top} \tag{4.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{U} & =\text { matrix containing the diagonal elements of } \mathbf{A} \\
\mathbf{X}, \mathbf{Y}, \mathbf{Z} & =\text { symetrical matrices containing the nondiagonal elements of } \mathbf{A} \\
\mathbf{P}_{\mathbf{x}}, \mathbf{P}_{\mathbf{y}}, \mathbf{P}_{\mathbf{z}} & =\text { permutation matrices that ensure a minimum bandwidth for matrices } \mathbf{X}, \mathbf{Y} \text { and } \mathbf{Z} .
\end{aligned}
$$

Similarly, many discretizations in hexagonal geometry are based on the following ADI splitting:

$$
\begin{equation*}
\mathbf{A}=\mathbf{U}+\mathbf{P}_{\mathbf{w}} \mathbf{W} \mathbf{P}_{\mathbf{w}}^{\top}+\mathbf{P}_{\mathbf{x}} \mathbf{X} \mathbf{P}_{\mathbf{x}}^{\top}+\mathbf{P}_{\mathbf{y}} \mathbf{Y} \mathbf{P}_{\mathbf{y}}^{\top}+\mathbf{P}_{\mathbf{z}} \mathbf{Z} \mathbf{P}_{\mathbf{z}}^{\top} \tag{4.3}
\end{equation*}
$$

The diffusion equation can also be solved using a Thomas-Raviart polynomial basis together with a mixte-dual variational formulation. In this case, the following splitting will be used in Cartesian geometry:

$$
\mathbf{A}=\left(\begin{array}{cccc}
\mathbf{A}_{\mathbf{x}} & 0 & 0 & -\mathbf{R}_{\mathbf{x}} \tag{4.4}\\
\mathbf{0} & \mathbf{A}_{\mathbf{y}} & \mathbf{0} & -\mathbf{R}_{\mathbf{y}} \\
\mathbf{0} & \mathbf{0} & \mathbf{A}_{\mathbf{z}} & -\mathbf{R}_{\mathbf{z}} \\
-\mathbf{R}_{\mathbf{x}}^{\top} & -\mathbf{R}_{\mathbf{y}}^{\top} & -\mathbf{R}_{\mathbf{z}}^{\top} & -\mathbf{T}
\end{array}\right)
$$

Similarly, we use the following ADI splitting in hexagonal geometry:

$$
\mathbf{A}=\left(\begin{array}{ccccc}
\mathbf{A}_{\mathbf{w}} & \mathbf{C}_{\mathrm{xw}}^{\top} & \mathbf{C}_{\mathbf{w y}} & 0 & -\mathbf{R}_{\mathrm{w}} \tag{4.5}\\
\mathbf{C}_{\mathrm{xw}} & \mathbf{A}_{\mathrm{x}} & \mathbf{C}_{\mathrm{yx}}^{\top} & 0 & -\mathbf{R}_{\mathrm{x}} \\
\mathbf{C}_{\mathrm{wy}}^{\top} & \mathbf{C}_{\mathbf{y x}} & \mathbf{A}_{\mathbf{y}} & 0 & -\mathbf{R}_{\mathrm{y}} \\
\mathbf{0} & \mathbf{0} & 0 & \mathbf{A}_{\mathbf{z}} & -\mathbf{R}_{\mathbf{z}} \\
-\mathbf{R}_{\mathrm{w}}^{\top} & -\mathbf{R}_{\mathrm{x}}^{\top} & -\mathbf{R}_{\mathrm{y}}^{\top} & -\mathbf{R}_{\mathrm{z}}^{\top} & -\mathbf{T}
\end{array}\right)
$$

When the TRIVAT: operator is used (CDOOR='TRIVAC'), the following elements in the vector \mathcal{S}_{i}^{t} will also be defined.

- \mathcal{S}_{6}^{t} : (ITYPE) Type of TRIVAC geometry:

$$
\mathcal{S}_{6}^{t}= \begin{cases}2 & \text { Cartesian 1-D geometry } \\ 3 & \text { Tube 1-D geometry } \\ 5 & \text { Cartesian 2-D geometry } \\ 6 & \text { Tube 2-D geometry } \\ 7 & \text { Cartesian 3-D geometry } \\ 8 & \text { Hexagonal 2-D geometry } \\ 9 & \text { Hexagonal 3-D geometry }\end{cases}
$$

- $\mathcal{S}_{7}^{t}:($ IHEX $)$ Type of hexagonal symmetry if $\mathcal{S}_{6}^{t} \geq 8$:

$$
\mathcal{S}_{7}^{t}= \begin{cases}0 & \text { non-hexagonal geometry } \\ 1 & \text { S30 } \\ 2 & \text { SA60 } \\ 3 & \text { SB60 } \\ 4 & \text { S90 } \\ 5 & \text { R120 } \\ 6 & \text { R180 } \\ 7 & \text { SA180 } \\ 8 & \text { SB180 } \\ 9 & \text { COMPLETE }\end{cases}
$$

- $\mathcal{S}_{8}^{t}:($ IDIAG $)$ Diagonal symmetry flag if $\mathcal{S}_{6}^{t}=5$ or $=7 . \mathcal{S}_{8}^{t}=1$ if diagonal symmetry is present.
- $\mathcal{S}_{9}^{t}:$ (IELEM) Type of finite elements:

$$
\mathcal{S}_{9}^{t}= \begin{cases}<0 & \text { Order }-\mathcal{S}_{9}^{t} \text { primal finite elements } \\ >0 & \text { Order } \mathcal{S}_{9}^{t} \text { dual finite elements }\end{cases}
$$

- $\mathcal{S}_{10}^{t}:($ ICOL $)$ Type of quadrature used to integrate the mass matrix:

$$
\mathcal{S}_{10}^{t}= \begin{cases}1 & \text { Analytical integration } \\ 2 & \text { Gauss-Lobatto quadrature (finite difference/collocation method) } \\ 3 & \text { Gauss-Legendre quadrature (superconvergent approximation) }\end{cases}
$$

- \mathcal{S}_{11}^{t} : (LL4) Order of the group-wise matrices. Generally equal to \mathcal{S}_{2}^{t} except in cases where averaged fluxes are appended to the unknown vector. $\mathcal{S}_{11}^{t} \leq \mathcal{S}_{2}^{t}$.
- \mathcal{S}_{12}^{t} : (ICHX) Type of discretization algorithm:

$$
\mathcal{S}_{12}^{t}= \begin{cases}1 & \begin{array}{l}
\text { Variational collocation method (mesh-corner finite differences or primal finite } \\
\text { elements with Gauss-Lobatto quadrature). Eq. (4.2) or Eq. (4.3) is used. }
\end{array} \\
2 & \begin{array}{l}
\text { Dual finite element approximation (Thomas-Raviart or Thomas-Raviart-Schneider } \\
\text { polynomial basis). Eq. (4.4) or Eq. (4.5) is used. }
\end{array} \\
3 & \begin{array}{l}
\text { Nodal collocation method with full tensorial products (mesh-centered finite } \\
\text { differences or dual finite elements with Gauss-Lobatto quadrature). Eq. (4.2) or } \\
\\
\\
\text { Eq. (4.3) is used. }
\end{array}\end{cases}
$$

- $\mathcal{S}_{13}^{t}:($ ISPLH $)$ Type of hexagonal mesh splitting if $\mathcal{S}_{6}^{t} \geq 8$:

$$
\mathcal{S}_{13}^{t}=\left\{\begin{array}{rl}
1 & \text { No mesh splitting (full hexagons) } \\
K & 6 \times(K-1) \times(K-1) \text { triangles per hexagon with finite-difference approximations } \\
& 3 \times K \times K \text { losanges per hexagon with Thomas-Raviart-Schneider approximation }
\end{array}\right.
$$

- \mathcal{S}_{14}^{t} : (LX) Number of elements along the X axis in Cartesian geometry or number of hexagons in one axial plane.
- \mathcal{S}_{15}^{t} : (LY) Number of elements along the Y axis.
- \mathcal{S}_{16}^{t} : (LZ) Number of elements along the Z axis.
- \mathcal{S}_{17}^{t} : (ISEG) Number of components in a vector register (used for supervectorial operations). Equal to zero for operations in scalar mode.
- $\mathcal{S}_{18}^{t}:$ (IMPV) Print parameter for supervectorial operations.
- $\mathcal{S}_{19}^{t}:($ LTSW) Maximum bandwidth for supervectorial operations ($=2$ for tridiagonal matrices).
- \mathcal{S}_{20}^{t} : (LONW) number of groups of linear systems for matrices $\mathbf{W}+\mathbf{P}_{\mathbf{w}}^{\top} \mathbf{U} \mathbf{P}_{\mathbf{w}}$ or $\mathbf{A}_{\mathbf{w}}+\mathbf{R}_{\mathbf{w}} \mathbf{T}^{-\mathbf{1}} \mathbf{R}_{\mathbf{w}}^{\top}$ (used for supervectorial operations)
- \mathcal{S}_{21}^{t} : (LONX) number of groups of linear systems for matrices $\mathbf{X}+\mathbf{P}_{\mathbf{x}}^{\top} \mathbf{U} \mathbf{P}_{\mathbf{x}}$ or $\mathbf{A}_{\mathbf{x}}+\mathbf{R}_{\mathbf{x}} \mathbf{T}^{-\mathbf{1}} \mathbf{R}_{\mathbf{x}}^{\top}$ (used for supervectorial operations)
- \mathcal{S}_{22}^{t} : (LONY) number of groups of linear systems for matrices $\mathbf{Y}+\mathbf{P}_{\mathbf{y}}^{\top} \mathbf{U} \mathbf{P}_{\mathbf{y}}$ or $\mathbf{A}_{\mathbf{y}}+\mathbf{R}_{\mathbf{y}} \mathbf{T}^{-\mathbf{1}} \mathbf{R}_{\mathbf{y}}^{\top}$ (used for supervectorial operations)
- \mathcal{S}_{23}^{t} : (LONZ) number of groups of linear systems for matrices $\mathbf{Z}+\mathbf{P}_{\mathbf{z}}^{\top} \mathbf{U} \mathbf{P}_{\mathbf{z}}$ or $\mathbf{A}_{\mathbf{z}}+\mathbf{R}_{\mathbf{z}} \mathbf{T}^{-\mathbf{1}} \mathbf{R}_{\mathbf{z}}^{\top}$ (used for supervectorial operations)
- \mathcal{S}_{24}^{t} : (NRO) Number of radii used with the cylindrical correction algorithm for the albedos. Equal to zero if no cylindrical correction is applied.
- $\mathcal{S}_{25}^{t}:($ LL4F $)$ Order of matrices \mathbf{T} if $\mathcal{S}_{12}^{t}=2$
- $\mathcal{S}_{26}^{t}:($ LL4W $)$ Order of matrices $\mathbf{A}_{\mathbf{w}}$ if $\mathcal{S}_{12}^{t}=2$
- $\mathcal{S}_{27}^{t}:($ LL4X $)$ Order of matrices $\mathbf{A}_{\mathbf{x}}$ if $\mathcal{S}_{12}^{t}=2$
- $\mathcal{S}_{28}^{t}:$ (LL4Y) Order of matrices $\mathbf{A}_{\mathbf{y}}$ if $\mathcal{S}_{12}^{t}=2$
- $\mathcal{S}_{29}^{t}:($ LL4Z $)$ Order of matrices $\mathbf{A}_{\mathbf{z}}$ if $\mathcal{S}_{12}^{t}=2$
- \mathcal{S}_{30}^{t} : (NLF) Number of components in the angular expansion of the flux. Must be a positive even number. Set to zero for diffusion theory. Set to 2 for P_{1} method.
- $\mathcal{S}_{31}^{t}:($ ISPN $)$ Type of transport approximation if NLF $\neq 0$:

$$
\mathcal{S}_{31}^{t}= \begin{cases}0 & \text { Complete } P_{n} \text { approximation of order NLF-1 (currently not available) } \\ 1 & \text { Simplified } P_{n} \text { approximation of order NLF-1 }\end{cases}
$$

- $\mathcal{S}_{32}^{t}:($ ISCAT $)$ Number of terms in the scattering sources if NLF $\neq 0$:

$$
\mathcal{S}_{32}^{t}= \begin{cases}1 & \text { Isotropic scattering in the laboratory system } \\ 2 & \text { Linearly anisotropic scattering in the laboratory system } \\ \mathrm{n} & \text { order } n-1 \text { anisotropic scattering in the laboratory system }\end{cases}
$$

A negative value of \mathcal{S}_{32}^{t} indicates that $1 / 3 D^{g}$ values are used as Σ_{1}^{g} cross sections.

- $\mathcal{S}_{33}^{t}:($ NADI) Number of ADI iterations at the inner iterative level.
- $\mathcal{S}_{34}^{t}:(\mathrm{NVD})$ Number of base points in the Gauss-Legendre quadrature used to integrate void boundary conditions if ICOL $=3$ and NLF $\neq 0$:

$$
\mathcal{S}_{34}^{t}= \begin{cases}0 & \text { Use a (NLF }+1) \text {-point quadrature consistent with } P_{\mathrm{NLF}-1} \text { theory } \\ 1 & \text { Use a NLF-point quadrature consistent with } S_{\mathrm{NLF}} \text { theory } \\ 2 & \text { Use an analytical integration consistent with diffusion theory }\end{cases}
$$

The following records will also be present on the main level of a /tracking/ directory.

Table 49: The trivat records in /tracking/

Name	Type	Condition	Unit	sComment
NCODEபபபபபபப	I (6)			Record containing the types of boundary conditions on each surface. $=0$ side not used; $=1$ VOID; $=2$ REFL; $=4 \mathrm{TRAN} ;=5 \mathrm{SYME} ;=7 \mathrm{ZERO} ;=8 \mathrm{CYLI}$.
ZCODE	R(6)			Record containing the albedo value (real number) on each surface.
SIDE பபபபபபபப $^{\text {b }}$	$\mathrm{R}(1)$	$\mathcal{S}_{6}^{t} \geq 8$		Side of a hexagon.
X $\mathrm{X}_{\text {பபபபபபபபபப }}$	$\mathrm{R}\left(\mathcal{S}_{1}^{t}\right)$	$\mathcal{S}_{6}^{t}<8$		Element-ordered X-directed mesh spacings after mesh-splitting for type 2,5 or 7 geometries. Element-ordered radius after mesh-splitting for type 3 or 6 geometries.
Y $\mathrm{Y}_{\text {பபபபபபபபபப }}$	$\mathrm{R}\left(\mathcal{S}_{1}^{t}\right)$	$\mathcal{S}_{6}^{t}=5,6$ or 7		Element-ordered Y-directed mesh spacings after mesh-splitting for type 5,6 or 7 geometries.
Z $Z_{\text {பபபபபபபபபப }}$	$\mathrm{R}\left(\mathcal{S}_{1}^{t}\right)$	$\mathcal{S}_{6}^{t}=7$ or 9		Element-ordered Y-directed mesh spacings after mesh-splitting for type 7 or 9 geometries.
DD பபபபபபபபபப	$\mathrm{R}\left(\mathcal{S}_{1}^{t}\right)$	$\mathcal{S}_{6}^{t}=3$ or 6		Element-ordered position used with type 3 and 6 cylindrical geometries.
KN $\mathrm{L}_{\text {Uபபபபபபபபப }}$	$\mathrm{I}\left(\mathcal{S}_{1}^{t} \times N_{\text {kn }}\right)$			Element-ordered unknown list. N_{kn} is the number of unknowns per element.
QFR ¢பபபபபபபபப	$\mathrm{R}\left(\mathcal{S}_{1}^{t} \times N_{\text {surf }}\right)$			Element-ordered boundary condition. $N_{\text {surf }}=6$ in Cartesian geometry and $=8$ in hexagonal geometry.
MUW	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right.$ or $\left.\mathcal{S}_{26}^{t}\right)$	$\mathcal{S}_{6}^{t} \geq 8$		Indices used with compressed diagonal storage mode matrices $\mathbf{W}+\mathbf{P}_{\mathbf{w}}^{\top} \mathbf{U P} \mathbf{P}_{\mathbf{w}}$ or $\mathbf{A}_{\mathbf{w}}+\mathbf{R}_{\mathbf{w}} \mathbf{T}^{-\mathbf{1}} \mathbf{R}_{\mathbf{w}}^{\top}$.
IPWபபபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right)$	$\mathcal{S}_{6}^{t} \geq 8$		Permutation vector ensuring minimum bandwidth for matrices $\mathbf{W}+\mathbf{P}_{\mathbf{w}}^{\top} \mathbf{U} \mathbf{P}_{\mathbf{w}}$ or $\mathbf{A}_{\mathbf{w}}+\mathbf{R}_{\mathbf{w}} \mathbf{T}^{\mathbf{1}} \mathbf{R}_{\mathbf{w}}^{\top}$.
MUX பபபபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right.$ or $\left.\mathcal{S}_{27}^{t}\right)$	$\mathcal{S}_{8}^{t}=0$		Indices used with compressed diagonal storage mode matrices $\mathbf{X}+\mathbf{P}_{\mathbf{x}}^{\top} \mathbf{U} \mathbf{P}_{\mathbf{x}}$ or $\mathbf{A}_{\mathbf{x}}+\mathbf{R}_{\mathbf{x}} \mathbf{T}^{-\mathbf{1}} \mathbf{R}_{\mathbf{x}}^{\top}$.
IPX பபபபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right)$			Permutation vector ensuring minimum bandwidth for matrices $\mathbf{X}+\mathbf{P}_{\mathbf{x}}^{\top} \mathbf{U} \mathbf{P}_{\mathbf{x}}$ or $\mathbf{A}_{\mathbf{x}}+\mathbf{R}_{\mathbf{x}} \mathbf{T}^{-1} \mathbf{R}_{\mathbf{x}}^{\top}$.
MUY பபபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right.$ or $\left.\mathcal{S}_{28}^{t}\right)$	$\mathcal{S}_{6}^{t} \geq 5$		Indices used with compressed diagonal storage mode matrices $\mathbf{Y}+\mathbf{P}_{\mathbf{y}}^{\top} \mathbf{U} \mathbf{P}_{\mathbf{y}}$ or $\mathbf{A}_{\mathbf{y}}+\mathbf{R}_{\mathbf{y}} \mathbf{T}^{\mathbf{- 1}} \mathbf{R}_{\mathbf{y}}^{\top}$.
IPY பபபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right)$	$\mathcal{S}_{6}^{t} \geq 5$		Permutation vector ensuring minimum bandwidth for matrices $\mathbf{Y}+\mathbf{P}_{\mathbf{y}}^{\top} \mathbf{U} \mathbf{P}_{\mathbf{y}}$ or $\mathbf{A}_{\mathbf{y}}+\mathbf{R}_{\mathbf{y}} \mathbf{T}^{-\mathbf{1}} \mathbf{R}_{\mathbf{y}}^{\top}$.
MUZ பபபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right.$ or $\left.\mathcal{S}_{29}^{t}\right)$	$\mathcal{S}_{6}^{t}=7$ or 9		Indices used with compressed diagonal storage mode matrices $\mathbf{Z}+\mathbf{P}_{\mathbf{z}}^{\top} \mathbf{U} \mathbf{P}_{\mathbf{z}}$ or $\mathbf{A}_{\mathbf{z}}+\mathbf{R}_{\mathbf{z}} \mathbf{T}^{\mathbf{- 1}} \mathbf{R}_{\mathbf{z}}^{\top}$.
IPZ பபபபபபபபபப $^{\text {l }}$	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right)$	$\mathcal{S}_{6}^{t}=7$ or 9		Permutation vector ensuring minimum bandwidth for matrices $\mathbf{Z}+\mathbf{P}_{\mathbf{z}}^{\top} \mathbf{U} \mathbf{P}_{\mathbf{z}}$ or $\mathbf{A}_{\mathbf{z}}+\mathbf{R}_{\mathbf{z}} \mathbf{T}^{-\mathbf{1}} \mathbf{R}_{\mathbf{z}}^{\top}$.
BIVCOL	Dir			Sub-directory containing the unit matrices (mass, stiffness, nodal coupling, etc.) for a finite element discretization. The specification of this directory is given in Section 4.7

The following records will also be present on the main level of a /tracking/ directory in cases where a Thomas-Raviart or Thomas-Raviart-Schneider polynomial basis is used $\left(\mathcal{S}_{12}^{t}=2\right)$:

Table 50: The trivat records in /tracking/ (contd.)

Name	Type	Condition	UnitsComment
IPF	$\mathrm{I}\left(\mathcal{S}_{25}^{t}\right)$	$\mathcal{S}_{25}^{t} \neq 0$	Localization vector for flux values in unknown vector.
IPBBW	$\mathrm{I}\left(2 \mathcal{S}_{9}^{t} \times \mathcal{S}_{26}^{t}\right)$	$\mathcal{S}_{26}^{t} \neq 0$	Perdue sparse storage indices for matrices $\mathbf{R}_{\mathbf{w}}$.
IPBBX	$\mathrm{I}\left(2 \mathcal{S}_{9}^{t} \times \mathcal{S}_{27}^{t}\right)$	$\mathcal{S}_{27}^{t} \neq 0$	Perdue sparse storage indices for matrices $\mathbf{R}_{\mathbf{x}}$.
IPBBY பபபபபபப	$\mathrm{I}\left(2 \mathcal{S}_{9}^{t} \times \mathcal{S}_{28}^{t}\right)$	$\mathcal{S}_{28}^{t} \neq 0$	Perdue sparse storage indices for matrices $\mathbf{R}_{\mathbf{y}}$.
IPBBZபபபபபபப	$\mathrm{I}\left(2 \mathcal{S}_{9}^{t} \times \mathcal{S}_{29}^{t}\right)$	$\mathcal{S}_{29}^{t} \neq 0$	Perdue sparse storage indices for matrices $\mathbf{R}_{\mathbf{z}}$.
WB	$\mathrm{R}\left(2 \mathcal{S}_{9}^{t} \times \mathcal{S}_{26}^{t}\right)$	$\mathcal{S}_{26}^{t} \neq 0$	Matrix component $\mathbf{R}_{\mathbf{w}}$ in Perdue sparse storage mode.
XB பபபபபபபபபப	$\mathrm{R}\left(2 \mathcal{S}_{9}^{t} \times \mathcal{S}_{27}^{t}\right)$	$\mathcal{S}_{27}^{t} \neq 0$	Matrix component $\mathbf{R}_{\mathbf{x}}$ in Perdue sparse storage mode.
YB	$\mathrm{R}\left(2 \mathcal{S}_{9}^{t} \times \mathcal{S}_{28}^{t}\right)$	$\mathcal{S}_{28}^{t} \neq 0$	Matrix component $\mathbf{R}_{\mathbf{y}}$ in Perdue sparse storage mode.
Z $\mathrm{B}_{\text {பபபபபபபபபப }}$	$\mathrm{R}\left(2 \mathcal{S}_{9}^{t} \times \mathcal{S}_{29}^{t}\right)$	$\mathcal{S}_{29}^{t} \neq 0$	Matrix component $\mathbf{R}_{\mathbf{z}}$ in Perdue sparse storage mode.
ZGLOB பபபபபபப $^{\text {a }}$	$\mathrm{I}\left(N_{\text {los }}\right)$	$\mathcal{S}_{6}^{t} \geq 8$	Hexagon index assigned to each losange. $\quad N_{\text {los }}=$ $\mathcal{S}_{14}^{t} \times \mathcal{S}_{15}^{t} \times\left(\mathcal{S}_{13}^{t}\right)^{2}$
CTRAN பபபபபபப $^{\text {l }}$	$\underset{\text { p }}{ }\left(N_{\text {pio }} \times N_{\text {pio }}\right)$	$\mathcal{S}_{6}^{t} \geq 8$	Piolat current coupling matrix. $N_{\text {pio }}=\left(\mathcal{S}_{9}^{t}+1\right) \times \mathcal{S}_{9}^{t}$
FRZ பபபபபபபபப $^{\text {a }}$	$\mathrm{R}\left(\mathcal{S}_{16}^{t}\right)$	$\mathcal{S}_{6}^{t} \geq 8$	Volume fractions related to the SYME boundary condition in Z.

