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Chapter 1

Python script to generate DRAGLIB

and ACELIB

This chapter will describe the procedure for generation of cross section libraries in DRAGLIB format
and ACE format. DRAGLIB format libraries will be used for lattice analysis using the code DRAGON
and ACE formatted libraries will be used for the analysis using Monte Carlo code MCNP5. Both the sets
of libraries have been generated starting from the same evaluated datafiles, that were recommended by
the IAEA WIMS Library Update Project (WLUP). A total of 200 nuclides have been used for analysis
in this thesis. The libraries have been generated by using a Python script. The script is seen in Figure
1. The input for selected nuclides is presented in Figure 2. Another interesting addition to the script
is to compare the generated ACELIB, with the PENDF tape generated by an alternate procedure as
recommended by IAEA. This involves regenaration of the PENDF file from the ACELIB using a code
package called acelst. Modules from PREPRO code system developed by Red Cullen are subsequently
used on the evaluated data files and PENDF tape is generated. The modules used are linear, recent,
sigma1. Subsequently one can do a comparison of the two PENDF files using complot, which is another
important module of PREPRO code system.

This chapter has three main sections. First section will give a general description of instance variables
and methods needed to generate the various libraries. The second section will describe the steps needed
to generate DRAGLIB. The third section will describe the generation of ACELIB and the final section
will describe verification of generated ACE libraries by procedure recommended by IAEA.

1
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1 PyNjoy Script

The generation of libraries has been made simple by the use of Python script. A complete processing
of an evaluated datafile is done by invoking modules of NJOY through an object oriented Python script.
A unique class named PyNjoy contains the various intsance variables and methods required to use NJOY
in the simplest possible way. Any modification of this model is possible in order to accommodate various
processing requirements. The PyNjoy script is located on Version4 wc/Njoy99/python/PyNjoy.py.
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2 PyNjoy instance variables

Python parameters used in the input are described in this section.

self.evaluationName - Path of directory where you want to store the pendf, gendf, draglib and acelib
files. The path can be prefixed by /tmp/ to force the files to be created locally on the /tmp directory.
self.execDir - Path of directory where the executable of Njoy is found.
self.legendre - Order of Legendre polynomials for neutrons (= 1 for linear anisotropy in LAB –
default)
self.legendregg - Order of Legendre polynomials for gamma particles (default: = 6)
self.nstr - Option for a particular neutron group structure (= 22 for the XMAS 172–group structure)
self.gstr - Option for a particular gamma group structure, for producing neutron–gamma coupled sets
(equal to zero by default)
self.iwt - Type of flux weighting in groupr (= 1 for user-defined spectra; = 3 for 1/E weighting; = 4
recommended/default)
self.wght - User-defined weighting spectra to be used if self.iwt = 1. Given as """–delimited string.
self.autolib - Three-component tuple containing the energy limits of the autolibs (must correspond to
energy-group limits) and the elementary lethargy width of the autolibs
self.temperatures - Value of temperatures at which the cross sections are generated
self.hmat - Material name that is included in the DRAGLIB – User dependent
self.mat - mat number of nuclide under consideration
self.hmatgg - Photo-atomic element name that is included in the DRAGLIB – User dependent
self.matgg - Photo-atomic mat number of element under consideration
self.za - ZA number, mainly required for generation of S(α, β) cross section in acer

self.scatName - Name of S(α, β) cross section identifier for inclusion in xsdir
self.suff - The suffix to be attached to nuclide in ACELIB – User dependent
self.evaluationFile - Path of the evaluated datafile.
self.scatteringLaw - Path of file having thermal scattering data (default = None)
self.scatteringMat - mat number in scattering data file
self.fission - Choice for including delayed neutron fission data in groupr module
self.Espectra - Gchi + 1 values of energy limits (eV) defining the energy-dependent fission spectra. If
this instance variable is not set, a unique fission spectrum is used. Recommended limits for fast-reactor
applications are ( 1.100028e-4, 1.831564e5, 4.978707e5, 1.353353e6, 1.964033e7 ).
self.ss - Two-component tuple containing energy limits in eV for the self-shielding domain
self.potential - Value of the potential cross section used in the flux calculator of groupr
self.dilutions Tuple containing the dilution values that need to be considered for calculation of reso-
nance integrals and probability tables
self.dirName - Directory name to store data for independent verification of ACELIB.
self.tempace - Temperature at which ACELIB needs to be generated.
self.eFiss - Fission energy in MeV. Used in cases where this value is not available in the evaluation.
self.branchingNG - Radiative capture isomeric branching ratio (default = None). If you use this value,
don’t forget to reset it to None after the isotope is completed.
self.branchingN2N - N2N isomeric branching ratio (default = None). If you use this value, don’t forget
to reset it to None after the isotope is completed.
self.purr - Set to 1 to use purr module. By default, use unresr.
self.oldlib - Name of an existing DRAGLIB file that is modified by self.draglib(). The existing
DRAGLIB, in ascii format, must be placed in the same directory where the input Python file is found.
This DRAGLIB is copied in the execution directory self.execDir and updated by self.draglib().