The following records will also be present on the main level of a /tracking/ directory in cases where supervectorial operations are used $\left(\mathcal{S}_{17}^{t} \neq 0\right)$:

Table 51: The trivat records in /tracking/ (contd.)

Name	Type	Condition	UnitsComment
LL4VWபபபபபபப	I(1)		Order of a reordered W-matrix, including supervectorial fill-in. Multiple of \mathcal{S}_{17}^{t}
LL4VX	I(1)		Order of a reordered X-matrix, including supervectorial fill-in. Multiple of \mathcal{S}_{17}^{t}
LL4VY	$\mathrm{I}(1)$		Order of a reordered Y-matrix, including supervectorial fill-in. Multiple of \mathcal{S}_{17}^{t}
LL4VZபபபபபபப	I(1)		Order of a reordered Z-matrix, including supervectorial fill-in. Multiple of \mathcal{S}_{17}^{t}
NBLW பபபபபபபப $^{\text {a }}$	$\mathrm{I}\left(\mathcal{S}_{20}^{t}\right)$	$\mathcal{S}_{20}^{t} \neq 0$	Number of linear systems per supervector group for W-matrices
NBLX பபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{21}^{t}\right)$	$\mathcal{S}_{21}^{t} \neq 0$	Number of linear systems per supervector group for X-matrices

The trivat records in /tracking/ (contd.)
continued from last page

Name	Type	Condition	UnitsComment
NBLY ${ }_{\text {பபபபபபபப }}$	$\mathrm{I}\left(\mathcal{S}_{22}^{t}\right)$	$\mathcal{S}_{22}^{t} \neq 0$	Number of linear systems per supervector group for Y-matrices
NBLZ பபபபபபபப $^{\text {a }}$	$\mathrm{I}\left(\mathcal{S}_{23}^{t}\right)$	$\mathcal{S}_{23}^{t} \neq 0$	Number of linear systems per supervector group for Z-matrices
LBLWபபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{20}^{t}\right)$	$\mathcal{S}_{20}^{t} \neq 0$	Number of unknowns per supervector group for W-matrices
LBLX பபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{21}^{t}\right)$	$\mathcal{S}_{21}^{t} \neq 0$	Number of unknowns per supervector group for X-matrices
LBLY பபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{22}^{t}\right)$	$\mathcal{S}_{22}^{t} \neq 0$	Number of unknowns per supervector group for Y-matrices
LBLZ பபபபபபபப $^{\text {b }}$	$\mathrm{I}\left(\mathcal{S}_{23}^{t}\right)$	$\mathcal{S}_{23}^{t} \neq 0$	Number of unknowns per supervector group for Z-matrices
MUVW பபபபபபபப $^{\text {a }}$	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right.$ or $\left.\mathcal{S}_{26}^{t}\right)$	$\mathcal{S}_{6}^{t} \geq 8$	Indices used with W-directed compressed diagonal storage mode matrices in supervector mode
MUVX பபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right.$ or $\left.\mathcal{S}_{27}^{t}\right)$	$\mathcal{S}_{8}^{t}=0$	Indices used with X-directed compressed diagonal storage mode matrices in supervector mode
MUVY	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right.$ or $\left.\mathcal{S}_{28}^{t}\right)$	$\mathcal{S}_{6}^{t} \geq 5$	Indices used with Y-directed compressed diagonal storage mode matrices in supervector mode
MUVZ பபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right.$ or $\left.\mathcal{S}_{29}^{t}\right)$	$\mathcal{S}_{6}^{t}=7$ or 9	Indices used with Z-directed compressed diagonal storage mode matrices in supervector mode
IPVW பபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right)$	$\mathcal{S}_{6}^{t} \geq 8$	W-directed ADI permutation matrix in supervector mode
IPVX பபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right)$		X-directed ADI permutation matrix in supervector mode
IPVY	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right)$	$\mathcal{S}_{6}^{t} \geq 5$	Y-directed ADI permutation matrix in supervector mode
IPVZ பபபபபபபப	$\mathrm{I}\left(\mathcal{S}_{11}^{t}\right)$	$\mathcal{S}_{6}^{t}=7$ or 9	Z-directed ADI permutation matrix in supervector mode

The following records will also be present on the main level of a /tracking/ directory in cases where a cylindrical correction of the albedos is used $\left(\mathcal{S}_{24}^{t} \neq 0\right)$:

Table 52: The trivat records in /tracking/ (contd.)

Name	Type	Condition	Units	Comment
RR0 XRபபபபபபபபப $_{\text {Xபபபபபபபப }}$	$\mathrm{R}\left(\mathcal{S}_{24}^{t}\right)$	$\mathcal{S}_{24}^{t} \neq 0$	cm	Radii of the cylindrical boundaries in the cylindrical correction Coordinates on principal axis in the cylindrical cor- rection

The trivat records in /tracking/ (contd.)
continued from last page

Name	Type	Condition	Units	Comment
ANG				

4.9 The /BIHET/ sub-directory

Table 53: The contents of the /BIHET/ sub-directory

Name	Type	Condition	Units	Comment
PARAM பபபபபபப $^{\text {a }}$	I(8)			Record containing the parameters related to a double-heterogeneity tracking \mathcal{P}_{i}
NS பபபபபபபபபப	$\mathrm{I}\left(\mathcal{P}_{4}\right)$			Number of tubes or shells in each kind of micro structure
$18 I_{\text {பபபபபபபபப }}$	$\mathrm{I}\left(\mathcal{P}_{3}\right)$			Type of mixture in each generating region of the macro geometry
VOLUME பபபபபப	$\mathrm{R}\left(\mathcal{P}_{3}\right)$		cm^{3}	Volumes of the macro geometry
RS பபபபபபபபபப	$\mathrm{R}\left(\mathcal{P}_{5}+1, \mathcal{P}_{4}\right)$		cm	Radii of the micro regions
FRACT	$\mathrm{R}\left(\mathcal{P}_{4}, \mathcal{P}_{2}\right)$			Volume fraction of each type of micro region in each mixture
$\mathrm{VOLK}_{\text {பபபபபபபப }}$	$\mathrm{R}\left(\mathcal{P}_{4}, \mathcal{P}_{5}\right)$			Volume fractions of the tubes or shells in the micro regions
IDIL	$\mathrm{I}\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right)$			Elementary mixture indices in the diluent of the composite mixtures
MIXGR பபபபபபப	$\mathrm{I}\left(\mathcal{P}_{5}, \mathcal{P}_{4}, \mathcal{P}_{2}-\mathcal{P}_{1}\right)$			Elementary mixture indices in the micro structures

with the dimension parameter \mathcal{P}_{i}, representing:

- The number of ordinary mixtures pointing to the macrolib. \mathcal{P}_{1}
- The number of mixtures, including the composite mixtures (i.e., containing micro structures) \mathcal{P}_{2}
- The number of regions in the macro geometry \mathcal{P}_{3}
- The number of different kinds of macro structures $\mathcal{P}_{4}=\mathcal{S}_{1}^{d h}$

A kind of macro structure is characterized by the radii of its tubes or shells. All the micro region of the same kind should own the same nuclear properties in a given macro region.

- The maximum number of regions (tubes or shells) in each kind of macro structure $\mathcal{P}_{5}=\mathcal{S}_{2}^{d h}-1$
- The type of double-heterogeneity model \mathcal{P}_{6} where

$$
\mathcal{P}_{6}= \begin{cases}1 & \text { Sanchez-Pomraning model } \\ 2 & \text { Hebert model }\end{cases}
$$

- The type of micro structures $\mathcal{P}_{7}=\mathcal{S}_{5}^{d h}$ where

$$
\mathcal{P}_{7}= \begin{cases}3 & \text { Cylinder } \\ 4 & \text { Sphere }\end{cases}
$$

- The quadrature parameter for the 1-D collision probability calculation in the micro structures \mathcal{P}_{8}

5 Contents of a /asminfo/ directory

This directory contains the multigroup collision probabilities and response matrices required in the solution of the transport equation.

5.1 State vector content for the /asminfo/ data structure

The dimensioning parameters for this data structure, which are stored in the state vector \mathcal{S}_{i}^{a}, represent:

- The type of collision probabilities considered $I_{T}=\mathcal{S}_{1}^{a}$ where

$$
I_{T}= \begin{cases}1 & \text { Scattering reduced collision probability or response matrix } \\ 2 & \text { Direct collision probability or response matrix } \\ 3 & \text { Scattering reduced directional collision probability } \\ 4 & \text { Direct directional collision probability }\end{cases}
$$

- The type of collision probability closure relation used $I_{C}=\mathcal{S}_{2}^{a}$ (see NORM keyword in ASM: operator input option)

$$
I_{C}= \begin{cases}0 & \text { No closure relation used } \\ 1 & \text { Total reflection closure relation }\end{cases}
$$

- A parameter related to the albedo leakage model $I_{\beta}=\mathcal{S}_{3}^{a}$ (see ALSB keyword in ASM: operator input option)

$$
I_{\beta}= \begin{cases}0 & \text { No information is stored } \\ 1 & \text { Groupwise escape matrices WIS are stored }\end{cases}
$$

- \mathcal{S}_{4}^{a} (not used)
- The option to indicate whether response matrix or collision probability matrices are stored on the structure $I_{p}=\mathcal{S}_{5}^{a}$ (see PIJ and ARM keyword in ASM: operator input option)

$$
I_{p}= \begin{cases}1 & \text { Response matrices will be stored (the ARM keyword was selected) } \\ 2 & \text { Collision probability matrices will be stored (the PIJ keyword was selected) }\end{cases}
$$

- The option to indicate the type of streaming model used $I_{k}=\mathcal{S}_{6}^{a}$ (see PIJK and ECCO keyword in ASM: operator input option)

$$
I_{k}= \begin{cases}1 & \text { No streaming model used (a leakage model may or may not be used) } \\ 2 & \text { Isotropic streaming model used (ECCO model) } \\ 3 & \text { Anisotropic streaming model used (TIBĖRE model) }\end{cases}
$$

- The type of collision probability normalization method used $I_{n}=\mathcal{S}_{7}^{a}$ (see PNOR keyword in ASM: operator input option)

$$
I_{n}= \begin{cases}0 & \text { No normalization } \\ 1 & \text { Gelbard normalization algorithm } \\ 2 & \text { Diagonal element normalization } \\ 3 & \text { Non-linear normalization } \\ 4 & \text { Helios type normalization }\end{cases}
$$

- Number of energy groups $G=\mathcal{S}_{8}^{a}$
- Number of unknown in flux system $N_{u}=\mathcal{S}_{9}^{a}$
- Number of mixtures $N_{m}=\mathcal{S}_{10}^{a}$
- Number of Legendre orders of the scattering cross sections used in the main transport solution. $N_{\text {ans }}=\mathcal{S}_{11}^{a}$
- Flag for the availability of diffusion coefficients. $I_{\text {diff }}=\mathcal{S}_{12}^{a}$

$$
I_{\mathrm{diff}}= \begin{cases}0 & \text { No diffusion coefficients available } \\ 1 & \text { Diffusion coefficients are available }\end{cases}
$$

5.2 The main /asminfo/ directory

On its first level, the following records and sub-directories will be found in the /asminfo/ directory:

Table 54: Main records and sub-directories in /asminfo/

Name	Type	Condition	Units	Comment
SIGNATURE பபப	$\mathrm{C} * 12$			Signature of the data structure (SIGNA =L_PIJUபபபபபபப).
LINK.MACRO பப	$\mathrm{C} * 12$			Name of the MACROLIB on which the collision probabilities are based.
LINK.TRACK பப	$\mathrm{C} * 12$			Name of the TRACKING on which the collision probabilities are based.
STATE-VECTOR	$\mathrm{I}(40)$			Vector describing the various parameters associated with this data structure \mathcal{S}_{i}^{a}, as defined in Section 5.1.
GROUP பபபபபபப	$\operatorname{Dir}\left(\mathcal{S}_{8}^{a}\right)$			List of energy-group sub-directories. Each component of the list is a directory containing the multigroup collision probabilities and response matrices associated with an energy group. The specification of this directory is given in Sect. 5.3 or 5.4 depending if a double-heterogeneity is present or not. A doubleheterogeneity is present if $\mathcal{S}_{40}^{t}=1$ in the Tracking object.

5.3 The GROUP double-heterogeneity group sub-directory

This directory is containing the following records, corresponding to a single energy group:

Table 55: Records and sub-directories in GROUP

Name	Type	Condition	Units Comment
DRAGON-TXSC ${ }_{\sqcup}$	$\mathrm{R}\left(N_{m}+1\right)$		cm^{-1} where $N_{m}=\mathcal{P}_{1}$. The total cross section Σ_{m}^{g} for $N_{m}+1$ composite mixtures assuming that the first mixture represents void ($\Sigma_{m}^{g}=0$). A transport correction may or may not be included. The first component of this array is always equal to 0 .
DRAGON-SOXSC	$\mathrm{R}\left(N_{m}+1, N_{\text {ans }}\right)$		cm^{-1} The within group scattering cross section $\Sigma_{0, m, w}$ (see Section 1.3) for $N_{m}+1$ composite mixtures assuming that the first mixture represents void $\left(\Sigma_{0, m, w}^{g}=0\right)$. A transport correction may or may not be included. Many Legendre orders may be given. The first component of this array, for each Legendre order, is always equal to 0 .
NCO பபபபபபபபப	$\mathrm{I}(\mathcal{M})$		where $\mathcal{M}=\mathcal{P}_{2}-\mathcal{P}_{1}$. Number of composite mixtures in each macro-mixture.
$\mathrm{RRRR}_{\text {பபபபபபபப }}$	$\mathrm{R}(\mathcal{M})$		Group-dependent double-heterogeneity information.
QKOLD பபபபபபப	$\mathrm{R}\left(\mathcal{P}_{4}, \mathcal{P}_{5}, \mathcal{M}\right)$	$\mathcal{P}_{6}=1$	Group-dependent double-heterogeneity information related to the escape probabilities in the micro-structures.
QKDEL	$\mathrm{R}\left(\mathcal{P}_{4}, \mathcal{P}_{5}, \mathcal{M}\right)$		Group-dependent double-heterogeneity information related to the escape probabilities in the micro-structures.
PKL	$\mathrm{R}\left(\mathcal{P}_{4}, \mathcal{P}_{5}, \mathcal{P}_{5}, \mathcal{M}\right)$		Group-dependent double-heterogeneity information related to the collision probabilities in the micro-structures.
COEF பபபபபபபப	$\mathrm{D}(\mathcal{F}, \mathcal{F}, \mathcal{M})$		where $\mathcal{F}=1+\mathcal{P}_{4} \times \mathcal{P}_{5}$. Group-dependent double-heterogeneity information.
BIHET பபபபபபப	Dir		Directory containing collision probability or response matrix information related to the macro-geometry (i. e., the geometry with homogenized micro-structures). The specification of this directory is given in Section 5.4. Note that the value of $N_{m}=\mathcal{P}_{2}$ in this object is set to take into account the macro-mixtures. Similarly, the value $N_{r}=\mathcal{P}_{3}$ is the number of macro-volumes.

5.4 The GROUP or BIHET group sub-directory

This directory is containing the following records, corresponding to a single energy group:

Table 56: Records and sub-directories in GROUP

Name	Type	Condition	Units	Comment
DRAGON-TXSC ${ }_{\sqcup}$	$\mathrm{R}\left(N_{m}+1\right)$		cm^{-1}	The total cross section Σ_{m}^{g} for $N_{m}+1$ mixtures assuming that the first mixture represents void $\left(\Sigma_{m}^{g}=0\right)$. A transport correction may or may not be included. The first component of this array is always equal to 0 .
DRAGON-T1XSC	$\mathrm{R}\left(N_{m}+1\right)$	*	cm^{-1}	where $N_{m}=\mathcal{P}_{1}$. The current-weighted total cross section $\Sigma_{1, m}^{g}$ for $N_{m}+1$ composite mixtures assuming that the first mixture represents void $\left(\Sigma_{1, m}^{g}=0\right)$. The first component of this array is always equal to 0 .
DRAGON-SOXSC	$\mathrm{R}\left(N_{m}+1, N_{\text {ans }}\right)$		cm^{-1}	The within group scattering cross section $\Sigma_{0, m, w}$ (see Section 1.3) for $N_{m}+1$ mixtures assuming that the first mixture represents $\operatorname{void}\left(\Sigma_{0, m, w}^{g}=0\right)$. A transport correction may or may not be included. Many Legendre orders may be given. The first component of this array, for each Legendre order, is always equal to 0 .
DRAGON-DIFF ${ }^{\text {b }}$	$\mathrm{R}\left(N_{m}+1\right)$	$I_{\text {diff }}=1$	cm	Diffusion coefficients D_{m}^{g} for $N_{m}+1$ mixtures assuming that the first mixture represents void $\left(D_{m}^{g}=1.0 \times 10^{10}\right)$. The first component of this array is always equal to 1.0×10^{10}.
STREAMING பபப	Dir	$I_{k}=2$		Directory containing P1 information to be used with the ECCO isotropic streaming model. This directory uses the same specification as GROUP where P0 information is replaced with P1 information. Cross sections used in this directory are not-transport corrected.

5.4.1 The trafict dependent records on a GROUP directory

If a collision probability method is used, the following records will also be found on the group subdirectory:

Table 57: Collision probability records in GROUP

Name	Type	Condition	Units	Comment
DRAGON-PCSCT	$\mathrm{R}\left(N_{r}, N_{r}\right)$	$I_{p}=2$		The scattering-reduced $\left(I_{T}=1,3\right)$ collision probability matrix \mathbf{W}_{g} or direct $\left(I_{T}=2,4\right)$ collision probability matrix \mathbf{p}_{g}
DRAGON1PCSCT	$\mathrm{R}\left(N_{r}, N_{r}\right)$	$I_{k}=3$		The x-directed P1 scattering-reduced ($I_{T}=$ 3) collision probability matrix $\mathbf{Y}_{x, g}$ or direct $\left(I_{T}=4\right)$ collision probability matrix $\mathbf{p}_{x, g}$
DRAGON2PCSCT	$\mathrm{R}\left(N_{r}, N_{r}\right)$	$I_{k}=3$		The y-directed P1 scattering-reduced ($I_{T}=$ 3) collision probability matrix $\mathbf{Y}_{y, g}$ or direct $\left(I_{T}=4\right)$ collision probability matrix $\mathbf{p}_{y, g}$
DRAGON3PCSCT	$\mathrm{R}\left(N_{r}, N_{r}\right)$	$I_{k}=3$		The z-directed P1 scattering-reduced ($I_{T}=$ 3) collision probability matrix $\mathbf{Y}_{z, g}$ or direct $\left(I_{T}=4\right)$ collision probability matrix $\mathbf{p}_{z, g}$
DRAGON1P*SCT	$\mathrm{R}\left(N_{r}, N_{r}\right)$	$I_{k}=3$		The x-directed matrix $\mathbf{p}_{g}^{-1} \mathbf{p}_{x, g}^{*}$
DRAGON2P*SCT	$\mathrm{R}\left(N_{r}, N_{r}\right)$	$I_{k}=3$		The y-directed matrix $\mathbf{p}_{g}^{-1} \mathbf{p}_{y, g}^{*}$
DRAGON3P*SCT	$\mathrm{R}\left(N_{r}, N_{r}\right)$	$I_{k}=3$		The z-directed matrix $\mathbf{p}_{g}^{-1} \mathbf{p}_{z, g}^{*}$
DRAGON-WIS பப	$\mathrm{R}\left(N_{r}\right)$	$I_{\beta}=1$		The scattering-reduced leakage matrix $W_{i s}^{g}$

where

- the reduced collision probability matrix is defined as

$$
\mathbf{p}_{g}=\left\{p_{i j, g} ; \forall i \text { and } j\right\}
$$

- the reduced directional probability matrix, used in the first TIBÈRE equation, is defined as

$$
\mathbf{p}_{k, g}^{*}=\left\{p_{i j, k, g}^{*} ; \forall i \text { and } j\right\} ; k=x, y, \text { or } z
$$

- the reduced directional probability matrix, used in the second TIBÈRE equation, is defined as

$$
\mathbf{p}_{k, g}=\left\{p_{i j, k, g} ; \forall i \text { and } j\right\} ; k=x, y, \text { or } z
$$

The total cross sections used to compute this matrix are not-transport corrected.

- the P0 scattering reduced collision probability matrix is defined as

$$
\mathbf{W}_{g}=\left[\mathbf{I}-\mathbf{p}_{g} \boldsymbol{\Sigma}_{\mathbf{s} 0, g \leftarrow g}\right]^{-1} \mathbf{p}_{g}
$$

- the P1 scattering reduced directionnal collision probability matrix is defined as

$$
\mathbf{Y}_{k, g}=\left[\mathbf{I}-\mathbf{p}_{k, g} \boldsymbol{\Sigma}_{\mathrm{s} 1, g \leftarrow g}\right]^{-1} \mathbf{p}_{k, g} \quad ; \quad k=x, y, \text { or } z
$$

5.4.2 The sybilt dependent records on a GROUP directory

This information is provided only if the current iteration method of the interface current method is used in SYBIL. This occurs if the key-word ARM is been used in operators USS: or ASM:. In these cases, the following records will also be found on the GROUP directory:

The following dimensions will be used:

Number of generating cells:

$$
\mathcal{N}_{\mathrm{gen}}=\left\{\begin{array}{lll}
\mathcal{P}_{1} & \text { if } \mathcal{S}_{6}^{t}=3 & (\text { do-it-yourself geometry }) \\
\mathcal{P}_{6} & \text { if } \mathcal{S}_{6}^{t}=4 & (2 \mathrm{D} \text { assembly geometry })
\end{array}\right.
$$

Number of entering currents in a cell:

$$
N_{c}=\left\{\begin{array}{rll}
4 & \text { if } \mathcal{P}_{1}^{t}=0 \text { and } 2 \leq \mathcal{P}_{2}^{t} \leq 3 & \left(D P_{0} \text { Cartesian cell }\right) \\
12 & \text { if } \mathcal{P}_{1}^{t}=0 \text { and } \mathcal{P}_{2}^{t}=4 & \left(D P_{1} \text { Cartesian cell }\right) \\
6 & \text { if } \mathcal{P}_{1}^{t}>0 \text { and } 2 \leq \mathcal{P}_{2}^{t} \leq 3 & \left(D P_{0} \text { hexagonal cell }\right) \\
18 & \text { if } \mathcal{P}_{1}^{t}>0 \text { and } \mathcal{P}_{2}^{t}=4 & \left(D P_{1} \text { hexagonal cell }\right)
\end{array}\right.
$$

Number of transmission probability elements:

$$
D_{1}=\left\{\begin{array}{cll}
\mathcal{P}_{1} & \text { if } \mathcal{S}_{6}^{t}=3 & \text { (do-it-yourself geometry) } \\
\mathcal{P}_{6} & \text { if } \mathcal{S}_{6}^{t}=4 \text { and } \mathcal{P}_{2}=1 & \text { (Roth 2D assembly geometry) } \\
N_{c} \times N_{c} \times \mathcal{P}_{6} & \text { if } \mathcal{S}_{6}^{t}=4 \text { and } \mathcal{P}_{2} \geq 2 & \text { (Other 2D assembly geometries) }
\end{array}\right.
$$

Number of escape probability elements:

$$
D_{2}=\left\{\begin{array}{cll}
\operatorname{NMC}\left(\mathcal{P}_{1}+1\right) & \text { if } \mathcal{S}_{6}^{t}=3 & \text { (do-it-yourself geometry) } \\
\operatorname{NMC}\left(\mathcal{P}_{6}+1\right) & \text { if } \mathcal{S}_{6}^{t}=4 \text { and } \mathcal{P}_{2}=1 & \text { (Roth 2D assembly geometry) } \\
N_{c} \times \operatorname{NMC}\left(\mathcal{P}_{6}+1\right) & \text { if } \mathcal{S}_{6}^{t}=4 \text { and } \mathcal{P}_{2} \geq 2 & \text { (Other 2D assembly geometries) }
\end{array}\right.
$$

Number of collision probability elements:

$$
D_{3}=\sum_{i=1}^{\mathcal{N}_{\text {gen }}}[\operatorname{NMC}(i+1)-\operatorname{NMC}(i)]^{2}
$$

Table 58: SYBIL groupwise assembly information in GROUP

Name	Type	Condition	Units	Comment
PSSW\$SYBIL	$\mathrm{R}\left(\mathcal{D}_{1}\right)$			Cellwise scattering-reduced transmission probabilities.
PISW\$SYBIL	$\mathrm{R}\left(\mathcal{D}_{2}\right)$			Cellwise scattering-reduced escape probabilities.
PSJW\$SYBIL	$\mathrm{R}\left(\mathcal{D}_{2}\right)$			Cellwise scattering-reduced collision probabilities for incoming neutrons.
PIJW\$SYBIL	$\mathrm{R}\left(\mathcal{D}_{3}\right)$			Cellwise scattering-reduced collision probabilities.

5.4.3 The mccgt dependent records on a GROUP directory

If the characteristic method (MCCG) is used, the following records will also be found on the GROUP directory:

Table 59: MCCG groupwise directories

Name	Type	Condition	Units	Comment
DIAGF\$MCCG பப	$\mathrm{R}\left(N_{\text {dim }}\right)$	$\mathcal{S}_{22}^{t}>0$		Diagonal elements of the ACA flux matrix.
CF\$MCCG	$\mathrm{R}\left(\mathcal{S}_{26}^{t}\right)$	$\mathcal{S}_{22}^{t}>0$		Non-Diagonal elements of the ACA flux matrix.
ILUDF\$MCCG	$\mathrm{R}\left(N_{\text {dim }}\right)$	$\left\{\begin{array}{l} \mathcal{S}_{22}^{t}>0 \\ \mathcal{S}_{23}^{t} \geq 2 \end{array}\right.$		Inverse diagonal elements of U from ILU0 decomposition of ACA flux matrix
ILUCF\$MCCG	$\mathrm{R}\left(\mathcal{S}_{37}^{t}\right)$	$\left\{\begin{array}{l} \mathcal{S}_{22}^{t}>0 \\ \mathcal{S}_{23}^{t} \in\{2,3\} \end{array}\right.$		Non-diagonal elements of U from ILU0 decomposition of ACA flux matrix that differ from CF
DIAGQ\$MCCG	$\mathrm{R}\left(N_{\text {dim }}\right)$	$\mathcal{S}_{22}^{t}>0$		Diagonal elements of the ACA source matrix.
CQ\$MCCG பபபபப	$\mathrm{R}\left(\mathcal{S}_{26}^{t}\right)$	$\mathcal{S}_{22}^{t}>0$		Non-diagonal elements of the ACA source matrix.
PJJ\$MCCG பபபப	$\mathrm{R}\left(\mathcal{S}_{1}^{t} \mathcal{S}_{36}^{t}\right)$	$\mathcal{S}_{35}^{t}=1$		Mode-to-mode self-collision probabilities for SCR or "STIS=1" integration strategy.
PSJ\$MCCG பபபப	$\mathrm{R}\left(\mathcal{S}_{22}^{t}\right)$	$\mathcal{S}_{21}^{t}>0$		Surface-to-volume probabilities for SCR.

6 Contents of a /system/ directory

The L_SYSTEM specification is used to store a set of system matrices (or a set of perturbations on system matrices) obtained after discretization of the algebraic operators contained in the neutron transport or diffusion equation. A complete set of matrices can be written on the root directory. Perturbation matrices corresponding to variations or derivatives of the cross sections can also be found if the STEP directory list is present.

6.1 State vector content for the /system/ data structure

The dimensioning parameters for this data structure, which are stored in the state vector \mathcal{S}_{i}^{s}, represents:

- \mathcal{S}_{1}^{s} : the number of energy groups
- \mathcal{S}_{2}^{s} : the order of a system matrix
- \mathcal{S}_{3}^{s} : the number of delayed neutron precursor groups
- \mathcal{S}_{4}^{s} : the storage type of system matrices:

$$
\mathcal{S}_{4}^{s}=\left\{\begin{aligned}
& 1 \text { BIVAC-compatible profile storage matrices for the diffusion theory } \\
& 2 \text { TRIVAC-compatible matrices compatible with the generic ADI splitting in } \\
& 3 \text { Eq. (4.2) or Eq. (4.3) } \\
& \text { TRIVAC-compatible matrices compatible with the Thomas-Raviart ADI } \\
& \text { splitting in Eq. (4.4) or Eq. (4.5) for the diffusion theory } \\
& 11 \text { BIVAC-compatible profile storage matrices for the simplified } P_{n} \text { method } \\
& 13 \begin{array}{l}
\text { TRIVAC-compatible matrices compatible with the Thomas-Raviart ADI } \\
\text { splitting in Eq. (4.4) or Eq. (4.5) for the simplified } P_{n} \text { method }
\end{array}
\end{aligned}\right.
$$

- \mathcal{S}_{5}^{s} : set to 1 in case where matrices 'RM' are available
- The number of set of perturbation on system matrices $I_{\text {step }}=\mathcal{S}_{6}^{s}$ used for perturbation calculations:

$$
I_{\text {step }}= \begin{cases}0 & \text { no STEP information available } \\ >0 & \text { number of set of perturbation on system matrices. }\end{cases}
$$

- \mathcal{S}_{7}^{s} : number of material mixtures in the macrolib used to construct the system matrices
- \mathcal{S}_{8}^{s} : number of Legendre orders used to represent the macroscopic cross sections with the simplified P_{n} method (maximum integer value of IL). Set to zero with the diffusion theory.
- The type of system matrix assemblies $I_{\text {pert }}=\mathcal{S}_{9}^{S}$:

$$
I_{\text {pert }}= \begin{cases}0 & \text { calculation of the system matrices } \\ 1 & \text { calculation of the derivative of these matrices } \\ 2 & \text { calculation of the first variation of these matrices } \\ 3 & \text { identical to } I_{\text {pert }}=2, \text { but these variation are added to unperturbed system } \\ & \text { matrices. }\end{cases}
$$

6.2 The main /system/ directory

On its first level, the following records and sub-directories will be found in the /system/ directory:

Table 60: Main records and sub-directories in /system/

Name	Type	Condition	Units	Comment
SIGNATURE பபப	$\mathrm{C} * 12$			Signature of the data structure
				(SIGNA = L_SYSTEM பபபப)
LINK.MACROபப	$\mathrm{C} * 12$			Name of the MACROLIB on which the system matrices are based.
LINK.TRACK	$\mathrm{C} * 12$			Name of the TRACKING on which the system matrices are based.
STATE-VECTOR	$\mathrm{I}(40)$			Vector describing the various parameters associated with this data structure \mathcal{S}_{i}^{s}, as defined in Section 6.1.
\{matrix $\}$	$\mathrm{R}\left(N_{\text {dim }}\right)$			Set of system matrices
\{removalxs $\}$	$\mathrm{R}\left(\mathcal{S}_{7}^{s}\right)$	$\mathcal{S}_{4}^{s}>10$		Set of removal cross section arrays used with the simplified P_{n} method
RM $\mathrm{LUபபபபபபபபப}$	$\mathrm{R}\left(\mathcal{S}_{11}^{t}\right)$	$\mathcal{S}_{5}^{s} \neq 0$		Unit system matrix, i.e., a system matrix corresponding to cross sections all set to 1.0 . This matrix is mandatory in space-time kinetics cases. This block is always located on the root directory.
IRM $_{\text {பபபபபபபபப }}$	$\mathrm{R}\left(\mathcal{S}_{11}^{t}\right)$	$\mathcal{S}_{5}^{s} \neq 0$		Inverse of the unit matrix. This record is available only with BIVAC trackings.
STEP ¢பபபபபபப $^{\text {a }}$	$\operatorname{Dir}\left(\mathcal{S}_{6}^{s}\right)$	$\mathcal{S}_{6}^{s} \geq 1$		List of perturbation sub-directories. Each component of this list contains a set of perturbation on system matrices corresponding to variations or derivatives of the cross sections. Each STEP component follows the specification presented in the current Section 6.2.

The signature variable for this data structure must be SIGNA=L_SYSTEM

Figure 4: Example of a 5 energy group matrix eigenvalue problem

The discretized neutron transport or diffusion equation is assumed to be given in a form similar to the matrix system represented in Figure 4. Each system matrix \{matrix\} is stored on a block named TEXT12, embodying the primary group index IGR and the secondary group index JGR.

The first case corresponds to the following situations:

- BIVAC-type discretization $\left(\mathcal{S}_{4}^{s}=1\right)$. In this case, the dimension of the matrix is equal to $M U\left(\mathcal{S}_{11}^{t}\right)$
- TRIVAC-type discretization of the out-of-group A matrices (IGR $\neq \mathrm{JGR}$). In this case, the dimension of the matrix is equal to \mathcal{S}_{11}^{t}
- TRIVAC-type discretization of the B matrices. In this case, the dimension of the matrix is equal to \mathcal{S}_{11}^{t}
The character name of the system matrix is build using

```
WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
WRITE(TEXT12,'(1HB,2I3.3)') JGR,IGR
```

or
WRITE(TEXT12,'(1HB,3I3.3)') IDEL, JGR,IGR
where IDEL is the index of a delayed neutron precursor group (if $\mathcal{S}_{3}^{s} \geq 1$).
Otherwise, the TRIVAC-type system matrix is splitted according to Eqs. (4.2) to (4.5). The character name of the system matrix is build using

WRITE(TEXT12,'(A2,1HA ,2I3.3)') PREFIX, IGR, IGR
where PREFIX is a character*2 name describing the component of the system matrix under consideration. The following values are available:

PREFIX	type of matrix	dimension $N_{\text {dim }}$
W_{-}	matrix component $\mathbf{W}+\mathbf{P}_{\mathbf{w}}^{1} \mathbf{U P} \mathbf{w}_{\mathbf{w}}$ or $\mathbf{A}_{\mathbf{w}}+\mathbf{R}_{\mathbf{w}} \mathbf{T}^{-1} \mathbf{R}_{\mathbf{w}}^{1}$	$\operatorname{MUW}\left(\mathcal{S}_{11}^{t}\right)$ or $\operatorname{MUW}\left(\mathcal{S}_{26}^{t}\right)$
X	matrix component $\mathbf{X}+\mathbf{P}_{\mathbf{x}}^{\top} \mathbf{U} \mathbf{P}_{\mathbf{x}}$ or $\mathbf{A}_{\mathbf{x}}+\mathbf{R}_{\mathbf{x}} \mathbf{T}^{\mathbf{- 1}} \mathbf{R}_{\mathbf{x}}^{\top}$	$\operatorname{MUX}\left(\mathcal{S}_{11}^{t}\right)$ or $\operatorname{MUX}\left(\mathcal{S}_{27}^{t}\right)$
Y_	matrix component $\mathbf{Y}+\mathbf{P}_{\mathbf{y}}^{\top} \mathbf{U} \mathbf{P}_{\mathbf{y}}$ or $\mathbf{A}_{\mathbf{y}}+\mathbf{R}_{\mathbf{y}} \mathbf{T}^{-\mathbf{1}} \mathbf{R}_{\mathbf{y}}^{\top}$	$\operatorname{MUY}\left(\mathcal{S}_{11}^{t}\right)$ or MUY (\mathcal{S}_{28}^{t})
Z_	matrix component $\mathbf{Z}+\mathbf{P}_{\mathbf{z}}^{\dagger} \mathbf{U} \mathbf{P}_{\mathbf{z}}$ or $\mathbf{A}_{\mathbf{z}}+\mathbf{R}_{\mathbf{z}} \mathbf{T}^{-\mathbf{1}} \mathbf{R}_{\mathbf{z}}^{\top}$	$\operatorname{MUZ}\left(\mathcal{S}_{11}^{t}\right)$ or $\operatorname{MUZ}\left(\mathcal{S}_{29}^{t}\right)$
WI	$L D L^{\top}$ factors of $\mathbf{W}+\mathbf{P}_{\mathbf{w}}^{\mathbf{T}} \mathbf{U} \mathbf{P}_{\mathbf{w}}$ or $\mathbf{A}_{\mathbf{w}}+\mathbf{R}_{\mathbf{w}} \mathbf{T}^{-\mathbf{1}} \mathbf{R}_{\mathbf{w}}^{\top}$	$\operatorname{MUW}\left(\mathcal{S}_{11}^{t}\right)$ or $\operatorname{MUW}\left(\mathcal{S}_{26}^{t}\right)$
XI	$L D L^{\top}$ factors of $\mathbf{X}+\mathbf{P}_{\mathbf{x}}^{\top} \mathbf{U} \mathbf{P}_{\mathbf{x}}$ or $\mathbf{A}_{\mathbf{x}}+\mathbf{R}_{\mathbf{x}} \mathbf{T}^{-\mathbf{1}} \mathbf{R}_{\mathbf{x}}^{\top}$	$\operatorname{MUX}\left(\mathcal{S}_{11}^{t}\right)$ or $\operatorname{MUX}\left(\mathcal{S}_{27}^{t}\right)$
YI	$L D L^{\top}$ factors of $\mathbf{Y}+\mathbf{P}_{\mathbf{y}}^{\top} \mathbf{U} \mathbf{P}_{\mathbf{y}}$ or $\mathbf{A}_{\mathbf{y}}+\mathbf{R}_{\mathbf{y}} \mathbf{T}^{-\mathbf{1}} \mathbf{R}_{\mathbf{y}}^{\top}$	$\operatorname{MUY}\left(\mathcal{S}_{11}^{t}\right)$ or $\operatorname{MUY}\left(\mathcal{S}_{28}^{t}\right)$
ZI	$L D L^{\top}$ factors of $\mathbf{Z}+\mathbf{P}_{\mathbf{z}}^{\dagger} \mathbf{U} \mathbf{P}_{\mathbf{z}}$ or $\mathbf{A}_{\mathbf{z}}+\mathbf{R}_{\mathbf{z}} \mathbf{T}^{\mathbf{1}} \mathbf{R}_{\mathbf{z}}^{\top}$	$\operatorname{MUZ}\left(\mathcal{S}_{11}^{t}\right)$ or $\operatorname{MUZ}\left(\mathcal{S}_{29}^{t}\right)$

where all these matrices are stored in diagonal storage mode.
The following values of PREFIX will also be used in cases where a Thomas-Raviart or Thomas-RaviartSchneider polynomial basis is used $\left(\mathcal{S}_{12}^{t}=2\right.$ and $\left.\mathcal{S}_{4}^{s}=3\right)$:

PREFIX	type of matrix	dimension $N_{\text {dim }}$
TF	matrix component T	\mathcal{S}_{25}^{t}
WA	matrix component $\mathbf{A}_{\mathbf{w}}$	$\operatorname{MUW}\left(\mathcal{S}_{26}^{t}\right)$
XA	matrix component $\mathbf{A}_{\mathbf{x}}$	$\operatorname{MUX}\left(\mathcal{S}_{27}^{t}\right)$
YA	matrix component $\mathbf{A}_{\mathbf{y}}$	$\operatorname{MUY}\left(\mathcal{S}_{28}^{t}\right)$
ZA	matrix component $\mathbf{A}_{\mathbf{z}}$	$\operatorname{MUZ}\left(\mathcal{S}_{29}^{t}\right)$
DIFF	diffusion coefficients used with the Thomas-Raviart-Schneider method	$N_{\text {los }}$

where TF is a diagonal matrix and where WA to ZA are stored in diagonal profiled mode. The dimension of DIFF is related to the number of losanges in the domain: $N_{\text {los }}=\mathcal{S}_{14}^{t} \times \mathcal{S}_{15}^{t} \times\left(\mathcal{S}_{13}^{t}\right)^{2}$.

Each removal cross section array \{removalxs\} is stored on a block named TEXT12, embodying the Legendre order IL, the primary group index IGR and the secondary group index JGR. The block name TEXT12 is build using

WRITE(TEXT12,'(4HSCAR,I2.2,2I3.3)') IL-1,JGR,IGR
for the mixture-ordered components of the removal cross section, and
WRITE(TEXT12,'(4HSCAI,I2.2,2I3.3)') IL-1,JGR,IGR
for the mixture-ordered components of the inverse removal cross section matrix at each Legendre order.

7 Contents of a /kinet/ directory

The L_KINET specification is used to store the data related to the space-time neutron kinetics calculations. This directory also contains the main calculations results corresponding to the current time step of a transient.

7.1 State vector content for the /kinet/ data structure

The dimensioning parameters for this data structure, which are stored in the state vector \mathcal{S}_{i}^{k}, represent:

- The current time-step index $N_{t r}=\mathcal{S}_{1}^{k}$
- The number of delayed-neutron precursor groups $N_{d g}=\mathcal{S}_{2}^{k}$
- The number of energy groups $N_{g r}=\mathcal{S}_{3}^{k}$
- The type of geometry $I_{\text {geo }}=\mathcal{S}_{4}^{k}$
- The total number of finite elements $N_{e l}=\mathcal{S}_{5}^{k}$
- The total number of unknowns per energy group $N_{u n}=\mathcal{S}_{6}^{k}$
- The number of flux unknowns per energy group $N_{u f}=\mathcal{S}_{7}^{k}$
- The number of precursors unknowns per delayed group $N_{u p}=\mathcal{S}_{8}^{k}$
- The number of fissile isotopes $N_{f i s s}=\mathcal{S}_{9}^{k}$
- The type of system matrices $N_{\text {sys }}=\mathcal{S}_{10}^{k}$
- Number of free iteration per variational acceleration cycle $N_{f}=\mathcal{S}_{11}^{k}$
- Number of accelerated iteration per variational acceleration cycle $N_{a}=\mathcal{S}_{12}^{k}$
- Type of normalization for the flux $I_{\text {norm }}=\mathcal{S}_{13}^{k}$ where

$$
I_{\text {norm }}= \begin{cases}0 & \text { No normalization } \\ 1 & \text { Imposed factor } \\ 2 & \text { Maximum flux normalization } \\ 3 & \text { Initial power normalization }\end{cases}
$$

- Maximum number of thermal (up-scattering) iterations $M_{\mathrm{in}}=\mathcal{S}_{14}^{k}$
- Maximum number of outer iterations $M_{\text {out }}=\mathcal{S}_{15}^{k}$
- Initial number of ADI iterations in Trivac $M_{\text {adi }}=\mathcal{S}_{16}^{k}$
- Temporal integration scheme for fluxes $I_{\mathrm{ifl}}=\mathcal{S}_{17}^{k}$ where

$$
I_{\mathrm{iff}}= \begin{cases}1 & \text { Implicit scheme }\left(\Theta_{\mathrm{f}}=1\right) \\ 2 & \text { Crank-Nicholson scheme }\left(\Theta_{\mathrm{f}}=0.5\right) \\ 3 & \text { General theta method }\end{cases}
$$

- Temporal integration scheme for precursors $I_{\mathrm{ipr}}=\mathcal{S}_{18}^{k}$ where

$$
I_{\mathrm{ipr}}= \begin{cases}1 & \text { Implicit scheme }\left(\Theta_{\mathrm{p}}=1\right) \\ 2 & \text { Crank-Nicholson scheme }\left(\Theta_{\mathrm{p}}=0.5\right) \\ 3 & \text { General theta method } \\ 4 & \text { Analytical integration method for precursors }\end{cases}
$$

7.2 The main /kinet/ directory

The following records and sub-directories will be found in the /kinet/ directory:

Table 61: Main records and sub-directories in /kinet/

Name	Type	Condition	UnitsComment	
SIGNATURE Uபப	$\mathrm{C} * 12$			Signature of the data structure (SIGNA =L_KINET பபபபப)
STATE-VECTOR	I(40)			Vector describing the various parameters associated with this data structure \mathcal{S}_{i}^{k}, as defined in Section 7.1.
EPS-CONVERGE	R(4)			Convergence parameters Δ_{i}^{ϵ}
TRACK-TYPE $\sqcup \cup$	$\mathrm{C} * 12$			Type of tracking considered (CDOOR). Allowed values are: 'BIVAC' and 'TRIVAC'
E-IDLPC பபபபப	$\mathrm{I}\left(N_{e l}\right)$			Position of averaged precursor concentrations in vector E-PREC.
DELTA-T ${ }_{\text {பபபபப }}$	$\mathrm{R}(1)$		S	Current time increment.
TOTAL-TIME $\sqcup \cup$	$\mathrm{R}(1)$		S	Total elapsed time from the beginning of a transient.
BETA-D பபபபபப $^{\text {a }}$	$\mathrm{R}\left(N_{d g}\right)$			Delayed-neutron fraction for each delayed-neutron precursor group.
LAMBDA-D பபபப	$\mathrm{R}\left(N_{d g}\right)$			Radioactive decay constants of each delayed-neutron precursor group.
CHI-D பபபபபபப $^{\text {l }}$	$\mathrm{R}\left(N_{d g}, N_{g r}\right)$			Multigroup delayed-neutron fission spectrum in each precursor group.
E-VECTOR \quad பபப	$\mathrm{R}\left(N_{u f}, N_{g r}\right)$			Kinetics solution for fluxes at current time step.
E-PREC -பபபபப $^{\text {a }}$	$\mathrm{R}\left(N_{u p}, N_{d g}\right)$			Kinetics solution for precursor concentrations at current time step.
E-KEFF	$\mathrm{R}(1)$			Steady-state value of the initial $k_{\text {eff }}$.
CTRL-FLUX பபப $^{\text {L }}$	R(1)			Maximum value of flux used for the controlling purpose.
CTRL-PREC ¢பப	$\mathrm{R}\left(N_{u p} \times N_{\text {fiss }}\right)$			Precursor concentrations at location of maximum flux.
CTRL-IDL	I(1)			Position of a maximum value within the flux vector.
CTRL-IGR	I(1)			Energy group number corresponding to a maximum flux value.
POWER-INI ${ }_{\text {பபப }}$	$\mathrm{R}(1)$	$I_{\text {norm }}=3$		Initial power.
E-POWபபபபபபப	R(1)	$I_{\text {norm }}=3$		Actual power.