The following instance variables are related to the production of a single Wimslib isotope using module
wimsr:
self.wmat - Identification of material for the WIMS library. This identification is a floating-point num-
ber.
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self.sgref - Reference sigma zero. All isotopes are evaluated at dilution self.sgref in case where the
resonance tables are not used. This variable has a strong effect on the WIMSLIB values. Important:

self.sgref must be selected in tuple self.dilutions. The default value is self.sgref = 1.0 × 1010

barn, corresponding to infinite dilution.
self.jp1 - Number of components in the user-defined current weighting spectra (to be used for the
transport correction).
self.goldstein - Value if a Goldstein-Cohen parameter. It is assumed that all Goldstein-Cohen param-
eters are constant in the resonant-energy groups.
self.p1flx - User-defined current weighting spectra (to be used for the transport correction) if self.jp1
> 0. Given as """–delimited string.
self.iverw - = 4: Produce a WIMS-D4 formatted library; = 5: Produce a WIMS-E formatted library.
self.yields - User-defined burnup data for an isotope (cards 5 and 6 of wimsr module dataset). Given
as """–delimited string.
self.ifprod - Fission product flag. = 0: Not a fission product (default); = 1: Fission product, no
resonance tables; = 2: Fission product, with resonance tables.
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3 PyNjoy methods

self.pendf([eaf]) - To generate point ENDF file (to be used as starting point for all other data type
generations including DRAGLIB, ACE, WIMSD etc) using the modules moder, reconr, broadr, purr
(if dilutions present), thermr. If eaf=1, a eaf-compatible simplified processing is performed.
self.gendf([eaf]) - To generate group ENDF file using modules moder and groupr. If eaf=1, a
eaf-compatible simplified processing is performed.
self.gamma() - To generate photo-atomic (gamma) group ENDF file using modules moder, reconr
and gaminr.
self.draglib([fp]) - To generate a DRAGLIB file using modules moder, dragr and add/update
the new isotopic data in the DRAGLIB file. If fp=1, the scattering information are stored as diagonal
matrices in the DRAGLIB.
self.matxs() - To generate an ascii MATXS file using modules moder and matxsr.
self.makeFp() - call self.pendf(), self.gendf() and self.draglib(fp=1) for a single fission prod-
uct.
self.burnup() - Process burnup data for the complete library. An important file that is needed while
generating the burnup data is named as “chain(self)”. If self=candu then the file is named chaincandu.
This file contains the information of energy from all isotopes generated using single dragr runs. This
file is now generated automatically.
self.acer() - To generate ACELIB using modules moder, reconr, broadr, purr (if dilutions
present), thermr and acer.
self.wims() - To generate an ascii Wimslib file using modules moder and wimsr.
self.comp() - To run the verification test using modules acelst, linear, recent, sigma1, fixup and
complot.
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4 DRAGLIB Library Generation

The modules that will be used in the generation of DRAGLIB are moder, reconr, broadr, purr
(if dilutions present), thermr, groupr and DRAGR. Figure 3 gives the flow chart for generation of
DRAGLIB formatted library. It is important to identify the nuclides that are needed to be included as
part of library and corresponding evaluated datafiles from respective data centres need to be compiled in a
particular directory. This will help in cross verification and assessment at any stage of library generation.
In this section specific examples of elements will be provided to understand the nuances of DRAGLIB
library generation. The examples will be such that all the reactor type materials will be chosen. They
are scattering material (heavy water), structural material (Zirconium), fission product (Xe135), Actinide
(U-235). A special example for burnup dependent data will also be provided. For isotopes that have
resonances and whose presence in fuel can alter the flux in the energy region between 2.76792 eV and
1.66156e4 eV, cross sections are generated at specific dilution values. The choice of dilution values is
shown in Table-1 and shown in Figure 4. The value for potential scattering cross section is obtained using
the Fortran code getmf2.f which is provided by IAEA. Using this code, and the evaluated datafile for
the particular element, one can obtain the value for self.potential. In general we cannot provide more
than ten temperature values and ten dilution values. If one has to generate cross sections for more than
ten dilution values, it has to be split, as shown in example for U-235. After each “self.dragr()” run,
one will obtain a file “out draglib elementname”. Energy information is recovered from this ascii file
by method self.burnup() and is collected in a file named ’chain’ + self.evaluationName (stored on
directory self.evaluationName). Sometimes, it is likely that fission energy is not provided in the tape.
In that case one obtains “????????” in the “out draglib elementname” file. In that case, one has to
obtain the energy value from some other source (typically, from another evaluation) and provide it using
the self.eFiss instance variable, even if one doesnot use the tape for generation of multigroup data.