The convergence parameters Δ_{i}^{ϵ} represent:

- Δ_{1}^{ϵ} is the thermal (up-scattering) iteration flux convergence parameter
- Δ_{2}^{ϵ} is the outer iteration flux convergence parameter
- Θ_{f} is the value of theta-parameter for fluxes
- Θ_{p} is the value of theta-parameter for precursors

8 Contents of a /fluxunk/ directory

This directory contains the main flux calculations results, including the multigroup flux, the eigenvalue for the problem and the diffusion coefficients when computed. The following types of equations can be solved:

1. Fixed source problem

$$
\begin{equation*}
\mathbf{A} \vec{\Phi}=\overrightarrow{\mathbf{S}} \tag{8.1}
\end{equation*}
$$

where \mathbf{A} is the coefficient matrix, \vec{S} is the source vector and $\vec{\Phi}$ is the unknown vector.
2. Direct eigenvalue problem

$$
\begin{equation*}
\mathbf{A} \overrightarrow{\boldsymbol{\Phi}}_{\alpha}+\frac{1}{\mathbf{K}_{\mathrm{eff}, \alpha}} \mathbf{B} \overrightarrow{\boldsymbol{\Phi}}_{\alpha}=\overrightarrow{\mathbf{0}} \tag{8.2}
\end{equation*}
$$

where \mathbf{B} is the second coefficient matrix and where $\left(\frac{1}{K_{\text {eff }, \alpha}}, \vec{\Phi}_{\alpha}\right)$ is the eigensolution corresponding to the α-th eigenvalue or harmonic mode. Generally, only the eigensolution corresponding to the maximum value of $K_{\text {eff }, \alpha}$ is found (the fundamental mode).
3. Adjoint eigenvalue problem

$$
\begin{equation*}
\mathbf{A}^{\top} \overrightarrow{\boldsymbol{\Phi}}_{\alpha}^{*}+\frac{1}{\mathbf{K}_{\mathrm{eff}, \alpha}} \mathbf{B}^{\top} \overrightarrow{\boldsymbol{\Phi}}_{\alpha}^{*}=\overrightarrow{\mathbf{0}} \tag{8.3}
\end{equation*}
$$

where matrices \mathbf{A} and \mathbf{B} are transposed.
4. Fixed source direct eigenvalue equation (direct GPT)

$$
\begin{equation*}
\text { A } \vec{\Gamma}_{\alpha}+\frac{1}{\mathbf{K}_{\text {eff }, \alpha}} \mathbf{B} \vec{\Gamma}_{\alpha}=\overrightarrow{\mathbf{S}} \quad \text { where } \quad\left\langle\boldsymbol{\Phi}_{\alpha}^{*}, \overrightarrow{\mathbf{S}}\right\rangle=\mathbf{0} \tag{8.4}
\end{equation*}
$$

where the direct source vector \vec{S} is orthogonal to the adjoint flux.
5. Fixed source adjoint eigenvalue equation (adjoint GPT)

$$
\begin{equation*}
\mathbf{A}^{\top} \overrightarrow{\boldsymbol{\Gamma}}_{\alpha}^{*}+\frac{\mathbf{1}}{\mathbf{K}_{\mathrm{eff}, \alpha}} \mathbf{B}^{\top} \overrightarrow{\boldsymbol{\Gamma}}_{\alpha}^{*}=\overrightarrow{\mathbf{S}}^{*} \quad \text { where } \quad\left\langle\boldsymbol{\Phi}, \overrightarrow{\mathbf{S}}^{*}\right\rangle=\mathbf{0} \tag{8.5}
\end{equation*}
$$

where the adjoint source vector \vec{S}^{*} is orthogonal to the direct flux.

8.1 State vector content for the /fluxunk/ data structure

The dimensioning parameters for this data structure, which are stored in the state vector \mathcal{S}_{i}^{f}, represent:

- The number of energy groups $N_{G}=\mathcal{S}_{1}^{f}$
- The number of unknowns per energy group $N_{U}=\mathcal{S}_{2}^{f}$
- The type of equation considered $I_{e}=\mathcal{S}_{3}^{f}=\alpha_{1}+10 \alpha_{2}+100 \alpha_{3}+1000 \alpha_{4}$ where

$$
\begin{aligned}
\alpha_{1}= & 0 / 1: \text { Fixed source (Eq. (8.1)) or } K_{\text {eff }} \text { (Eq. (8.2)) direct eigenvalue equation } \\
& \text { absent/present } \\
\alpha_{2}= & 0 / 1: \text { Adjoint eigenvalue equation (Eq. (8.3)) absent/present } \\
\alpha_{3}= & 0 / 1: \text { Direct fixed source eigenvalue equation }- \text { or GPT equation (Eq. (8.4)) } \\
& \text { absent/present } \\
\alpha_{4}= & 0 / 1: \text { Adjoint fixed source eigenvalue equation }- \text { or GPT equation (Eq. (8.5)) } \\
& \text { absent/present }
\end{aligned}
$$

- The number of harmonics considered $N_{h}=\mathcal{S}_{4}^{f}$ where

$$
N_{h}=\left\{\begin{aligned}
0 & \text { the harmonic calculation is not enabled } \\
\geq 1 & \text { the harmonic calculation is enabled. } N_{h} \text { is the number of harmonics. }
\end{aligned}\right.
$$

- The number of specific GPT equations considered $N_{\mathrm{gpt}}=\mathcal{S}_{5}^{f}$ where

$$
N_{\mathrm{gpt}}=\left\{\begin{aligned}
0 & \text { the GPT calculation is not enabled } \\
\geq 1 & \text { the GPT calculation is enabled. } N_{\mathrm{gpt}} \text { is the number of specific GPT } \\
& \text { equations. }
\end{aligned}\right.
$$

- The type of B_{n} solution considered $I_{s}=\mathcal{S}_{6}^{f}$ where

$$
I_{s}=\left\{\begin{aligned}
-1 & \text { No flux calculation, fluxes taken from input file } \\
0 & \text { Fixed source problem, no eigenvalue } \\
1 & \text { fixed source eigenvalue problem (GPT type) with fission } \\
2 & K_{\text {eff eigenvalue problem with fission and without leakage }} \\
3 & K_{\text {eff eigenvalue problem with fission and leakage }} \\
4 & \text { Buckling eigenvalue problem with fission and leakage } \\
5 & \text { Buckling eigenvalue problem without fission but with leakage }
\end{aligned}\right.
$$

- The type of leakage model $I_{l}=\mathcal{S}_{7}^{f}$ where

$$
I_{l}=\left\{\begin{aligned}
0 & \text { No leakage model } \\
1 & \text { Homogeneous PNLR calculation } \\
2 & \text { Homogeneous PNL calculation } \\
3 & \text { Homogeneous SIGS calculation } \\
4 & \text { Homogeneous ALSB calculation } \\
5 & \text { Leakage with isotropic streaming effects } \\
16 & \text { Leakage with anisotropic streaming effects - imposed buckling } \\
26 & \text { Leakage with anisotropic streaming effects - X-Buckling search } \\
36 & \text { Leakage with anisotropic streaming effects - Y-Buckling search } \\
46 & \text { Leakage with anisotropic streaming effects - Z-Buckling search } \\
56 & \text { Leakage with anisotropic streaming effects - radial Buckling search } \\
66 & \text { Leakage with anisotropic streaming effects - total Buckling search }
\end{aligned}\right.
$$

- Number of free iteration per variational acceleration cycle $N_{f}=\mathcal{S}_{8}^{f}$
- Number of accelerated iteration per variational acceleration cycle $N_{a}=\mathcal{S}_{9}^{f}$
- Thermal rebalancing option $I_{r}=\mathcal{S}_{10}^{f}$ where

$$
I_{r}= \begin{cases}0 & \text { No thermal iteration rebalancing } \\ 1 & \text { Thermal iteration rebalancing activated }\end{cases}
$$

- Maximum number of thermal (up-scattering) iterations $M_{\mathrm{in}}=\mathcal{S}_{11}^{f}$
- Maximum number of outer iterations $M_{\mathrm{out}}=\mathcal{S}_{12}^{f}$
- Initial number of ADI iterations in Trivac $M_{\text {adi }}=\mathcal{S}_{13}^{f}$

8.2 The main /fluxunk/ directory

On its first level, the following records and sub-directories will be found in the /fluxunk/ directory:

Table 62: Main records and sub-directories in /fluxunk/

Name	Type	Condition	UnitsComment
SIGNATURE	$\mathrm{C} * 12$		Signature of the data structure (SIGNA =L_FLUX
STATE-VECTOR	$\mathrm{I}(40)$		Vector describing the various parameters associated with this data structure \mathcal{S}_{i}^{f}, as defined in Section 8.1.
EPS-CONVERGE	$\mathrm{R}(4)$		Convergence parameters Δ_{i}^{ϵ}
K-EFFECTIVE ${ }_{\sqcup}$	R (1)	$\mathcal{S}_{6}^{f} \geq 1$	Computed or imposed effective multiplication factor for direct eigenvalue problem, corresponding to the fundamental mode
AK-EFFECTIVE	$\mathrm{R}(1)$	$\frac{\mathcal{S}_{3}^{f}}{10} \bmod 10=1$	Computed effective multiplication factor for adjoint eigenvalue problem, corresponding to the fundamental mode. The theoretical value is equal to 'K-EFFECTIVE' but difference may occurs for numerical reasons.
K-INFINITY	R (1)	$\mathcal{S}_{6}^{f} \geq 2$	Computed infinite multiplication constant for eigenvalue problem, corresponding to the fundamental mode
B2பபB1HOM ${ }_{\text {பபப }}$	R (1)	$\mathcal{S}_{6}^{f} \geq 1$	cm^{-2} Homogeneous buckling B^{2}, corresponding to the fundamental mode
DIFFB1H0M பபப	$\mathrm{R}(G)$	$\mathcal{S}_{6}^{f} \geq 1$	cm Multigroup homogeneous leakage coefficients d^{g}, corresponding to the fundamental mode
B2பபHETE பபபப	$\mathrm{R}(3)$	$\mathcal{S}_{7}^{f} \geq 6$	cm^{-2} Directional buckling components B_{i}^{2}, corresponding to the fundamental mode
GAMMA	$\mathrm{R}(G)$	$\mathcal{S}_{7}^{f} \geq 5$	Gamma factors used with B_{n}-type streaming models.

continued on next page

Main records and sub-directories in /fluxunk/
continued from last page

Name	Type	Condition	UnitsComment
FLUX பபபபபபபப	$\operatorname{Dir}\left(\mathcal{S}_{1}^{f}\right)$		List of real arrays. Each component of this list is a real array of dimension \mathcal{S}_{2}^{f} containing the solution of a fixed source (Eq. (8.1)) or of a direct eigenvalue (Eq. (8.2)) equation, corresponding to the fundamental mode.
AFLUX $_{\text {பபபபபபப }}$	$\operatorname{Dir}\left(\mathcal{S}_{1}^{f}\right)$	$\frac{\mathcal{S}_{3}^{f}}{10} \bmod 10=1$	List of real arrays. Each component of this list is a real array of dimension \mathcal{S}_{2}^{f} containing the solution of an adjoint eigenvalue (Eq. (8.3)) equation, corresponding to the fundamental mode.
MODE	$\operatorname{Dir}\left(\mathcal{S}_{4}^{f}\right)$	$\mathcal{S}_{4}^{f} \geq 1$	List of harmonic mode sub-directories. Each component of this list follows the specification presented in Section 8.3.
DFLUX	$\operatorname{Dir}\left(\mathcal{S}_{5}^{f}\right)$	$\mathcal{S}_{3}^{f}=100$	List of direct (explicit) GPT sub-directories. Each component of this list is a multigroup list of dimen$\operatorname{sion} \mathcal{S}_{1}^{f}$. Each component of the multigroup list is a real array of dimension \mathcal{S}_{2}^{f} containing the solution of a fixed source direct eigenvalue equation similar to Eq. (8.4).
ADFLUX	$\operatorname{Dir}\left(\mathcal{S}_{5}^{f}\right)$	$\mathcal{S}_{3}^{f}=1000$	List of adjoint (implicit) GPT sub-directories. Each component of this list is a multigroup list of dimension \mathcal{S}_{1}^{f}. Each component of the multigroup list is a real array of dimension \mathcal{S}_{2}^{f} containing the solution of a fixed source adjoint eigenvalue equation similar to Eq. (8.5).

The convergence parameters Δ_{i}^{ϵ} represent:

- Δ_{1}^{ϵ} is the thermal (up-scattering) iteration flux convergence parameter
- Δ_{2}^{ϵ} is the outer iteration eigenvalue convergence parameter
- Δ_{3}^{ϵ} is the outer iteration flux convergence parameter
- Δ_{4}^{ϵ} is the relaxation factor of the flux used in multiphysics applications. $\Delta_{4}^{\epsilon}=1$ is equivalent to no relaxation.

8.3 The harmonic mode sub-directories in /fluxunk/

Each component of the list named 'MODE' contains the information relative to a specific harmonic mode.

Table 63: Component of the harmonic mode directory

Name	Type	Condition	Units	Comment
K-EFFECTIVE ${ }_{\cup}$	R (1)			Computed effective multiplication factor for eigenvalue problem, corresponding to the α-th mode
$\mathrm{FLUX}_{\text {பபபபபபபu }}$	$\operatorname{Dir}\left(\mathcal{S}_{1}^{f}\right)$			List of real arrays. Each component of this list is a real array of dimension \mathcal{S}_{2}^{f} containing the solution of the α-th mode of a direct eigenvalue (Eq. (8.2)) equation.
AFLUX $_{\text {பபபபபபப }}$	$\operatorname{Dir}\left(\mathcal{S}_{1}^{f}\right)$	$\frac{S_{3}^{f}}{10} \bmod 10=1$		List of real arrays. Each component of this list is a real array of dimension \mathcal{S}_{2}^{f} containing the solution of the α-th mode of an adjoint eigenvalue (Eq. (8.3)) equation.

9 Contents of a /gptsour/ directory

This directory contains the source components of a fixed source eigenvalue problem, as used in the generalized perturbation theory (GPT).

9.1 State vector content for the /gptsour/ data structure

The dimensioning parameters for this data structure, stored in the state vector $\mathcal{S}_{i}^{g p t}$, represent:

- The number of energy groups $N_{G}=\mathcal{S}_{1}^{\text {gpt }}$
- The number of unknowns per energy group $N_{U}=\mathcal{S}_{2}^{g p t}$
- The number of direct fixed sources $N_{D}=\mathcal{S}_{3}^{g p t}$
- The number of adjoint fixed sources $N_{A}=\mathcal{S}_{4}^{g p t}$

9.2 The main /gptsour/ directory

On its first level, the following records and sub-directories will be found in the /gptsour/ directory:

Table 64: Main records and sub-directories in /gptsour/

Name	Type	Condition	Units	Comment
SIGNATURE பபப	$\mathrm{C} * 12$			Signature of the data structure (SIGNA =L_GPT
STATE-VECTOR	I(40)			Vector describing the various parameters associated with this data structure $\mathcal{S}_{i}^{g p t}$, as defined in Section 9.1.
LINK.FLUX பபப	$\mathrm{C} * 12$			Name of the unperturbed FLUX orthogonal to the fixed sources.
$\mathrm{LINK}^{\text {. }} \mathrm{SYSTEM}_{\sqcup}$	$\mathrm{C} * 12$			Name of the unperturbed SYSTEM object.
LINK.TRACK	$\mathrm{C} * 12$			Name of the tracking object used to construct the system matrices.
DSOUR பபபபபபப	$\operatorname{Dir}\left(\mathcal{S}_{3}^{\text {gpt }}\right)$	$\mathcal{S}_{3}^{\text {gpt }} \geq 1$		List of direct fixed source sub-directories. Each component of this list is a multigroup list of dimension $\mathcal{S}_{1}^{g p t}$. Each component of the multigroup list is a real array of dimension $\mathcal{S}_{2}^{\text {gpt }}$ containing a direct fixed source array.
$A^{\text {ASOUR }}$ பபபபபபப	$\operatorname{Dir}\left(\mathcal{S}_{4}^{\text {gpt }}\right)$	$\mathcal{S}_{4}^{g p t} \geq 1$		List of adjoint fixed source sub-directories. Each component of this list is a multigroup list of dimension $\mathcal{S}_{1}^{g p t}$. Each component of the multigroup list is a real array of dimension $\mathcal{S}_{2}^{\text {gpt }}$ containing an adjoint fixed source array

10 Contents of a /edition/ directory

This directory contains the main editing results. For the purpose of illustration we will assume that the EDI: module is executed using the following data:

```
EDITING := EDI: FLUX LIBRARY VOLMAT ::
    MERG COMP COND 27 69 ALL SAVE ON EDITCELL2G ;
```

where EDITING is the final EDITION data structure. The data structures FLUX, LIBRARY and VOLMAT are respectively of type FLUXUNK, MICrolib and Tracking. Assuming that the initial number of regions in VOLMAT is N and the number of groups in LIBRARY is $G=69$, then the final information that will be stored in the EDITING data structure will represent a two group $\left(G_{c}=2\right)$ one mixture $N_{h} /$ microlib $/$.

10.1 State vector content for the /edition/ data structure

The dimensioning parameters for this data structure, which are stored in the state vector $\mathcal{S}_{i}^{\text {edi }}$, represent:

- The number of homogeneous mixtures saved $N_{H}=\mathcal{S}_{1}^{\text {edi }}$ for the last editing step
- The number of condensed groups considered $M_{G}=\mathcal{S}_{2}^{\text {edi }}$ for the last editing step
- Editing flag to indicate the presence of 4 factor editing $I_{4 f}=\mathcal{S}_{3}^{\text {edi }}$ for the last editing step
- Editing flag to indicate that the up-scattering contributions have all been transferred to the diagonal part of the scattering matrix $I_{U}=\mathcal{S}_{4}^{\text {edi }}$ for the last editing step
- The number of mixture activated $N_{A}=\mathcal{S}_{5}^{\text {edi }}$ for the last editing step
- Editing flag to indicate the types of statistics generated by EDI: $I_{S}=\mathcal{S}_{6}^{\text {edi }}$ for the last editing step
- Editing flag to indicate which boundary flux editions are used in EDI:. These editions are required for computing assembly discontinuity factors (ADF) or to perform some types of superhomogénéisation (SPH) calculations. $I_{\mathrm{adf}}=\mathcal{S}_{7}^{\text {edi }}$ for the last editing step

$$
I_{\mathrm{adf}}= \begin{cases}0 & \text { no boundary flux editions; } \\ 1 & \text { use boundary fluxes obtained using the ALBS keyword in DRAGON; } \\ 2 & \text { use boundary fluxes obtained from informations located in REF: ADF directory; } \\ 3 & \text { use boundary fluxes obtained from the current iteration method in Eurydice; } \\ 4 & \text { use boundary flux information recovered from the MACROLIB/ADF directory. }\end{cases}
$$

- Editing flag to indicate the type of tracking to be performed on a macro-geometry built by module EDI : . $I_{\text {cell }}=\mathcal{S}_{8}^{\text {edi }}$ for the last editing step

$$
I_{\text {cell }}= \begin{cases}1 & \text { the macro-geometry is tracked by module SYBILT: or EXCELT: } ; \\ 2 & \text { the macro-geometry is tracked by module NXT:; } \\ 3 & \text { the macro-geometry is tracked by another module }\end{cases}
$$

- The number of extracted isotopes in the output microlib $I_{m}=\mathcal{S}_{9}^{\text {edi }}$ for the last editing step
- The print level considered $I_{p}=\mathcal{S}_{10}^{\text {edi }}$ for the last editing step
- Editing flag to indicate the types of cross section saved in EDI: $I_{x}=\mathcal{S}_{11}^{\text {edi }}$ for the last editing step
- The type of weighting used for P_{1} cross section information $I_{\mathrm{w}}=\mathcal{S}_{12}^{\text {edi }}$ for the last editing step $(=0$: flux weighting; $=1$ current weighting)
- The maximum number of isotopes per mixture $M_{I}=\mathcal{S}_{13}^{\text {edi }}$
- The maximum number of condensed groups in all editing $M_{g}=\mathcal{S}_{14}^{\text {edi }}$
- The maximum number of homogeneous mixtures in all editing $M_{h}=\mathcal{S}_{15}^{\text {edi }}$
- The total number of ISOTXS files generated $M_{F}=\mathcal{S}_{16}^{\text {edi }}$
- The maximum number of regions before homogenization $M_{\max }=\mathcal{S}_{17}^{\text {edi }}$
- Editing flag $=1$ for H -factor edition; $=0$ otherwise $I_{H-f a c}=\mathcal{S}_{18}^{\text {edi }}$
- Number of delayed neutron precursor groups $N_{\text {del }}=\mathcal{S}_{19}^{\text {edi }}$
- Geometry index $L_{\text {geo }}=\mathcal{S}_{20}^{\text {edi }}$

$$
L_{\mathrm{geo}}= \begin{cases}0 & \text { the macro geometry is not available } \\ 1 & \text { the macro-geometry of the last editing is available }\end{cases}
$$

- Type of weighting for homogenization or/and condensation of cross-section information $I_{\text {adj }}=\mathcal{S}_{21}^{\text {edi }}$

$$
I_{\mathrm{adj}}=\left\{\begin{array}{cc}
0 & \text { use direct flux; } \\
1 & \text { use adjoint flux. }
\end{array}\right.
$$

- Type of current used for P_{1} weighting if $I_{\mathrm{w}} \neq 0 . I_{\text {curr }}=\mathcal{S}_{22}^{\text {edi }}$

$$
I_{\text {curr }}= \begin{cases}1 & \text { use a current obtained from an heterogeneous leakage model; } \\ 2 & \text { use the Todorova flux. }\end{cases}
$$

- Number of reactions saved on output microlib $N_{\text {reac }}=\mathcal{S}_{23}^{\text {edi }}$

$$
N_{\text {reac }}= \begin{cases}0 & \text { all available reactions are saved; } \\
>0 & \text { only reactions listed in REF:HVOUT array are saved. }\end{cases}
$$

10.2 The main /edition/ directory

On its first level, the following records and sub-directories will be found in the /edition/ directory:

Table 65: Main records and sub-directories in /edition/

Name	Type	Condition	Units	Comment
SIGNATURE பபப	$\mathrm{C} * 12$			Signature of the data structure (SIGNA =L_EDIT ${ }_{\text {பபபபபப }}$).
STATE-VECTOR	I(40)			Vector describing the various parameters associated with this data structure $\mathcal{S}_{i}^{\text {edi }}$, as defined in Section 10.1.
TITLE	C*72			Title of the last editing performed (TITLE)
LAST-EDIT பபப	$\mathrm{C} * 12$	$\left\|\mathcal{S}_{11}^{\text {edi }}\right\| \geq 2$		Name of the last editing sub-directory saved (LAST)

continued on next page

Main records and sub-directories in /edition/
continued from last page

Name	Type	Condition	Units	Comment
LINK. GEOM பபப	$\mathrm{C} * 12$			Name of the GEOMETRY on which the last edition was based.
REF : IMERGE Uப	$\mathrm{I}\left(\mathcal{S}_{17}^{\text {edi }}\right)$			Merged region number associated with each of the original region number M_{r}
REF: VOLUME \quad ப	$\mathrm{R}\left(\mathcal{S}_{17}^{\text {edi }}\right)$		cm^{3}	Volume associated with each of the original region number V_{r}
REF: MATCOD பப	$\mathrm{I}\left(\mathcal{S}_{17}^{\text {edi }}\right)$			Mixture number associated with each of the original region number $M_{\text {mix }}$
REF: IGCOND $_{\text {பப }}$	$\mathrm{I}\left(\mathcal{S}_{2}^{\text {edi }}\right)$			Reference group limits associated with the merged groups C_{g}
REF : ADF பபபபப $^{\text {b }}$	Dir	$\mathcal{S}_{7}^{\text {edi }}=2$		ADF-related input data as presented in Section 10.3.
REF : HVOUT $_{\text {பபப }}$	$\mathrm{C}\left(\mathcal{S}_{23}^{\text {edi }}\right) * 8$	$\mathcal{S}_{23}^{\text {edi }}>0$		Names of the reactions saved in the output microlib.
CARISOபபபபபப	$\mathrm{C}\left(\mathcal{S}_{9}^{\text {edi }}\right) * 12$	$\mathcal{S}_{9}^{\text {edi }} \geq 1$		Name of extracted isotopes saved during the last editing (NAMI)
IACTI	$\mathrm{I}\left(\mathcal{S}_{5}^{\text {edi }}\right)$	$\mathcal{S}_{5}^{\text {edi }} \geq 1$		Original mixture numbers for which activation data was generated $\left(A_{m}\right)$
MACRO-GEOM பப	Dir	$\mathcal{S}_{20}^{\text {edi }}=1$		Macro-geometry directory. This geometry may be used to complete the COMPO database, for performing a geometry equivalence (equigeom) and/or as the macrogeometry in SPH calculations. This directory follows the specification presented in Section 3.2.
LINK.MACGEOM	$\mathrm{C} * 12$	$\mathcal{S}_{20}^{\text {edi }}=1$		Name of the macro-geometry on which the last edition was based.
$\{/$ micdir $/\}$	Dir			Set of sub-directories containing the editing information. This directory follows the specification presented in Section 2.2.

The set of directory $\{/$ micdir/ $\}$ names EDIDIR will be composed according to the following rules. In the case where the set of keywords SAVE ON are used followed by a directory name as above, the contents of EDIDIR will be identical the name of the specified directory (e. g., EDITCELL2G ${ }_{\square \sqcup}$). If the SAVE option is used without specifying a specific directory, then the first eight characters of EDIDIR (EDIDIR (1:8)) will be given as REF-CASE while the last four character (EDIDIR ($9: 12$)) will be a unique character variable representing the successive directory saved. This character variable will be created as follows:
WRITE(EDIDIR(9: 12),' (I4.4)') J
where $1 \leq J$ represents the $J^{\text {th }}$ execution of the EDI: module. In the case above, we would have a single editing directory of the form:

Table 66: Example of an editing directory

Name	Type	Condition	Units
EDITCELL2G	Comment		
Dir			Two groups /microlib/ sub-directory

10.3 The /REF:ADF/ sub-directory in /edition/

Sub-directory containing input data for ADF-type boundary flux edition.

Table 67: Records in the /REF:ADF/ sub-directory

Name	Type	Condition	Units	Comment
NTYPE பபபபபபப	I(1)			Number of ADF-type boundary flux edits.
NADF பபபபபபபப	I(NTYPE)			$N_{i}^{\text {adf }}$: number of regions included in each ADFtype boundary flux edit.
HADF	C(NTYPE)*4			Name of each ADF-type boundary flux edit. Standard names are: = FD_C: corner flux edition; $=$ FD_B: surface (assembly gap) flux edition; = FD_H: row flux edition. These are the first row of surrounding cells in the assembly.
\{/type/\}	$\mathrm{I}\left(N_{i}^{\text {adf }}\right)$			Set of integer arrays containing the editing information. Indices of the regions of the reference geometry belonging to the flux edition. Name type is a component of HADF array.

11 Contents of a /burnup/ directory

This directory contains the main burnup information, namely the multigroup flux and the isotopic concentration at each time or burnup step.

11.1 State vector content for the /burnup/ data structure

The dimensioning parameters for the /burnup/ data structure, which are stored in the state vector \mathcal{S}^{b}, represent:

- The type of solution considered $I_{s}=\mathcal{S}_{1}^{b}$ where

$$
I_{s}= \begin{cases}1 & \text { Fifth-order Cash-Karp method } \\ 2 & \text { Forth-order Kaps-Rentrop method }\end{cases}
$$

- The type of burnup considered $I_{t}=\mathcal{S}_{2}^{b}$ where

$$
I_{t}= \begin{cases}0 & \text { Out of core or zero flux/power depletion } \\ 1 & \text { Constant flux depletion } \\ 2 & \text { Constant fuel power depletion } \\ 3 & \text { Constant assembly power depletion }\end{cases}
$$

- Number of time steps for which burnup properties are present in this directory $N_{t}=\mathcal{S}_{3}^{b}$
- Total number of isotopes $N_{I}=\mathcal{S}_{4}^{b}$
- Number of depleting mixtures $N_{M}^{\text {depl }}=\mathcal{S}_{5}^{b}$
- Number of depleting reactions $N_{R}^{\text {depl }}=\mathcal{S}_{6}^{b}$
- Number of depleting isotopes $N_{I}^{\text {depl }}=\mathcal{S}_{7}^{b}$
- Number of mixtures $N_{m}=\mathcal{S}_{8}^{b}$
- Microscopic reaction rate extrapolation option in solving the burnup equations $I_{e}=\mathcal{S}_{9}^{b}$ where

$$
I_{e}= \begin{cases}0 & \text { Do not extrapolate } \\ 1 & \text { Perform linear extrapolation }\end{cases}
$$

- Constant power normalization option for the burnup calculation $I_{g}=\mathcal{S}_{10}^{b}$ where

$$
I_{g}= \begin{cases}0 & \text { Compute the burnup using the power released in fuel } \\ 1 & \text { Compute the burnup using the power released in the global geometry }\end{cases}
$$

This option have an effect only in cases where some non-depleting mixtures are producing energy.

- Saturation of initial number densities $I_{s}=\mathcal{S}_{11}^{b}$ where

$$
I_{s}= \begin{cases}0 & \text { Do not store saturated initial number densities in the BURNUP object } \\ 1 & \text { Store saturated initial number densities }\end{cases}
$$

This option have an effect only in cases where some depleting isotopes are at saturation.

- Type of saturation model $I_{d}=\mathcal{S}_{12}^{b}$ where

$$
I_{d}= \begin{cases}0 & \text { Do not use Dirac functions in saturated number densities } \\ 1 & \text { Use Dirac functions in saturated number densities }\end{cases}
$$

This option have an effect only in cases where some depleting isotopes are at saturation.

- Perturbation flag for cross sections $I_{p}=\mathcal{S}_{13}^{b}$ where

$$
I_{p}= \begin{cases}0 & \text { Time-dependent cross sections will be used if available } \\ 1 & \text { Time-independent cross sections will be used }\end{cases}
$$

- Neutron flux recovery flag $I_{f}=\mathcal{S}_{14}^{b}$ where

$$
I_{f}= \begin{cases}0 & \text { Neutron flux is recovered from a L_FLUX object } \\ 1 & \text { Neutron flux is recovered from the embedded macrolib present in a } \\ & \text { L_LIBRARY object }\end{cases}
$$

- Fission yield data recovery flag $I_{y}=\mathcal{S}_{15}^{b}$ where
$I_{y}= \begin{cases}0 & \text { Fission yield data is recovered from DEPL-CHAIN directory (see Section 2.4) } \\ 1 & \begin{array}{l}\text { Fission yield data is recovered from PIFI and PYIELD records in /isotope/ } \\ \text { directory (see Table 17) }\end{array}\end{cases}$

11.2 The main /burnup/ directory

On its first level, the following records and sub-directories will be found in the /burnup/ directory:

Table 68: Main records and sub-directories in /burnup/

Name	Type	Condition	UnitsComment
SIGNATURE பபப	$\mathrm{C} * 12$		Signature of the /burnup/ data structure (SIGNA =L_BURNUP \quad பபபப).
STATE-VECTOR	$\mathrm{I}(40)$		Vector describing the various parameters associated with this data structure \mathcal{S}_{i}^{b}, as defined in Section 11.1.
EVOLUTION-R ${ }_{\square}$	R(5)		Vector describing the various parameters associated with the burnup calculation options R_{i}
LINK. LIB பபபப	$\mathrm{C} * 12$		Name of the MICROLIB on which the last depletion step was based.
DEPL-TIMES ப	$\mathrm{R}\left(N_{t}\right)$		$10^{8} \mathrm{~s}$ Vector describing the various time steps at which burnup information has been saved T_{i}
FUELDEN-INIT	$\mathrm{R}(3)$		Vector giving the initial density of heavy element in the fuel $\rho_{f}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$, the initial mass of heavy element in the fuel $m_{f}(\mathrm{~g})$ and the initial mass of heavy element in the fuel divided by the global geometry volume ($\mathrm{g} \mathrm{cm}^{-3}$)

Main records and sub-directories in /burnup/
continued from last page

Name	Type	Condition	UnitsComment	
VOLUME-MIX ${ }_{\text {பப }}$	$\mathrm{R}\left(N_{m}\right)$		cm^{3}	Vector giving the mixture volumes
FUELDEN-MIX ${ }_{\text {L }}$	$\mathrm{R}\left(N_{m}\right)$			Initial mass of heavy element contained in each mixture
WEIGHT-MIX	$\mathrm{R}\left(N_{m}\right)$			Initial mass of all the isotopes contained in each mixture
DEPLETE-MIX ${ }_{\llcorner }$	$\mathrm{I}\left(N_{m} \times N_{I}^{\text {depl }}\right)$			Matrix giving the index in the ISOTOPESDENS record of each depleting isotope in each mixture.
ISOTOPESUSED	$\mathrm{C}\left(N_{I}\right) * 12$			Alias name of the isotopes
ISOTOPESMIX $_{\square}$	$\mathrm{I}\left(N_{I}\right)$			Mixture number associated with each isotope
MIXTURESBurn	$\mathrm{I}\left(N_{m}\right)$			Depletion flag array. A component is set to 1 to indicate that a mixture is depleting.
MIXTURESPowr	$\mathrm{I}\left(N_{m}\right)$			Power flag array. A component is set to 1 to indicate that a mixture is producing power.
\{/depldir/\}	Dir			Set of N_{t} sub-directories containing the properties associated with each burnup step T_{i}

The set of directory \{/depldir/\} names DEPLDIR will be composed according to the following laws. The first eight character (DEPLDIR (1:8)) will always be given by DEPL-DAT. The last four characters (DEPLDIR $(9: 12)$) represent the time step saved. For the case where N_{t} time steps were saved we would use the following FORTRAN instructions to create the last four characters of each of the directory names:

$$
\text { WRITE(DEPLDIR(9: 12), } \left.{ }^{\prime}(\mathrm{I} 4.4)^{\prime}\right) J
$$

for $1 \leq J \leq N_{t}$ with the time stamp associated with each directory being given by T_{J}. For the case where $\left(N_{t}=2\right)$, two such directory would be generated, namely

Table 69: Example of depletion directories

Name	Type Condition Units	Comment
DEPL-DAT0001	Dir	Sub-directories which contain the information asso- ciated with time step 1
DEPL-DAT0002	Dir	Sub-directories which contain the information asso- ciated with time step 2

11.3 The depletion sub-directory /depldir/ in /burnup/

Inside each depletion directory the following records and sub-directories will be found:

Table 70: Contents of a depletion sub-directory in /burnup/

Name	Type	Condition	Units	Comment
ISOTOPESDENS	$\mathrm{R}\left(N_{I}\right)$		$(\mathrm{cm} \mathrm{b})^{-1}$	Isotopic densities ρ_{i} for each of the isotopes described in the /microlib/ directory where the order of the isotopes is also specified
MICRO-RATES ${ }_{\sqcup}$	$\mathrm{R}\left(N^{\text {dim }}\right)$		$10^{-8} \mathrm{~s}^{-1}$	Values of the microscopic reaction rate of the depleting reactions for each depleting isotope and each mixture. The macroscopic reaction rate related to the non-depleting isotopes is stored at location $N_{I}^{\text {depl }}+1$. The $N_{R}^{\text {depl }}$ reaction types are stored in the order of the 'DEPLETE-IDEN' array in Table 11, starting with the 'NFTOT' reaction. The flux-induced power factors are stored in location N_{R}^{depl}. The decay power (delayed) factors are stored in location $N_{R}^{\text {depl }}+1$ Both flux-induced and decay power are given in units of $10^{-8} \mathrm{MeV} / \mathrm{s}$. $N^{\text {dim }}=\left(N_{I}^{\text {depl }}+1\right) \times\left(N_{R}^{\text {depl }}+1\right) \times N_{m}$
INT-FLUX பபபப	$\mathrm{R}\left(N_{m}\right)$		$\mathrm{cm} \mathrm{s}^{-1}$	Integrated flux in each mixture.
FLUX-NORM பப $^{\text {I }}$	R(1)		1	Flux normalization constant. It is zero for out of core depletion and represents the normalization of the flux ϕ_{r}^{g} that is used to ensure that the cell integrated flux or power is that required when fixed flux or power burnup is requested
ENERG-MIX பபப	$\mathrm{R}\left(N_{m}\right)$		Joule	Energy realeased during the time step in each mixture
FORM-POWER bu	R(1)	$I_{t}=3$	1	Ratio of the global power released in the complete geometry divided by the power released in fuel.
BURNUP-IRRAD	$\mathrm{R}(2)$			Fuel burnup (MW d T^{-1}) and irradiation $\left(\mathrm{Kb}^{-1}\right)$ reached at this time step

12 Contents of a /multicompo/ directory

This object, shown in Figure 5, is used to collect information gathered from many DRAGON elementary calculations performed under various conditions. Each elementary calculation is characterized by a tuple of global and local parameters. These parameters are of different types, depending on the nature of the study under consideration: type of assembly, power, temperature in a mixture, concentration of an isotope, time, burnup or exposure rate in a depletion calculation, etc. Each step of a depletion calculation represents an elementay calculation. The multicompo object is often presented as a multi-parameter reactor database.

Figure 5: Representation of a MULTICOMPO object.

The multicompo object contains table-of-content information apart from a list of homogenized mixture directories. Each homogenized mixture directory contain a list of elementary calculation directories whose components are embedded microlib objects containing the useful data. The localization of an elementary calculation is done using a tuple of global and local parameters. The elementary calculation indices are stored in a tree with the number of levels equal to the number of global and local parameters. An example of a tree with three parameters is shown in Figure 6. Each node of this tree is associated with the index of the corresponding global parameter (positive index) or local parameter (negative index) and with the reference to the daughter nodes if they exist. The number if leafs is equal to the number of nodes for the last (third) parameter and is equal to the number of elementary calculations stored in the multicompo object. The index of each elementary calculation is therefore an attribute of each leaf.

Figure 6: Parameter tree in a MULTICOMPO object

In each embedded microlib directory, the COMPO: module recover cross sections for a number of
particularized isotopes and macroscopic sets named ' $*$ MAC $*$ RES', a collection of isotopic cross sections weighted by isotopic number densities. Other information is also recovered: multigroup neutron fluxes, isotopic number densities, fission spectrum and a set of local parameters. The local parameters are values that characterize each homogenized mixture: local power, burnup, exposure rate, etc.

12.1 State vector content for the /multicompo/ data structure

The dimensioning parameters for this data structure, which are stored in the state vector $\mathcal{S}^{\text {cpo }}$, represent:

- The number of homogenized mixtures $M_{m}=\mathcal{S}_{1}^{\text {cpo }} .=0$ for an empty mULTICOMPO object.
- The number of groups $G=\mathcal{S}_{2}^{\text {cpo }}$
- The exact number of elementary calculations in the multicompo $N_{\text {cal }}=\mathcal{S}_{3}^{\text {cpo }}$
- The maximum number of elementary calculations in the multicompo $N_{\max }=\mathcal{S}_{4}^{\text {cpo }}$
- The number of global parameters $N_{\text {glob }}=\mathcal{S}_{5}^{\text {cpo }}$
- The number of local parameters $N_{\text {loc }}=\mathcal{S}_{6}^{\text {cpo }}$
- The number of global parameters linked with isotopes $N_{\text {gl_iso }}=\mathcal{S}_{7}^{\text {cpo }}$
- The number of global parameters linked with MICROLIB objects $N_{\text {gl_bib }}=\mathcal{S}_{8}^{\text {cpo }}$
- The number of local parameters linked with isotopes $N_{\text {loc_iso }}=\mathcal{S}_{9}^{\text {cpo }}$
- The number of lines of comment $N_{\mathrm{doc}}=\mathcal{S}_{10}^{\text {cpo }}$
- Geometry index $L_{\text {geo }}=\mathcal{S}_{11}^{\text {cpo }}$:

$$
L_{\mathrm{geo}}= \begin{cases}0 & \text { the geometries are not available } \\ 1 & \text { calculation-ordered homogenized geometries are available }\end{cases}
$$

- Version identificator $\mathcal{S}_{12}^{\text {cpo }}$. Currently equal to 2006. This value will change if the multicompo specification is to be modified in the future.
- The number of user-defined particularized isotopes $\mathcal{S}_{13}^{\mathrm{cpo}}$.
- Group form factor index $N_{\text {gff }}=\mathcal{S}_{14}^{\mathrm{gff}}$:

$$
N_{\mathrm{gff}}= \begin{cases}-1 & \text { the group form factors will be recovered from an EDITION object } \\ 0 & \text { the group form factors are not processed } \\ >0 & \text { number of group form factors per energy group }\end{cases}
$$

12.2 The main /multicompo/ directory

On its first level, the following records and sub-directories will be found in the /multicompo/ directory:

Table 71: Main records in /multicompo/

Name	Type Condition Units	Comment	
SIGNATURE	C $* 12$	Dir	Signature of the data structure (SIGNA =L_MULTICOMPO). Set of sub-directories, each of them containing an independent mulTICOMPO structure

Table 72: Main records and sub-directories in $\{/$ namdir $/\}$

Name	Type	Condition	UnitsComment
STATE-VECTOR	$\mathrm{I}(40)$		Vector describing the various parameters associated with this data structure $\mathcal{S}_{i}^{\text {cpo }}$, as defined in Section 12.1.
DEPL-CHAIN பப	Dir	*	directory containing the /depletion/ associated with directory /namdir/, following the specification presented in Section 2.4.
COMMENT பபபபப	$\mathrm{C}\left(N_{10}^{\mathrm{cpo}}\right) * 80$	$\mathcal{S}_{10}^{\text {cpo }}>0$	User-defined comments about the data structure
NOMISP	$\mathrm{C}\left(\mathcal{S}_{13}^{\text {cpo }}\right) * 8$	$\mathcal{S}_{13}^{\text {cpo }} \geq 1$	Names of the user-defined particularized isotopes.
GLOBAL	Dir		Table-of-content for global parameter information: definition and tabulated values. The specification is presented in Section 12.3.
LOCAL	Dir	$\mathcal{S}_{6}^{\mathrm{cpo}} \geq 1$	Table-of-content for local parameter information. The specification is presented in Section 12.4.
MIXTURES பபபப	$\operatorname{Dir}\left(\mathcal{S}_{1}^{\text {cpo }}\right)$	$\mathcal{S}_{1}^{\text {cpo }} \geq 1$	List of homogenized mixture directories. Each component of this list follows the specification presented in Section 12.5.
GEOMETRIES $_{\text {பப }}$	$\operatorname{Dir}\left(\mathcal{S}_{4}^{\mathrm{cpo}}\right)$	$\mathcal{S}_{11}^{\text {cpo }}=1$	List of homogenized geometry directories. Each component of this list follows the specification presented in Section 3.2.

12.3 The GLOBAL sub-directory in /multicompo/

This directory is a table-of-content for the globals parameters. Its specification follows:

Table 73: Contents of sub-directory GLOBAL in /multicompo/

Name	Type	Condition	UnitsComment
PARKEY $_{\text {பபபபபப }}$	$\mathrm{C}\left(\mathcal{S}_{5}^{\mathrm{cpo}}\right) * 12$		User-defined key-words for the global parameters.
PARTYP பபபபபப	$\mathrm{C}\left(\mathcal{S}_{5}^{\mathrm{cpo}}\right) * 4$		Character identification for the types of global parameters (eg: TEMP, CONC, IRRA, etc.). Temperatures are given in Kelvin.
$\mathrm{PARFMT}_{\text {பபபபபப }}$	$\mathrm{C}\left(\mathcal{S}_{5}^{\mathrm{cpo}}\right) * 8$		Types for the global parameters (eg: REAL, STRING or INTEGER).
PARCHR	$\mathrm{C}\left(\mathcal{S}_{7}^{\mathrm{cpo}}\right) * 8$	$\mathcal{S}_{7}^{\text {cpo }} \geq 1$	Isotope names linked to type-CONC global parameters.
NVALUE	$\mathrm{I}\left(\mathcal{S}_{5}^{\mathrm{cpo}}\right)$		Number of specific values for a global parameters.
PARCAD பபபபபப	$\mathrm{I}\left(\mathcal{S}_{5}^{\text {cpo }}+1\right)$		Address of the first element in array PARCHR.
PARPAD $ப ப ப ப ப ப ~$	$\mathrm{I}\left(\mathcal{S}_{5}^{\text {cpo }}+1\right)$		Address of the first element in array PARBIB.
PARMIL	$\mathrm{I}\left(\mathcal{S}_{8}^{\text {cpo }}\right)$	$\mathcal{S}_{8}^{\text {cpo }} \geq 1$	Mixture indices linked to type-TEMP or -CONC global parameters.
$\mathrm{PARBIB}_{\text {பபபபபப }}$	$\mathrm{C}\left(\mathcal{S}_{8}^{\mathrm{cpo}}\right) * 12$	$\mathcal{S}_{8}^{\text {cpo }} \geq 1$	MICROLIB names linked to type-TEMP or -CONC global parameters.
\{/gvaldir/\}	R(NVALUE (J))	*	Set of real global parameter arrays. Each element of $\{/$ gvaldir $/\}$ contains a real array containing the tabulated values of the J-th global parameter.
\{/gvaldir/\}	I(NVALUE (J))	*	Set of integer global parameter arrays. Each element of $\{/$ gvaldir $/\}$ contains an integer array containing the tabulated values of the J th global parameter.
\{/gvaldir/ $\}$	$\mathrm{C}(\operatorname{NVALUE}(\mathrm{J})) * 12$	*	Set of character*12 global parameter arrays. Each element of \{/gvaldir/\} contains a character $* 12$ array containing the tabulated values of the J-th global parameter.

Item $\{/$ gvaldir $/\}$ represents a set of $\mathcal{S}_{5}^{\text {cpo }}$ real, integer or character*12 records. The name of each \{/gvaldir/\} record is a character*12 variable (text12) composed using the following FORTRAN instruction:
WRITE(text12,' ("pval", I8.8)') J
where J is the index of the global parameter with $1 \leq J \leq \mathcal{S}_{5}^{\text {cpo }}$. The global parameter values of type REAL or INTEGER are sorted.

12.4 The LOCAL sub-directory in /multicompo/

This directory is a table-of-content for the locals parameters. Its specification follows:

Table 74: Contents of sub-directory LOCAL in /multicompo/

Name	Type	Condition	Units	Comment
	$\mathrm{C}\left(\mathcal{S}_{6}^{\text {cpo }}\right) * 12$			User-defined key-words for the local parameters.
PARTYP பபபபபப	$\mathrm{C}\left(\mathcal{S}_{6}^{\text {cpo }}\right) * 4$			Character identification for the types of local parameters (eg: TEMP, IRRA, FLUB, etc.).
PARCHR \quad பபபபபப	$\mathrm{C}\left(\mathcal{S}_{9}^{\mathrm{cpo}}\right) * 8$	$\mathcal{S}_{9}^{\mathrm{cpo}} \geq 1$		Isotope names linked to type-CONC local parameters.
PARCAD பபபபபப	$\mathrm{I}\left(\mathcal{S}_{6}^{\mathrm{cpo}}+1\right)$			Address of the first element in array PARCHR.

12.5 The homogenized mixture sub-directory in /multicompo/

Each component of the list named 'MIXTURES' contains the parameter tree and a list of directories:

Table 75: Component of the homogenized mixture directory

Name	Type	Condition Units	Comment
TREE \quad CUபபபபபப	Dir	Parameter tree. The specification is presented in Section 12.6.	
List of microlib directories. Each component			
of this list follows the specification presented in			
Section 2.2 with $M_{m}=1(1$ mixture $)$ and $\mathcal{M}=4$.			

12.6 The TREE sub-directory in a MIXTURES component

This directory contains local parameter values and the parameter tree. Its specification follows:

Table 76: Contents of sub-directory TREE in MIXTURES

Name	Type	Condition	Units	Comment
NCALS பபபபபபப $^{\text {a }}$	I(1)			Number of
NVP பபபபபபபபப $^{\text {a }}$	$\mathrm{I}(2)$			NVP (1): E eter tree. in the par

Contents of sub-directory TREE in MIXTURES
continued from last page

Name	Type	Condition	Units	Comment
NVALUE	$\mathrm{I}\left(\mathcal{S}_{6}^{\mathrm{cpo}}\right)$	$\mathcal{S}_{6}^{\mathrm{cpo}} \geq 1$		Number of specific values for a local parameters.
\{/lvaldir/\}	R(NVALUE (J))	$\mathcal{S}_{6}^{\text {cpo }} \geq 1$		Set of real local parameter arrays. Each element of $\{/$ lvaldir/ $\}$ contains a real array containing the tabulated values of the J-th local parameter.
DEBARB பபபபபப	$\mathrm{I}(\mathrm{NVP}(1)+1)$			- If the node does not correspond to the last parameter: index in DEBARB of the first daughter of the node. - If the node correspond to the last parameter: index in DEBARB where we recover the index of an elementary calculation.
ARBVAL $+ப \sqcup \sqcup \sqcup \sqcup ~$	I(NVP (1))			-For a global parameter: index of the parameter in the $\{/$ gvaldir/\} record (see Table 73). -For a local parameter: index of the parameter in the $\{/$ lvaldir/ $\}$ record
ORIGIN பபபபபப	$\mathrm{I}\left(\mathcal{S}_{4}^{\mathrm{cpo}}\right)$			Index of the mother elementary calculation. This information is useful to follow the historical relation between calculations.

Item $\{/$ lvaldir $/\}$ represents a set of $\mathcal{S}_{6}^{\text {cpo }}$ real records. The name of each $\{/$ lvaldir/ $\}$ record is a character*12 variable (text12) composed using the following FORTRAN instruction:
WRITE(text12,' ("pval", I8.8)') J
where J is the index of the local parameter with $1 \leq J \leq \mathcal{S}_{6}^{\text {cpo }}$. The local parameter values are sorted.
The parameter tree has the same number of stages as global and local parameters. The local parameters always follow the global parameters. For each value of the i-th parameter, the tree indicates the beginning position of the $(i+1)$-th parameter. The arrays DEBARB and ARBVAL are set to localize the results of an elementary calculation identified by a specific parameter tuple.

An example of a parameter tree is represented here:

```
dn = value in DEBARB, (m) = value in ARBVAL
Root *(0)
Param. Nb 1 d2(1)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Param. Nb 2} & \multicolumn{2}{|c|}{!} & \multicolumn{3}{|c|}{!} \\
\hline & \multicolumn{2}{|c|}{d3(1)} & \multicolumn{3}{|c|}{4(2)} \\
\hline & ! & ! & ! & ! & ! \\
\hline Param. Nb 3 & d5 (1) & 6 (3) & d7 (1) & 8(2) & 9(3) \\
\hline Calculation & : 4 & 5 & 1 & 2 & 3 \\
\hline
\end{tabular}
```

$\begin{array}{lllllrlllll}\text { DEBARB: } & 2 & 3 & 5 & 7 & 10 & 4 & 5 & 1 & 2 & 3 \\ \text { ARBVAL: } & 0 & 1 & 1 & 2 & 1 & 3 & 1 & 2 & 3 & \end{array}$

The useful dimensions of variables DEBARB, ARBVAL and ORIGIN in Table 76 are respectively equal to $\operatorname{NVP}(1)+1, \operatorname{NVP}(1)$ and $\mathcal{S}_{3}^{\text {cpo }}$. The allocated sizes may be bigger.

Each elementary calculation is fully identified by a parameter tuple (the Fortran array MUPLET (NPTOT)), an integer array of dimension NPTOT $=\mathcal{S}_{5}^{\text {cpo }}+\mathcal{S}_{6}^{\text {cpo }}$. The first $\mathcal{S}_{5}^{\text {cpo }}$ components correspond to global parameter indices; the following $\mathcal{S}_{6}^{\text {cpo }}$ components correspond to local parameter indices. Here, NVP represents the useful size of the ARBVAL array. A recursive procedure is required to search the elementary calculation index ICAL corresponding to this parameter tuple MUPLET. Note that some components of the tuple can be set to zero in case where the number of global and local parameters is overdetermined. The recursive function is called using

```
ICAL=NICAL(1,NVP,NPTOT,DEBARB, ARBVAL ,MUPLET)
```

and is implemented in Fortran-90 as

```
RECURSIVE INTEGER FUNCTION NICAL(II,NVP,NPTOT,DEBARB,ARBVAL,MUPLET) RESULT(ICAL)
    INTEGER II,NVP,NPTOT,DEBARB (NVP+1), ARBVAL (NVP) ,MUPLET (NPTOT)
    IF(NPTOT==0) THEN
        ICAL=DEBARB (II+1)
        RETURN
    ENDIF
    NBOK=0
    IKEEP=0
    DO I=DEBARB (II),DEBARB (II+1)-1
        IF ((MUPLET (1)==0).OR.(MUPLET (1)==ARBVAL (I))) THEN
            JICAL=NICAL(I ,NVP,NPTOT-1, DEBARB, ARBVAL, MUPLET(2))
            IF(JICAL > 0) THEN
                IKEEP=JICAL
                    NBOK=NBOK+1
            ELSE IF(JICAL==-1) THEN
                    NBOK=2
            ENDIF
        ENDIF
    ENDDO
    IF(NBOK > 1) THEN
        ! Many elementary calculation exist for this tuple.
        ICAL=-1
    ELSE IF(NBOK==0) THEN
        ! No elementary calculation exists for this tuple.
        ICAL=0
    ELSE
        ICAL=IKEEP
    ENDIF
END FUNCTION NICAL
```

Similarly, another Fortran program can be used to search the parameter tuple corresponding to the ICAL-th elementary calculation:

SUBROUTINE COMUPL (NVP, NPTOT, ICAL, NCALS, DEBARB, ARBVAL, MUPLET)
INTEGER NVP, NPTOT, ICAL, NCALS, DEBARB (NVP+1), ARBVAL(NVP) , MUPLET (NPTOT)
DO I=NVP-NCALS+1,NVP

IF (DEBARB ($\mathrm{I}+1$) ==ICAL) THEN
$I 0=I$
EXIT
ENDIF
ENDDO
MUPLET (NPTOT) =ARBVAL (IO)
DO IPAR=NPTOT-1,1,-1
DO I=1,NVP-NCALS
IF (DEBARB (I+1) > IO) THEN
IO=I
EXIT
ENDIF
ENDDO
MUPLET (IPAR) =ARBVAL (IO)
ENDDO
END SUBROUTINE COMUPL

13 Contents of a / CPO/ directory

This directory contains a burnup dependent hierarchical reactor database. For the purpose of illustration we will assume that the CPO : module is executed using the following data:

```
CpoResults := CPO: EdiResults EvoResults ::
BURNUP REF-CASE
EXTRACT ALL
NAME MIXTH ;
```

where EdiResults is a EDITION data structure that contains 2 homogeneous mixtures, evaluated and saved at 2 time steps, EvoResults is a BURNUP data structure containing information for the successive burnup calculations used to generate EdiResults and finally CpoResults is the final CPO data structure that contains the resulting reactor database.

13.1 The main directory

The following records and sub-directories will be found in the / CPO / directory:

Table 77: Main records and sub-directories in /CPO/

Name	Type Condition Units	Comment
SIGNATURE	$\mathrm{C} * 12$	$\mathrm{I}(40)$
STATE-VECTOR		parameter SIGNA containing the signature of the data structure array \mathcal{S}_{i}^{c} containing various parameters that are re- quired to describe this data structure list of sub-directories that contain homogeneous mix- ture information
DIXDIR/\}	Dir	

The signature for this data structure is SIGNA=L_COMPO information:

- $\mathcal{S}_{1}^{c}=N_{H}$ contains the total number of homogeneous mixtures saved.
- $\mathcal{S}_{2}^{c}=M_{G}$ contains the maximum number of groups considered.
- $\mathcal{S}_{3}^{c}=M_{I}$ contains the maximum number of isotopes.
- $\mathcal{S}_{4}^{c}=M_{L}$ contains the maximum order for the scattering anisotropy.
- $\mathcal{S}_{5}^{c}=M_{B}$ contains the maximum number of burnup steps per mixtures.

The list of directory $\{/ \mathrm{MIXDIR} /\}$ names MIXDIR will be composed according to the following laws. The first eight character (MIXDIR (1:8)) will be identical to the first 8 character of the user data following the keyword NAME in the CPO: module (here MIXTH $\quad \sqcup \sqcup$. If the keyword NAME is not used then MIXDIR (1:8) takes the value COMPO mixture number saved on the EDITION data structure. For the case where N_{H} such mixtures were produces the following FORTRAN instructions are used to create the last four character of each of the directory names:

WRITE(MIXDIR(9:12), '(I4)') J
for $1 \leq J \leq N_{H}$. For the example given above ($N_{H}=2$), two such directories will be generated, namely

Table 78: Example of homogeneous mixture directories

Name	Type Condition Units	Comment
MIXTH $_{\text {Uபபபபப1 }}$	Dir	is the sub-directory that contains the information as- sociated with homogeneous mixture 1 is the sub-directory that contains the information as- sociated with homogeneous mixture 2
$\sqcup \sqcup \sqcup \sqcup \sqcup 2$	Dir	

13.2 The mixture sub-directory

Each mixture directory contains the following records and sub-directories will be found:

Table 79: Contents of a mixture sub-directory in / CPO/

Name	Type	Condition	Units	Comment
TITLE	$\mathrm{C} * 72$			parameter T containing the title of the run which produced this mixture
PARAM பபபபபபப $^{\text {l }}$	I(4)			array $\mathcal{P}_{i}^{\text {cpo }}$ containing the various parameters associated with this mixture
VOLUME	$\mathrm{R}(1)$		cm^{3}	parameter V_{i} containing the volume of the region associated this homogeneous mixture in the EDITION data structure
ENERGY	$\mathrm{R}(G+1)$		eV	array E_{g} containing the energy groups limits
BURNUP $ப ப \sqcup \sqcup ப ப ~$	$\mathrm{R}\left(\mathcal{P}_{4}^{\mathrm{cpo}}\right)$		MW d	${ }^{1}$ array B_{k} containing the burnup steps
N/KB பபபபபபபப $^{\text {l }}$	$\mathrm{R}\left(\mathcal{P}_{4}^{\mathrm{cpo}}\right)$		Kb^{-1}	array w_{k} containing the fuel irradiation for the different burnup steps
ISOTOPESNAME	$\mathrm{C}\left(\mathcal{P}_{2}^{\mathrm{cpo}}\right) * 12$			array ISO_{i} containing the name of the various isotopes saved for this mixture
\{/BRNDIR/\}	Dir			list of sub-directories that contain the burnup dependent cross sections associated with this homogeneous mixture

The following information is stored in $\mathcal{P}^{\text {cpo }}$:

- $\mathcal{P}_{1}^{\mathrm{cpo}}=G$ contains the number of groups for this homogeneous mixture.
- $\mathcal{P}_{2}^{\mathrm{cpo}}=N_{I}$ contains the number of isotopes in this mixture.
- $\mathcal{P}_{3}^{\text {cpo }}=N_{L}$ contains the order of the scattering anisotropy for this mixture.
- $\mathcal{P}_{4}^{\text {cpo }}=N_{B}$ contains the number of burnup steps for this mixture.

The list of directory $\{/ B R N D I R /\}$ names BRNDIR will be composed according to the following FORTRAN instructions:

```
WRITE(BRNDIR,'(A8,I4)'), 'BURN ', J
```

for $1 \leq J \leq N_{B}$. For the example given above $\left(N_{B}=2\right)$, two such directories will be generated, namely

Table 80: Example of homogeneous mixture directories

Name	Type Condition Units	Comment
BURN $_{\text {Bபபபபபப1 }}$	Dir	is the sub-directory that contains the information as- sociated with burnup step 1 is the sub-directory associated with burnup step 2

13.3 The burnup sub-directory

A burnup sub-directory contains the following records and sub-directories:

Table 81: Contents of a burnup sub-directory in /CPO/

Name	Type	Condition	Units	Comment
ISOTOPESDENS	$\mathrm{R}\left(N_{I}\right)$		$(\mathrm{cm} \mathrm{b})^{-1}$	array ρ_{i} containing the density of each isotopes
ISOTOPES-EFJ	$\mathrm{R}\left(N_{I}\right)$		J	array H_{i} containing the energy produced per fission for each isotope
FLUX-INTG பபப	$\mathrm{R}(G)$		$\mathrm{cm} \mathrm{s}^{-1}$	array Φ_{m}^{g} containing the integrated flux
OVERV பபபபபபப $^{\text {a }}$	$\mathrm{R}(G)$		$\mathrm{cm}^{-1} \mathrm{~S}$	array $1 / v_{m}^{g}$ containing the inverse of the average neutron velocity
FLUXDISAFACT	$\mathrm{R}(G)$			array F_{g} containing the ratio of the flux in the fuel to the flux in the cell
\{/ISOTOPE/\}	Dir			list of N_{I} sub-directories that contain the isotopic microscopic cross section for this burnup step

The list of directory names is specified by ISODIR $=\mathrm{ISO}_{i}$ for $i=1$ to N_{I}. The first isotope ISODIR is named MACR The content of the isotopic multigroup cross section directory is described in Section 2.9.

14 Contents of a /saphyb/ directory

This object is used to collect information gathered from many DRAGON elementary calculations performed under various conditions. Each elementary calculation is characterized by a tuple of global parameters. These global parameters are of different types, depending on the nature of the study under consideration: type of assembly, power, temperature in a mixture, concentration of an isotope, time, burnup or exposure rate in a depletion calculation, etc. Each step of a depletion calculation represents an elementay calculation. The SAPHYB object is often presented as a multi-parameter reactor database. It is used in the SAPHYR code system.

The SAPhYB object contains table-of-content information apart from a set of specific elementary calculation directories. These directories are themselve subdivided into homogenized mixture directories. The localization of an elementary calculation is done using a tuple of global parameters. The elementary calculation indices are stored in a tree with the number of levels equal to the number of global parameters. An example of a tree with three global parameters is shown in Figure 7. Each node of this tree is associated with the index of the corresponding global parameter and with the reference to the daughter nodes if they exist. The number if leafs is equal to the number of nodes for the last (third) parameter and is equal to the number of elementary calculations stored in the SAPHYB object. The index of each elementary calculation is therefore an attribute of each leaf.

Figure 7: Global parameter tree in a SAPHYB object

In each homogenized mixture directory, the SAP: module recovers cross sections for a number of particularized isotopes and macroscopic sets, a collection of isotopic cross sections weighted by isotopic number densities. Cross sections for particularized isotopes and macroscopic sets are recovered for selected reactions. Other information is also recovered: multigroup neutron fluxes, isotopic number densities, fission spectrum and a set of local variables. The local variables are values that characterize each homogenized mixture: local power, burnup, exposure rate, etc. Some local variables are arrays of values (eg: SPH equivalence factors). Finally, note that cross section information written on the SAPHYB is not transport corrected and not SPH corrected.

14.1 The main /saphyb/ directory

On its first level, the following records and sub-directories will be found in the /saphyb/directory:

Table 82: Main records and sub-directories in /saphyb/

Name	Type	Condition	UnitsComment
SIGNATURE	$\mathrm{C} * 12$		Signature of the data structure SIGNA
TITLE	$\mathrm{C} * 80$		Signature of the data structure (for this level of specification,='SAPHYB LIBRARY VER, 0.02')
NOMLIB பபபபபப	C*80		User-defined name of the data structure
DIMSAP	I(50)		Vector describing the various parameters associated with this data structure $\mathcal{S}_{i}^{\text {sap }}$
COMMEN_பபபபபப	$\mathrm{C}\left(N_{1}^{\text {sap }}\right) * 80$	$\mathcal{S}_{1}^{\text {sap }}>0$	User-defined comments about the data structure
constphysiqu	Dir		General physical data
contenu $\sqcup \sqcup \sqcup \sqcup \sqcup$	Dir		Content description
geomபபபபபபபப	Dir		Geometric data
adressesபபபப	Dir		General localization data for the cross sections
paramdescrip	Dir		General localization data for the global parameters
paramarbreபப	Dir		Global parameter tree
paramvaleurs	Dir		Global parameter values
varlocdescri	Dir		General localization data for the local variables
\{/caldir/\}	Dir		Set of $\mathcal{S}_{19}^{\text {sap }}$ sub-directories containing the cross section information associated with a specific elementary calculation.

The signature variable for this data structure must be SIGNA=L_SAPHYB
The name of each $\{/$ caldir/\} directory is a character*12 variable (text12) composed using the following FORTRAN instruction:
WRITE(text12,' ("calc", I8)') J
where J is the index of the calculation with $1 \leq J \leq \mathcal{S}_{19}^{\text {sap }}$.
The dimensioning parameters for this data structure, which are stored in the state vector $\mathcal{S}^{\text {sap }}$ named DIMSAP, are defined in the following table:

		Values in DIMSAP
	DIMSAP	
$\mathcal{S}_{1}^{\text {sap }}$	NCOMLI	Number of lines of comment
$\mathcal{S}_{2}^{\text {sap }}$	NISOTA $^{\text {sap }}$	Number of isotopes in the reference cross section library
$\mathcal{S}_{3}^{\text {sap }}$	NCHANN* $^{\text {s. }}$	Number of types of radioactive decay reactions
$\mathcal{S}_{4}^{\text {sap }}$	NREA* *	Number of neutron-induced reaction
$\mathcal{S}_{5}^{\text {sap }}$	NISO* *	Number of particularized isotopes
$\mathcal{S}_{6}^{\text {sap }}$	NMAC *	Number of macroscopic sets.
$\mathcal{S}_{7}^{\text {sap }}$	NMIL	Number of mixtures in the SAPHYB
$\mathcal{S}_{8}^{\text {sap }}$	NPAR	Number of global parameters
$\mathcal{S}_{9}^{\text {sap }}$	NPCHR $^{\mathcal{S}_{10}^{\text {sap }}}$	NPPNT
$\mathcal{S}_{11}^{\text {sap }}$	NPARL*	Number of global parameters linked with isotopes

Values in DIMSAP (cntd.)		
	DIMSAP	
$\mathcal{S}_{12}^{\text {sap }}$	NPCHRL*	Number of local variables linked with isotopes
$\mathcal{S}_{13}^{\text {sap }}$	NPPNTL*	Number of local variables linked with microlib objects
$\mathcal{S}_{14}^{\text {sap }}$	NISOF*	Number of particularized fissile isotopes
$\mathcal{S}_{15}^{\text {sap }}$	NISOP*	Number of particularized fission products
$\mathcal{S}^{\text {sap }}$	NMGY	Number of macrogroups for the fission yields (=1)
$\mathcal{S}_{17}^{\text {sap }}$	NVP	Number of nodes in the global parameter tree
$\mathcal{S}_{18}^{\text {sap }}$	NADRX*	Number of address sets in array ADRX
$\mathcal{S}_{19}^{\text {sap }}$	NCALS	Number of elementary calculations
$\mathcal{S}^{\text {sap }}$	NG	Number of energy groups in the SAPHYB
$\mathcal{S}_{21}^{\text {sap }}$	NISOY*	Number of particularized isotopes and macroscopic sets for which fission yields are provided.
$\begin{aligned} & \mathcal{S}_{22}^{\text {sap }} \\ & \mathcal{S}_{23}^{\text {sap }} \end{aligned}$	NVERS	Level of SAPHYB specification (=2) (not used)
$\mathcal{S}^{\text {Sap }}$	NSURFS	Number of surfaces in the SAPHYB
$\mathcal{S}^{\text {s5p }}$		(not used)
$\mathcal{S}^{\text {sap }}$		(not used)
$\mathcal{S}^{\text {sap }}$		(not used)
$\mathcal{S}^{\text {sap }}$	NRT	Number of unknowns in the reference geometry
$\mathcal{S}^{\text {sap }}$		(not used)
$\mathcal{S}^{\text {sap }}$	NGA	Number of energy groups in the reference microlib
$\mathcal{S}^{\text {sap }}$	NPRC*	Number of delayed neutron precursors groups
$\mathcal{S}_{32}^{\text {sap }}$	NISOTS	Maximum number of isotopes in output tables (NISOTS \leq NISOTA $)$
$\mathcal{S}_{33}^{\text {sap }}$	NMILNR*	Number of mixtures in the SAPHYB with delayed neutron data

Elements of array DIMSAP identified with "*" may be equal to zero. Consequently, any array using these dimensions is optional.

14.2 The constphysiq sub-directory in /saphyb/

Table 83: Contents of sub-directory constphysiq in /saphyb/

Name	Type	Condition	Units	Comment
ISOTA பபபபபபப $^{\text {l }}$	$\mathrm{C}\left(\mathcal{S}_{2}^{\text {sap }}\right) * 8$			Alias names of isotopes in the reference miCROLIB.
ISOTYP பபபபபப	$\mathrm{C}\left(\mathcal{S}_{2}^{\text {sap }}\right) * 4$			Types of isotopes in the reference microlib. ='FISS': fissile isotope; ='F.P.': fission product; =' ': otherwise.
NOMLAM பபபபபப	$\mathrm{C}\left(\mathcal{S}_{3}^{\text {sap }}\right) * 8$	$\mathcal{S}_{3}^{\text {sap }} \geq 1$		Character identification of the available radioactive decay reactions.
ENRGAபபபபபபப	$\mathrm{R}\left(\mathcal{S}_{30}^{\text {sap }}+1\right)$		MeV	Limits of the reference multigroup energy mesh.
ENRGSபபபபபபப	$\mathrm{R}\left(\mathcal{S}_{20}^{\text {sap }}+1\right)$		MeV	Limits of the SAPHYB multigroup energy mesh.
FGYS பபபபபபபப $^{\text {b }}$	$\mathrm{I}\left(\mathcal{S}_{16}^{\text {sap }}+1\right)$			Indices limits in array ENERGS of the multigroup energy mesh for the fission yields.

14.3 The contenu sub-directory in /saphyb/

Table 84: Contents of sub-directory contenu in /saphyb/

Name	Type	Condition	Units	Comment
NOMISOபபபபபப	$\mathrm{C}\left(\mathcal{S}_{5}^{\text {sap }}\right) * 8$	$\mathcal{S}_{5}^{\text {sap }} \geq 1$		Names of the particularized isotopes.
NOMMAC	$\mathrm{C}\left(\mathcal{S}_{6}^{\text {sap }}\right) * 8$	$\mathcal{S}_{6}^{\text {sap }} \geq 1$		Names of the macroscopic sets.
TYPMACபபபபபப	$\mathrm{I}\left(\mathcal{S}_{6}^{\text {sap }}\right)$	$\mathcal{S}_{6}^{\text {sap }} \geq 1$		Types of the macroscopic sets. $=1$: select all the available isotopes in the macroscopic set; $=2$: remove all the particularized isotope contributions from the macroscopic set.
NOMREA $_{\text {பபபபபப }}$	$\mathrm{C}\left(\mathcal{S}_{4}^{\text {sap }}\right) * 12$	$\mathcal{S}_{4}^{\text {sap }} \geq 1$		Names of the neutron-induced reactions (e.g.: TOTALE, ABSORPTION, FISSION, etc.).
TOTMACபபபபபப	$\mathrm{I}\left(\mathcal{S}_{7}^{\text {sap }}\right)$			Indices in array NOMMAC corresponding to total macroscopic sets (with all isotopic contributions). $=0$ if a total macroscopic set is not defined.
RESMACபபபபபப	$\mathrm{I}\left(\mathcal{S}_{7}^{\text {sap }}\right)$			Indices in array NOMMAC corresponding to residual macroscopic sets (with isotopic contributions for the non-particularized isotopes). $=0$ if a residual macroscopic set is not defined.

14.4 The adresses sub-directory in /saphyb/

Table 85: Contents of sub-directory adresses in /saphyb/

Name	Type	Condition	Units	Comment
ISADRCபபபபபப	$\mathrm{I}\left(\mathcal{S}_{7}^{\text {sap }}\right)$			Equal to array ISADRX (in directory info) for the last elementary calculation.
NISOMN பபபபபப	$\mathrm{I}\left(\mathcal{S}_{7}^{\text {sap }}\right)$			Number of particularized isotopes in each output mixture for which cross section information is available in at least one elementary calculation.
ISOMIL \quad பபபபபப	$\mathrm{I}\left(N^{\text {iso }}\right)$	$N^{\text {iso }} \geq 1$		Array containing the particularized isotope indices in each output mixture. $N^{\text {iso }}=\left(\mathcal{S}_{5}^{\text {sap }}+\mathcal{S}_{6}^{\text {sap }}\right) \times \mathcal{S}_{7}^{\text {sap }}$
$\mathrm{ADRX}_{\text {பபபபபபபப }}$	$\mathrm{I}\left(N^{\text {adrx }}\right)$	$N^{\text {adrx }} \geq 1$		Offsets in the array RDATAX containing cross section information. If the first index corresponds to reaction PROFILE, then ADRX is the offset in the array IDATAP containing the profile information of the transfer matrix. $N^{\text {adrx }}=\left(\mathcal{S}_{4}^{\text {sap }}+2\right) \times\left(\mathcal{S}_{5}^{\text {sap }}+\mathcal{S}_{6}^{\text {sap }}\right) \times \mathcal{S}_{18}^{\text {sap }}$

The array ADRX gives the position of the first value of a cross section in array RDATAX or the first value of profile information in array IDATAP. RDATAX and IDATAP are located in sub-directory mili//, m' of the sub-directory calc//' n '. For a given reaction with index irea in array NOMREA (in subdirectory contenu), for a particularized isotope with index isot in array NOMISO (in sub-directory contenu), and for an output mixture with index imil, the first cross section value is located at position ADRX (irea, isot, ISADRX (imil)) of array RDATAX. ISADRX is defined in the sub-directory info of an elementary calculation. If the address is zero, then the corresponding cross sections are not defined.

Information related to Legendre-dependent scattering information is given in the two extra locations of the ADRX array: ADRX (NREA $+1,:,:$) contains the number of components for the vectorial scattering cross sections (order of anisotropy +1); ADRX (NREA $+2,:,:$) contains the number of components for the (matrix) transfer cross sections (order of anisotropy +1).

This system is designed in such a way to keep the value of $\mathcal{S}_{18}^{\text {sap }}=$ NADRX as small as possible.

14.5 The geom sub-directory in /saphyb/

Table 86: Contents of sub-directory geom in /saphyb/

Name	Type	Condition	Units	Comment
NOMMIL	$\mathrm{C}\left(\mathcal{S}_{7}^{\text {sap }}\right) * 20$			Names of the output mixtures.
XVOLMT		cm^{3}	Volumes of the output mixtures. SURFS SUபபபப	$\mathrm{R}\left(\mathcal{S}_{7}^{\text {sap }}\right)$
outgeom	$\mathrm{R}\left(\mathcal{S}_{24}^{\text {sap }}\right)$	$\mathcal{S}_{24}^{\text {sap }} \geq 1$	$\mathrm{~cm}^{2}$	Surfaces of the output geometry. Surfacic data related to discontinuity factor information.
Dir	$*$			

Table 87: Contents of sub-directory outgeom in /geom/

Name	Type	Condition	Units
SURF		Comment	

14.6 The paramdescrip sub-directory in /saphyb/

Table 88: Contents of sub-directory paramdescrip in /saphyb/

Name	Type	Condition	Units	Comment
$N P A R_{\text {பபபபபபபப }}$	I(1)			Number of global parameters.
NPCHR -பபபபபப $^{\text {l }}$	I(1)			Number of global parameters linked with isotopes.
PARNAM	$\mathrm{C}\left(\mathcal{S}_{8}^{\text {sap }}\right) * 80$			User-defined names for the global parameters.
PARKEY $\dagger ப \sqcup \sqcup ப ப ~$	$\mathrm{C}\left(\mathcal{S}_{8}^{\text {sap }}\right) * 4$			User-defined key-words for the global parameters.
PARTYP	$\mathrm{C}\left(\mathcal{S}_{8}^{\text {sap }}\right) * 4$			Character identification for the types of global parameters (eg: TEMP, CONC, IRRA, etc.).
$\mathrm{PARFMT}_{\text {பபபபபப }}$	$\mathrm{C}\left(\mathcal{S}_{8}^{\text {sap }}\right) * 8$			User-defined names for the global parameters (eg: FLOTTANT, CHAINE, ENTIER, etc.).
PARCHR	$\mathrm{C}\left(\mathcal{S}_{9}^{\text {sap }}\right) * 8$	$\mathcal{S}_{9}^{\text {sap }} \geq 1$		Isotope names linked to type-CONC global parameters.
NVALUE	$\mathrm{I}\left(\mathcal{S}_{8}^{\text {sap }}\right)$			Number of specific values for a global parameters.

continued on next page

Contents of sub-directory paramdescrip in /saphyb/
continued from last page

Name	Type	Condition	Units	Comment
PARCAD பபபபபப	$\mathrm{I}\left(\mathcal{S}_{8}^{\text {sap }}+1\right)$			Address of the first element in array PARCHR.
PARPAD பபபபபப $^{\text {a }}$	$\mathrm{I}\left(\mathcal{S}_{8}^{\text {sap }}+1\right)$			Address of the first element in array PARBIB.
PARMIL பபபபபப $^{\text {P }}$	$\mathrm{I}\left(\mathcal{S}_{10}^{\text {sap }}\right.$)	$\mathcal{S}_{10}^{\text {sap }} \geq 1$		Mixture indices linked to type-TEMP or -CONC global parameters.
PARBIBபபபபபப	$\mathrm{C}\left(\mathcal{S}_{10}^{\text {sap }}\right) * 12$	$\mathcal{S}_{10}^{\text {sap }} \geq 1$		MICROLIB names linked to type-TEMP or -CONC global parameters.

Types and units of global parameters are defined as follows:

	unit	description
TEMP	${ }^{\circ} \mathrm{C}$	Temperature
CONC	$10^{24} / \mathrm{cm}^{3}$	Number density
IRRA	$\mathrm{MW}-$-day $/$ tonne	Burnup
FLUB	n / kb	Neutron exposure
TIME	S	Time
PUIS	$\mathrm{MeV} / \mathrm{s}$	Normalization power
MASL	$\mathrm{g} / \mathrm{cm}^{3}$	Mass density of heavy elements
FLUX		Volume-averaged, energy-integrated flux
VALE	(not defined)	User-defined parameter

14.7 The paramvaleurs sub-directory in /saphyb/

Table 89: Contents of sub-directory paramvaleurs in /saphyb/

| Name | Type | Condition Units | Comment |
| :--- | :--- | :--- | :--- | :--- |
| $\{/ p$ valdir $/\}$ | $\mathrm{R}(\operatorname{NVALUE}(\mathrm{J}))$ | $*$ | Set of real global parameter arrays. Each ele-
 ment of $\{/$ pvaldir/\} contains a real array con-
 taining the tabulated values of the J-th global
 parameter.
 Set of integer global parameter arrays. Each
 element of $\{/$ pvaldir/\} contains an integer ar-
 ray containing the tabulated values of the $J-$
 th global parameter. |
| $\{/ p$ valdir $/\}$ | $\mathrm{I}(\operatorname{NVALUE}(\mathrm{J}))$ | $*$ | Set of character $* 12$ global parameter ar-
 rays. Each element of $\{/$ pvaldir $/\}$ contains
 a character $* 12$ array containing the tabulated
 values of the $J-$ th global parameter. |

$\{/$ pvaldir $/\}$ is a set of $\mathcal{S}_{8}^{\text {sap }}$ real, integer or character*12 records. The name of each $\{/$ pvaldir $/\}$ record
is a character*12 variable (text12) composed using the following FORTRAN instruction:
WRITE(text12,' ("pval", I8)') J
where J is the index of the global parameter with $1 \leq J \leq \mathcal{S}_{8}^{\text {sap }}$. The global parameter values of type REAL or INTEGER are sorted.

14.8 The paramarbre sub-directory in /saphyb/

The global parameter tree has the same number of stages as global parameters. For each value of the i-th global parameter, the tree indicates the beginning position of the $(i+1)$-th parameter. The arrays DEBARB and ARBVAL are set to localize the results of an elementary calculation identified by a specific parameter tuple.

Table 90: Contents of sub-directory paramarbre in /saphyb/

Name	Type	Condition	Units	Comment
NCALS ${ }_{\text {பபபபபபப }}$	$\mathrm{I}(1)$			Number of elementary calculations.
DEBARB பபபபபப $^{\text {but }}$	$\mathrm{I}\left(\mathcal{S}_{17}^{\text {sap }}+1\right)$			- If the node does not correspond to the last parameter: index in DEBARB of the first daughter of the node. - If the node correspond to the last parameter: index in DEBARB where we recover the index of an elementary calculation.
ARBVAL	$\mathrm{I}\left(\mathcal{S}_{17}^{\text {sap }}\right)$			Index of the corresponding parameter in the pval//' n' record.
ORIGIN	$\mathrm{I}\left(\mathcal{S}_{19}^{\text {sap }}\right)$			Index of the mother elementary calculation. This information is useful to follow the historical relation between calculations.

An example of a global parameter tree is represented here:

The dimensions of variables DEBARB, ARBVAL and ORIGIN in Table 90 represent the useful size, not the allocated size which may be bigger. The allocated size of these arrays may be obtained using the LCM API (LCMLEN with the Fortran API).

Each elementary calculation is fully identified by a global parameter tuple, an integer array of dimension $\mathcal{S}_{8}^{\text {sap }}=$ NPAR. A recursive program can be used to search the elementary calculation index ICAL corresponding to a parameter tuple represented in the Fortran array MUPLET(NPAR). The recursive function is called using

```
ICAL=NICAL (1,NVP ,NPAR , DEBARB , ARBVAL, MUPLET)
```

and is implemented in Fortran-90 as

```
RECURSIVE INTEGER FUNCTION NICAL(II,NVP,NPAR,DEBARB,ARBVAL,MUPLET) RESULT(ICAL)
    INTEGER II,NVP,NPAR,DEBARB(NVP+1),ARBVAL(NVP),MUPLET(NPAR)
    IF(NPAR==0) THEN
        ICAL=DEBARB(II+1)
        RETURN
    ENDIF
    NBOK=0
    IKEEP=0
    DO I=DEBARB(II),DEBARB(II+1)-1
        IF((MUPLET (1)==0).OR.(MUPLET(1)==ARBVAL(I))) THEN
            JICAL=NICAL(I ,NVP,NPAR-1,DEBARB,ARBVAL,MUPLET (2))
            IF(JICAL > 0) THEN
                IKEEP=JICAL
                NBOK=NBOK+1
            ELSE IF(JICAL==-1) THEN
                NBOK=2
            ENDIF
        ENDIF
    ENDDO
    IF(NBOK > 1) THEN
        ! Many elementary calculation exist for this tuple.
        ICAL=-1
    ELSE IF(NBOK==0) THEN
        ! No elementary calculation exists for this tuple.
        ICAL=0
    ELSE
        ICAL=IKEEP
    ENDIF
END FUNCTION NICAL
```

Similarly, a Fortran program can be used to search the global parameter tuple corresponding to the elementary calculation index ICAL:

```
SUBROUTINE COMUPL(NVP,NPAR,ICAL,NCALS,DEBARB,ARBVAL,MUPLET)
INTEGER DEBARB(NVP+1),ARBVAL(NVP),MUPLET (NPAR)
DO I=NVP-NCALS+1,NVP
    IF(DEBARB(I+1).EQ.ICAL) THEN
        IO=I
        EXIT
    ENDIF
ENDDO
```

```
MUPLET (NPAR) \(=\) ARBVAL (IO)
DO IPAR=NPAR-1,1,-1
    DO I=1,NVP-NCALS
        IF (DEBARB (I+1).GT.IO) THEN
                    IO=I
                    EXIT
        ENDIF
        ENDDO
        MUPLET (IPAR) \(=\) ARBVAL (IO)
ENDDO
END
```


14.9 The varlocdescri sub-directory in /saphyb/

Table 91: Contents of sub-directory varlocdescri in /saphyb/

Name	Type	Condition	Units	Comment
NPAR பபபபபபபப	$\mathrm{I}(1)$			Number of local variables.
NPCHR	I(1)			Number of local variables linked with isotopes.
PARNAM	$\mathrm{C}\left(\mathcal{S}_{11}^{\text {sap }}\right) * 80$	$\mathcal{S}_{11}^{\text {sap }} \geq 1$		User-defined names for the local variables.
PARKEY $+ப ப ப ப ப ~$	$\mathrm{C}\left(\mathcal{S}_{11}^{\text {sap }}\right) * 4$	$\mathcal{S}_{11}^{\text {sap }} \geq 1$		User-defined key-words for the local variables.
PARTYP பபபபபப	$\mathrm{C}\left(\mathcal{S}_{11}^{\text {sap }}\right) * 4$	$\mathcal{S}_{11}^{\text {sap }} \geq 1$		Character identification for the types of local variables (eg: TEMP, IRRA, FLUB, EQUI, etc.).
PARFMT பபபபபப	$\mathrm{C}\left(\mathcal{S}_{11}^{\text {sap }}\right) * 8$	$\mathcal{S}_{11}^{\text {sap }} \geq 1$		User-defined names for the local variables (eg: FLOTTANT, CHAINE, ENTIER, etc.).
	$\mathrm{C}\left(\mathcal{S}_{12}^{\text {sap }}\right) * 8$	$\mathcal{S}_{12}^{\text {sap }} \geq 1$		Isotope names linked to type-CONC local variables.
PARCAD பபபபபப	$\mathrm{I}\left(\mathcal{S}_{11}^{\text {sap }}+1\right)$	$\mathcal{S}_{11}^{\text {sap }} \geq 1$		Address of the first element in array PARCHR.

14.10 The elementary calculation sub-directory /caldir/ in /saphyb/

For each elementary calculation, we define a directory calc//' n ', where n is the index of the calculation in the global parameter tree. The results for each output mixture are stored in a directory mili//' m' where m is the position index of the mixture in the array NOMMIL of the sub-directory geom. Inside each elementary calculation directory / caldir/, the following records and sub-directories will be found:

Table 92: Contents of sub-directory / caldir/ in /saphyb/

Name	Type	Condition	Units	Comment
infoபபபபபபபப	Dir			General informations about the elementary calculation
divers dபபபபப $^{\text {det }}$	Dir			Results not related to a specific mixture: interface currents, $k_{\infty}, k_{\text {eff }}, B^{2}$, etc.
outfl $\mathrm{x}_{\text {பபபபபப }}$	Dir	$N_{\text {nsurfd }}>0$		Discontinuity factor information.
\{/mixdir/\}	Dir			Set of $\mathcal{S}_{7}^{\text {sap }}$ sub-directories containing the cross section information associated with a specific mixture.

The name of each $\{/$ mixdir/ $\}$ directory is a character*12 variable (text12) composed using the following FORTRAN instruction:

$$
\text { WRITE(text12,' ("mili" }, \text { I8)') J }
$$

where J is the index of the mixture with $1 \leq J \leq \mathcal{S}_{7}^{\text {sap }}$.

14.10.1 The info sub-directory in /caldir/

Table 93: Contents of sub-directory info in /caldir/

Name	Type	Condition	Units	Comment
NLOC பபபபபபபப $^{\text {a }}$	I(1)			Number of local variables ($0 \leq$ NLOC \leq NPARL $)$.
NISOTS பபபபபப $^{\text {l }}$	I(1)			Number of isotopes in output tables $\left(\mathcal{S}_{32}^{\text {sap }} \equiv\right.$ NISOTS \leq NISOTA).
NISF பபபபபபபப $^{\text {a }}$	I(1)			Number of particularized fissile isotopes (NISF \leq NISOF $)$.
NISP பபபபபபபப $^{\text {l }}$	I(1)			Number of particularized fission products $($ NISP \leq NISOP $)$.
NISY	I(1)			Number of particularized isotopes and macroscopic sets used for computing the fission yields (NISY \leq NISOY).
LOCNAM பபபபபப	$\mathrm{C}(\mathrm{NLOC}) * 80$	$\mathrm{NLOC} \geq 1$		User-defined names for the local variables.
LOCKEY	$\mathrm{C}(\mathrm{NLOC}) * 4$	$\mathrm{NLOC} \geq 1$		User-defined key-words for the local variables.
LOCTYP பபபபபப	$\mathrm{C}(\mathrm{NLOC}) * 4$	NLOC ≥ 1		Character identification for the types of local variables (eg: TEMP, IRRA, FLUB, EQUI, etc.).
LOCADR	$\mathrm{I}(\mathrm{NLOC}+1)$	$\mathrm{NLOC} \geq 1$		Address of the first element in array RVALOC (sub-directory mili//' m') corresponding to a local variable.

Contents of sub-directory info in /caldir/
continued from last page

Name	Type	Condition	Units	Comment
ISOTS பபபபபபப	$\mathrm{C}\left(\mathcal{S}_{32}^{\text {sap }}\right) * 8$			Alias names of isotopes in output tables.
ADRY $ப \sqcup \sqcup \sqcup ப ப ப \sqcup ~$	I(NISY)	$N I S Y \geq 1$		Indices of fissile isotopes (positive values) and fission products (negative values) in array YLDS (sub-directory mili//, m').
ISADRX பபபபபப	$\mathrm{I}\left(\mathcal{S}_{7}^{\text {sap }}\right)$			Used to recover the third index in array ADRX (sub-directory adresses).
LENGDX பபபபபப	$\mathrm{I}\left(\mathcal{S}_{7}^{\text {sap }}\right)$			Length of the cross section array RDATAX (subdirectory mili//' m').
LENGDP பபபபபப	$\mathrm{I}\left(\mathcal{S}_{7}^{\text {sap }}\right)$			Length of the transfer matrix profile array IDATAP (sub-directory mili//' m').

14.10.2 The divers sub-directory in /caldir/

Table 94: Contents of sub-directory divers in / caldir/

Name	Type	Condition	Units	Comment
NVDIV பபபபபபப	I(1)			Number of values in arrays IDVAL and VALDIV.
IDVAL	$\mathrm{C}($ NVDIV) $* 4$	NVDIV ≥ 1		Character identification for the values in array VALDIV (KEFF, KINF or B2).
VALDIV பபபபபப	R(NVDIV)	NVDIV ≥ 1		Values given in the order of the IDVAL array.
FLXREF	$\mathrm{R}\left(\mathcal{S}_{28}^{\text {sap }} \times \mathcal{S}_{30}^{\text {sap }}\right)$	$\mathcal{S}_{28}^{\text {sap }} \geq 1$		Neutron flux values (region- and groupordered) in the reference calculation.
SCURM $_{\text {பபபபபபப }}$	$\mathrm{R}\left(\mathcal{S}_{24}^{\text {sap }} \times \mathcal{S}_{20}^{\text {sap }}\right)$	$\mathcal{S}_{24}^{\text {sap }} \geq 1$		Entering partial currents on the surfaces surrounding the geometry. The values are given in the order of the SURF array (in sub-directory geom).

Table 95: Contents of sub-directory outflx in /caldir/

Name	Type	Condition	Units	Comment
REGFLX SURFLX	$\begin{aligned} & \mathrm{R}(\mathrm{NG}) \\ & \mathrm{R}\left(N_{\mathrm{nsurfd}} \times \mathrm{NG}\right) \end{aligned}$			Averaged flux in the complete geometry. Surfacic fluxes ($N_{\text {nsurfd }}$ values per energy group) integrated over surface. The averaged values are obtained by dividing these components by those of SURF record in outgeom subdirectory (see Section 14.5).

14.10.3 The mixture sub-directory /mixdir/ in /caldir/

Table 96: Contents of mixture sub-directory /mixdir/ in / caldir/

Name	Type	Condition	Units	Comment
CONCESபபபபபப	$\mathrm{R}\left(\mathcal{S}_{32}^{\text {sap }}\right)$		$10^{24} \mathrm{~cm}^{-3}$ Number density of each isotope in the output tables. Correspond to isotopes names ISOTS in Sect. 14.10.1.	
RVALOCபபபபபப	R(NVLC)	$N L O C \geq 1$		Values of the local variables. NVLC $=\operatorname{LOCADR}($ NLOC +1) -1
FLUXS பபபபபபப	$\mathrm{R}\left(\mathcal{S}_{20}^{\text {sap }}\right)$			Volume- and energy-integrated neutron fluxes in the output tables.
YLDS பபபபபபபப	$\mathrm{R}\left(N^{\text {ylds }}\right)$	NISP ≥ 1		The fission product i yield from fissile isotope k is given as YLDS (ADRY (k), - ADRY(i)). Indices i and k are given in the order of array NOMISO (in sub-directory contenu). A macroscopic set with a non-vanishing fission cross section is considered as an averaged fissile isotope. $N^{\text {ylds }}=\left(\mathrm{NISF}+\mathcal{S}_{6}^{\text {sap }}\right) \times \mathrm{NISP}$.
DECAYC பபபபபப $^{\text {b }}$	$\mathrm{R}\left(\mathcal{S}_{3}^{\text {sap }} \times \mathcal{S}_{32}^{\text {sap }}\right)$	$\mathcal{S}_{3}^{\text {sap }} \geq 1$	s^{-1}	Radioactive decay constants for each type of decay reaction and each isotope of the output tables.
RDATAX பபபபபப	$\mathrm{R}\left(N^{\text {datax }}\right)$	$N^{\text {datax }} \geq 1$		Cross section data. $\quad N^{\text {datax }}=$ LENGDX (m) where m is the mixture index.
IDATAP	$\mathrm{I}\left(N^{\text {datap }}\right)$	$N^{\text {datap }} \geq 1$		Profile information of the transfer matrix. $N^{\text {datap }}=\operatorname{LENGDP}(\mathrm{m})$ where m is the mixture index.

Contents of mixture sub-directory / mixdir/ in /caldir/
continued from last page

Name	Type	Condition	Units
cinetique	Comment		
Dir	$\mathcal{S}_{33}^{\text {sap }} \geq 1$	Delayed neutron data for the mixture.	

ADRX (in sub-directory adresses) contains the offset used to recover information from arrays RDATAX and IDATAP:

- Starting from this offset, we recover $\mathcal{S}_{20}^{\text {sap }}$ cross section values in RDATAX, except for the scattering cross section where we recover $\mathcal{S}_{20}^{\text {sap }}$ values for each available Legendre order, and except for the scattering transfer matrix where we recover $N^{\text {scat }}$ values for each available Legendre order. $N^{\text {scat }}$ is defined with the IDATAP array.
- For a PROFILE-type reaction, starting from this offset, we recover $2 \times \mathcal{S}_{20}^{\text {sap }}+7$ integer values in IDATAP.

The transfer matrix elements are stored in the following way. The non-zero values are stored in the order of the secondary group and, for each secondary group, in the order of the primary groups. The $2 \times \mathcal{S}_{20}^{\text {sap }}+7$ values describing the profile of the transfer matrix are stored in the following order:

FAGG, LAGG, FDGG, WGAL, FAG, LAG, (FDG(g), $\mathrm{g}=1, \mathrm{NG})$, (ADR (g$), \mathrm{g}=1, \mathrm{NG}+1$)
where

FAGG	(not used)
LAGG	(not used)
FDGG	(not used)
WGAL	set to 0
FAG	First secondary group
LAG	Last secondary group
FDG	First primary group in each secondary group
ADR	Address in the cross section array where data for secondary group g is beginning (the address is relative to the isotope). The number of elements in a transfer matrix is $N^{\text {scat }}=A D R(N G+1)-1$.

For an energy transfer $g^{\prime} \rightarrow g$ and for a Legendre order $L(\geq 0)$, the transfer cross section is identified in the cross section array RDATAX as

$$
\sigma_{s \ell}^{g^{\prime} \rightarrow g}=\operatorname{RDATAX}(\operatorname{ADRX}(\text { irea, isot, } \operatorname{ISADRX}(\text { imil }))+\mathrm{L} *(\operatorname{ADR}(\mathrm{NG}+1)-1)+\mathrm{I}-1)
$$

with $I=A D R(g)+g^{\prime}-F D G(g)$.
14.10.4 The cinetique sub-directory in /mixdir/

Table 97: Contents of sub-directory cinetique in /mixdir/

Name	Type	Condition	Units	Comment
$N P R_{\text {பபபபபபபபப }}$	$\mathrm{I}(1)$			Number of delayed neutron precursors groups in the mixture.
LAMBRS பபபபபப	R(NPR)	$N P R \geq 1$	s^{-1}	Radioactive decay constants of the delayed neutron precursors groups.
CHIRS பபபபபபப	$\mathrm{R}\left(\mathcal{S}_{20}^{\text {sap }} \times\right.$ NPR $)$	$N P R \geq 1$	1	Delayed neutron emission spectrums.
BETARS பபபபபப	R(NPR)	$N P R \geq 1$	1	Delayed neutron fractions.
INVELS	$\mathrm{R}\left(\mathcal{S}_{20}^{\text {sap }}\right)$	$N P R \geq 1$	$\mathrm{cm}^{-1} \mathrm{~s}$	Group average of the inverse neutron velocity.
TGENRS பபபபபப $^{\text {b }}$	R(1)	$N P R \geq 1$	s	Prompt-neutron lifetime.

15 Contents of a/mc/Directory

This directory contains information generated by the MC: multigroup Monte Carlo module.

15.1 State vector content for the $/ \mathrm{mc} /$ data structure

The dimensioning parameters for the $/ \mathrm{mc} /$ data structure, which are stored in the state vector $\mathcal{S}^{m c}$, represent:

- Nominal number of source histories M per $K_{\text {eff }}$ cycle $N_{\text {nsrck }}=\mathcal{S}_{1}^{m c}$
- Number of source cycles I_{c} to skip before $K_{\text {eff }}$ accumulation $N_{\mathrm{ikz}}=\mathcal{S}_{2}^{m c}$
- Total number of cycles N in the problem $N_{\text {kct }}=\mathcal{S}_{3}^{m c}$
- Initial seed for the random number generator $S=\mathcal{S}_{4}^{m c}$
- N2N processing flag $F=\mathcal{S}_{5}^{m c}$

$$
F= \begin{cases}0 & \text { do not use information in the }{ }^{\prime} \mathrm{N} 2 \mathrm{~N} \text { and }{ }^{\prime} \mathrm{N} 3 \mathrm{~N} \text { records } \\ 1 & \text { use information in the }{ }^{\prime} \mathrm{N} 2 \mathrm{~N} \text { and }{ }^{\prime} \mathrm{N} 3 \mathrm{~N} \text { records to perform the random walk }\end{cases}
$$

- Type of tallies $T=\mathcal{S}_{6}^{m c}$

$$
T= \begin{cases}0 & \text { no tallies } \\ 1 & \text { effective multiplication factor tally } \\ 2 & \text { effective multiplication factor and macrolib tallies }\end{cases}
$$

- The number of homogenized mixtures in the macrolib tally $M_{\text {out }}=\mathcal{S}_{7}^{m c}$
- The number of condensed energy groups in the macrolib tally $G_{\text {out }}=\mathcal{S}_{8}^{m c}$
- The number of regions in the initial geometry $N_{\mathrm{in}}=\mathcal{S}_{9}^{m c}$

15.2 The main / mc/ directory

The following records and sub-directories will be found on the first level of a / mc/ directory:

Table 98: Main records and sub-directories in /mc/

Name	Type	Condition	Units	Comment
SIGNATURE Uபப	$\mathrm{C} * 12$			Signature of the $/ \mathrm{mc} /$ data structure (SIGNA =L_MC பபபபபபபபப).
STATE-VECTOR	$\mathrm{I}(40)$			Vector describing the various parameters associated with this data structure $\mathcal{S}_{i}^{m c}$, as defined in Section 15.1.
K-EFFECTIVE ${ }_{\sqcup}$	$\mathrm{R}(1)$			Effective multiplication factor $K_{\text {eff }}$
K-EFFECTI-SD	$\mathrm{R}(1)$			Standard deviation of the effective multiplication factor $\Delta K_{\text {eff }}$

Main records and sub-directories in /mc/ continued from last page

Name	Type	Condition Units	Comment		
REF:IMERGE	$\mathrm{I}\left(N_{\mathrm{in}}\right)$	$T=2$	$\mathrm{I}\left(G_{\text {out }}\right)$	$T=2 \quad$	Merged region number associated with each of the
:---					
original region number in the macrolib tally M_{r}					
Reference group limits associated with the condensed					
groups in the macrolib tally C_{g}					
MACROLIB					
Directory containing the $/$ macrolib/ structure asso-					
ciated with the macrolib tally, following the specifi-					
cation presented in Section 1.2.					

16 Contents of a /draglib/ directory

The DRAGLIB format provide an efficient way to store burnup data and multigroup isotopic nuclear data to be used in a lattice code. A DRAGLIB file is a persistent LCM object (an XSM-formatted file) used to organize the data in a hierarchical format. Therefore, it will be easy to convert back and forth between the binary direct access format (efficient during a lattice calculation) and the ASCII export format (usefull for backup and exchange purposes). A library in DRAGLIB format is generally built using the dragr module available in an inhouse version of NJOY. ${ }^{[3]}$ The optional capability to define energy-dependent fission spectra is available, as described in Ref. 2.

A DRAGLIB is an LCM object with a depletion chain and a set of isotopic sub-directories located on the root directory. Each isotopic sub-directory contains infinite dilution nuclear data for a set of absolute temperatures. Incremental values corresponding to finite dilutions are given on the last directory level.

The first group corresponds to highest energy neutrons. Every cross section is given in barn. Finally, note that the lagging zeros of any cross section record can be removed from that record in order to save space on the DRAGLIB. The lattice code will therefore have to pack any uncomplete cross section record with zeros.

16.1 The main /draglib/ directory

On its first level, the following records and sub-directories will be found in the /draglib/ directory:

Table 99: Main records and sub-directories in /draglib/

Name	Type	Condition	UnitsComment	
SIGNATURE	$\mathrm{C} * 12$			Signature of the data structure
				(SIGNA =L_DRAGLIB bபப)
VERSION பபபபப	$\mathrm{C} * 12$			Version identification. Currently equal to
				'RELEASE_2003'. This value will change if the
				DRAGLIB specification is to be modified in the future.
README	$\mathrm{C}\left(N^{\mathrm{dgl}}\right) * 80$			User-defined comments about the library.
ENERGY பபபபபப	$\mathrm{R}(G+1)$		eV	$E(g)$: Group energy limits in eV . Group g is defined as $E(g)<E \leq E(g-1)$.
CHI-ENERGY ${ }_{\text {U }}$	$\mathrm{R}\left(G_{\text {chi }}+1\right)$	$G_{\text {chi }} \neq 0$	eV	$E_{\text {chi }}(g)$: Group energy limits defining the energydependent fission spectra. By default, a unique fission spectra is used.
CHI-LIMITS ப	$\mathrm{I}\left(G_{\text {chi }}+1\right)$	$G_{\text {chi }} \neq 0$		$N_{\text {chi }}(g)$: Group limit indices defining the energydependent fission spectra. By default, a unique fission spectra is used.
DEPL-CHAIN ${ }_{\square \sqcup}$	Dir	*		directory containing the / depletion/ associated with this library, following the specification presented in Section 2.4. (*) This data is required if the library is to be used for burnup calculations.
\{/isotope/ $\}$	Dir			Set of sub-directories containing the cross section information associated with a specific isotope.

where G is the number of energy groups. For design reasons, the DRAGLIB object has no state vector record.

16.2 Contents of an /isotope/ directory

Each /isotope/ directory contains information related to a single isotope. This information is written using one of the following formats:

- a temperature-independent isotopic data is written using the format described in Tables 14 to 20 of the MICROLIB specification. Such isotopic data is typically produced by the EDI: module.
- a temperature-dependent isotopic data, tabulated for $N_{\text {tmp }}$ temperatures, is written using the format presented in Table 100.

Table 100: Temperature-dependent isotopic records

Name	Type	Condition	Units	Comment
README பபபபபப	$\mathrm{C}\left(N^{\text {iso }}\right) * 80$			User-defined comments about the isotope.
AWR பபபபபபபபப $^{\text {a }}$	R(1)		nau	Ratio of the isotope mass divided by the neutron mass
TEMPERATURE $_{\sqcup}$	$\mathrm{R}\left(N_{\text {tmp }}\right)$		K	Set of temperatures, expressed in Kelvin.
\{/tmpdir/\}	Dir			Set of $N_{\text {tmp }}$ sub-directories, each containing the cross section information associated with a specific temperature.
BIN-NFS பபபபப	$\mathrm{I}(G)$	*		Number of fine energy groups $n_{\text {bin }, g}$ in each group g. May be set to zero in some groups. (*) This data is optional and is useful when advanced selfshielding models are used in the lattice calculation.
BIN-ENERGY ப	$\mathrm{R}\left(N_{\mathrm{bin}}+1\right)$	*	eV	Fine group energy limits in eV . Here, $N_{\text {bin }}=$ $\sum_{g} n_{\text {bin }, g .}\left({ }^{*}\right)$ This data should be given if and only if the record 'BIN-NFS' is present.

The name of each $\{/$ tmpdir/\} directory is a character*12 variable (text12) composed using the following Fortran instruction:
WRITE(text12,' ("SUBTMP", I4.4)') J
where J is the index of the temperature with $1 \leq J \leq N_{\mathrm{tmp}}$.
Each /tmpdir/ directory contains information related to a single isotope at a single temperature. This information is written using one of the following formats:

- If the isotope contains no self-shielding data (i.e., if the isotope is only present at infinite dilution), then the isotopic data is written using the format described in Tables 14 to 20 of the microlib specification.
- If the isotope contains self-shielding data, then the infinite-dilution isotopic data is written using the format described in Tables 14 to 20 of the MICROLIB specification. In this case, additional
data is required to represent the dilution dependence of the cross sections. This additional data is presented in Table 101.

Table 101: Temperature-dependent isotopic records

Name	Type	Condition	Units	Comment
DILUTION	$\mathrm{R}\left(N_{\text {dil }}\right)$		b	Set of finite dilutions σ_{e}, expressed in barn. Note: the infinite dilution value (1.0E10) is not given.
$\{/ \text { dildir/\} }$	Dir			Set of $N_{\text {dil }}$ sub-directories, each containing the incremental cross section information associated with a specific dilution.
BIN-NTOT0 பபப	$\mathrm{R}\left(N_{\text {bin }}\right)$	*	b	Microscopic total cross sections $\sigma^{\text {BIN }}(h)$ defined in the fine groups. (*) This data should be given if and only if the records 'BIN-NFS' and 'BIN-ENERGY' are present in the parent directory.
BIN-SIGSO0பப	$\mathrm{R}\left(N_{\text {bin }}\right)$	*	b	Microscopic diffusion cross sections $\sigma_{\text {scat0 }}^{\mathrm{BIN}}(h)$ for an isotropic collision in the laboratory system defined in the fine groups. (*) This data should be given if and only if the records 'BIN-NFS' and 'BIN-ENERGY' are present in the parent directory.

The name of each \{/dildir/\} directory is a character*12 variable (text12) composed using the following Fortran instruction:
WRITE(text12,' ("SUBMAT", I4.4)') K
where K is the index of the finite dilution with $1 \leq K \leq N_{\text {dil }}$.
The fine-group cross sections in records BIN-NTOTO $ப \sqcup \sqcup$ and BIN-SIGSO0 $ப \sqcup$ are normalized to the coarse group values $\sigma(g)$ and $\sigma_{\text {scato }}(g)$ in such a way that

$$
\sigma(g)=\frac{1}{\ln [E(g-1) / E(g)]} \sum_{h=h_{\min }+1}^{h_{\min }+N^{\mathrm{BIN}}(g)} \sigma^{\mathrm{BIN}}(h) \ln \left[\frac{E^{\mathrm{BIN}}(h-1)}{E^{\mathrm{BIN}}(h)}\right]
$$

and

$$
\sigma_{\text {scat } 0}(g)=\frac{1}{\ln [E(g-1) / E(g)]} \sum_{h=h_{\min }+1}^{h_{\min }+N^{\mathrm{BIN}}(g)} \sigma_{\mathrm{scat} 0}^{\mathrm{BIN}}(h) \ln \left[\frac{E^{\mathrm{BIN}}(h-1)}{E^{\mathrm{BIN}}(h)}\right]
$$

where

$$
h_{\min }=\sum_{i=1}^{g-1} N^{\mathrm{BIN}}(i)
$$

Nuclear data stored on sub-directory /tmpdir/ is infinite dilution data related to a single isotope at a single temperature. Nuclear data stored on / dildir/ and corresponding to dilution σ_{e} is incremental data relative to infinite dilution data:

$$
\delta \sigma_{\mathrm{x}}\left(g, \sigma_{e}\right)=I_{\mathrm{x}}\left(g, \sigma_{e}\right)-\sigma_{\mathrm{x}}(g, \infty)=\sigma_{\mathrm{x}}\left(g, \sigma_{e}\right) \varphi\left(g, \sigma_{e}\right)-\sigma_{\mathrm{x}}(g, \infty)
$$

and

$$
\delta \varphi\left(g, \sigma_{e}\right)=\varphi\left(g, \sigma_{e}\right)-1
$$

where $I_{\mathrm{x}}\left(g, \sigma_{e}\right)$ is the effective resonance integral and $\varphi\left(g, \sigma_{e}\right)$ is the averaged fine structure function at dilution σ_{e}. Note that $\varphi(g, \infty)=1$.

17 Contents of a /fview/ data structure

This directory contains information generated by the VAL: module used to interpolate the diffusion flux computed for Cartesian geometries. The following options of calculations are currently implemented:

- 3D geometries tracked with TRIVAT: using PRIM (aka, variational collocation) method
- 3D geometries tracked with TRIVAT: using DUAL (aka, Raviart-Thomas) method
- 3D geometries tracked with TRIVAT: using MCFD (aka, nodal collocation) method

17.1 The state-vector content

- The total number of energy group $N_{g}=\mathcal{S}_{1}$
- The number of mesh along X direction $N_{x}=\mathcal{S}_{2}$
- The number of mesh along Y direction $N_{y}=\mathcal{S}_{3}$
- The number of mesh along Z direction $N_{z}=\mathcal{S}_{4}$

17.2 The main /fview/ directory

Table 102: Records and sub-directories in /fview/ data structure

Name	Type	Condition	Units	Comment
SIGNATURE பபப	$\mathrm{C} * 12$			Signature of the /fview/ data structure (SIGNA = L_FVIEWபபபபப).
STATE-VECTOR	$\mathrm{I}(40)$			Vector describing the various parameters associated with this data structure \mathcal{S}
MXI $\mathrm{I}_{\text {பபபபபபபபப }}$	$\mathrm{R}\left(N_{x}\right)$			array containing the mesh position along Xdirection.
MYI $\mathrm{I}_{\text {பபபபபபபபப }}$	$\mathrm{R}\left(N_{y}\right)$			array containing the mesh position along Ydirection.
MZI $\mathrm{I}_{\text {பபபபபபபபப }}$	$\mathrm{R}\left(N_{z}\right)$			array containing the mesh position along Zdirection.
$\mathrm{FLUX}_{\text {பபபபபபபப }}$	$\operatorname{Dir}\left(N_{g}\right)$			List of real arrays. Each component of this list is a real array of dimension $N_{x} * N_{y} * N_{z}$ containing the interpolated values of the flux in the energy group.

References

[1] G. Marleau, A. Hébert and R. Roy, "A User Guide for DRAGON Version4", Report IGE-294, École Polytechnique de Montréal, Institut de Génie Nucléaire (1997).
[2] P. Mosca, C. Mounier, P. Bellier and I. Zmijarevic, "Improvements in Transport Calculations by the Energy-Dependent Fission Spectra and Subgroup Method for Mutual Self-Shielding," Nucl. Sci. Eng., 175, 266-282 (2013).
[3] A. Hébert and H. Saygin, "Development of DRAGR for the Formatting of DRAGON Cross-section Libraries", paper presented at the Seminar on NJOY-91 and THEMIS for the Processing of Evaluated Nuclear Data Files, NEA Data Bank, Saclay, France, April 7-8 (1992).

Index

/ADF/, 8, 9
/BIHET/, 45, 86
/BIVCOL/, 78
/DOITYOURSELF/,51
/EURYDICE/, 52
/GFF/, 9
/PURE-GEOM/, 49
/REF:ADF/, 109
/SPH/, 10
ALBS, 106
ALSB, 87, 101
ang, 42
ARM, 24, 48, 87
ASM: , 87
/asminfo/, 87, 88
BIHET, 90
bivact, 76-78
BIVACT:, 76
\{/BRNDIR/\}, 123, 124
/burnup/, 110-113
BURNUP, 122
C2M:, 15
/caldir/, 134-138
\{/caldir/\}, 126
COMPO:, 15
/CPO/, 122-124
CPO, 122
CPO: , 122
CpoResults, 122
/depldir/, 113
\{/depldir/\}, 112
/depletion/, 15, 19, 21, 22, 116, 142
/dildir/, 144
\{/dildir/\}, 144
DIMSAP, 126, 127
DOORVP, 55
/draglib/, 142
DUAL, 146
ECCO, 87
EDI: , 1, 15, 106, 108
EdiResults, 122
EDITING, 106
EDITING, 106
/edition/, 1, 106-109
EDITION, 106, 122, 123
EVO: , 1, 15

EvoResults, 122
EXCELL:, 55
excelt, 54
EXCELT: , 54, 56, 67
FD_B, 8, 109
FD_C, 8, 109
FD_H, 8, 109
\{/FINF/\}, 9
FLUX, 106
/fluxunk/, 100, 102, 103
FLUXUNK, 106
/fview/, 146
/geom/, 130
/geometry/, 36, 39-42, 44, 45
/gptsour/, 105
GRMAX, 16
GRMIN, 16
GROUP, $3-5,7,8,89-93$
\{/gvaldir/\}, 117, 119
\{/ISOTOPE/\}, 124
/isotope/, 1, 20, 26-28, 30, 35, 143
\{/isotope/\}, 20, 35, 142
ISOTOPERNAME, 3
ISOTOPESUSED, 3
/kinet/, 98, 99
LIB:, 1, 15
LIBRARY, 106
\{/lvaldir/\}, 119
MAC: , 1
/macrolib/, 1-4, 8-10, 15, 17, 19, 20, 40, 141
MACROLIB, 1
/mc/, 140, 141
MC: , 140
mccgt, 67, 93
MCCGT: , 67, 69, 70
MCFD, 146
\{/micdir/\}, 108
/microlib/, 1, 15, 18-22, 26, 29, 106, 109, 113
MICROLIB, 106
\{/MIXDIR/\}, 122
/mixdir/, 137-139
\{/mixdir/\}, 135
/multicompo/, 114-118
NADRX, 127
/namdir/, 116
\{/namdir/\}, 116
NAME, 122
NAP: , 9, 39
NCALS, 127
NCHANN, 126
NCOMLI, 126
NCR: 1
NG, 127
NGA, 127
NISO, 126
NISOF, 127
NISOP, 127
NISOTA, 126
NISOTS, 127
NISOY, 127
NMAC, 126
NMGY, 127
NMIL, 126
NMILNR, 127
NORM, 87
NPAR, 126
NPARL, 126
NPCHR, 126
NPCHRL, 127
NPPNT, 126
NPPNTL, 127
NPRC, 127
NREA, 126
NREC, 64
NRT, 127
NSURFS, 127
NVERS, 127
NVP, 127
NXT: , 55, 57
/NXTRecords/, 57, 58, 60-62, 64, 66
ON, 108
OUT: , 1
PIJ, 24, 87
PIJK, 87
PIN, 64
PISD, 54
PNL, 101
PNLR, 101
PNOR, 87
PNT, 64
PRIM, 146
/PROJECTION/, 70
PSPC, 54
\{/pvaldir/\}, 131

REFL, 8
/saphyb/, 125, 126, 128-132, 134, 135
SAVE, 108
/selfshield/, 15, 19, 26
SHI: , 15, 19, 24
SIGS, 101
snt, 71-75
SNT:, 71
SSYM, 58
STEP, 94
\{/subgeo/\}, 41, 44
sybilt, 48, 49, 51, 52, 92
SYBILT:, 48
SYME, 58
/system/, 94, 95
TISO, 54, 56
TLM:, 55
/tmpdir/, 143, 144
\{/tmpdir/\}, 143
/tracking/, 47-49, 54, 56, 67-79, 81-85
TRACKING, 106
trafict, 90
trivat, 79, 82-85
TRIVAT:, 79, 146
TSPC, 54, 56
TUBEX, 40
TUBEY, 40
TUBEZ, 40
\{/type/\}, 9, 109
USS: , 15, 19, 24
VAL:, 146
VOID, 8
VOLMAT, 106
WIS, 87
\{/xsname/ $\}, 4$