File 8 of ENDF evaluation contains half-lives, decay modes, decay energies, and radiation spectra
for most isotopes. Information concerning the decay of the reaction products is also given in this file.
In addition, fission product yield data (MT=454 and 459) for fissionable materials and spontaneous
radioactive decay data (MT=457) for the nucleus are included.

File 8 information is processed by module dragr. A large number of fission products are included in
the evaluated file for each element capable of undergoing fission. For example, in the fission product yield
data file included in ENDF/B-VI rel. 8, one can notice that there are information of 1232 fission products
for 0.0253 eV fission of 233U, 1247 fission products for 0.0253 eV fission of 235U etc. But the evaluations
are not available for all the nuclides, as most of them have very short half-lives and in the reactor context,
can be considered insignificant. They are subsequently lumped by a procedure that is built in dragr. If
there are nuclides with long half lives, but are not available as evaluated files, a warning is provided before
lumping the corresponding element. The dragr user has the complete control over the lumping process.
dragr currently has no capability to produce pseudo fission product, i.e., custom library isotopes made
from the combination of many minor ENDF fission products. All the isotopes missing in the ’chain’

+ self.evaluationName file are tested against a lumping criterion and are lumped. The criterion for
lumping a depleting isotope is a half life less than thirty days and a fission yield less than 0.01%. If this
criterion is not met, this isotope is lumped and a warning message is issued.

Information on energies for various reaction types like (n, γ), (n, f), (n, 2n), (n, 3n), (n, 4n), (n, α), (n,
p), (n, 2α), (n, np), (n, d), (n, t) are recovered from earlier dragr single-isotope calculations and used for
inclusion in relevant depletion data in DRAGLIB format. The fission energy (n, f) is obtained from MF1
MT458 and the energy from delayed betas and gammas are subtracted from it. Information regarding
energies for other reactions are derived by dragr from MF3. The corresponding MT numbers for the
above mentioned reactions (other than (n, f)) are 102, 16, 17, 37, 107, 103, 108, 28, 104, 105 respectively.
The complete information required to do the depletion calculations is provided in ten specific records of
the DRAGLIB file.
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Figure 1.1: Lumping of isotopes A and C

4.1 Main object instanciation

The Python dataset starts with the instanciation of an object (named candu in the following examples)
and with the definition of a few instance variables that are common to many isotopes.

#!/usr/local/bin/python

from PyNjoy import *

from os import uname

candu = PyNjoy()

candu.evaluationName = "/tmp/endfb7r0"

candu.execDir = "../" + uname()[0]

candu.nstr = 22

candu.iwt = 4

candu.autolib = (2.76792, 677.2873, 0.00125)

candu.legendre = 1

candu.Espectra = None

4.2 Heavy water

Heavy water is used in CANDU reactors as moderator and coolant. So it is important to generate
consistent data for efficient analysis of CANDU lattices. The instance variables and methods that will
be used are

candu.hmat = "H2_D2O"

candu.temperatures = ( 293.6, 323.6, 573.6, )

candu.mat = 128

candu.evaluationFile = "/home/develop/Tripoli4/JEF2/eval/jef2.neutron.H2.bcd"

candu.scatteringLaw = "/home/develop/Tripoli4/JEF2/eval/jef2.neutron.D_D2O.bcd.therm"

candu.scatteringMat = 11

candu.fission = None

candu.dilutions = None

candu.pendf()

candu.gendf()

candu.draglib()

4.3 Zirconium

Zirconium is used in CANDU reactors as cladding material and also for pressure tube and calandria
tube. Zirconium has some resonances and as a result of this it is important to generate the cross sections
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of zirconium for certain dilution values. The instance variables and methods that will be used are

candu.hmat = "Zr0"

candu.temperatures = ( 293.6, 323.6, 573.6, )

candu.mat = 4000

candu.evaluationFile = "/home/karam/Njoy99/evaluations/database/jendl306.asc"

candu.fission = None

candu.ss = (2.76792, 1.66156e4)

candu.potential = 6.5144

candu.dilutions = ( 1.e10, 10000.0, 3549.18335, 1259.67004, 447.079956, 158.676849, \

56.3173141, 19.9880447, 7.09412289, 2.51783395 )

candu.pendf()

candu.gendf()

candu.draglib()

4.4 Xe135

Xenon is a very important fission product in nuclear reactors. It is very important to estimate the
number density of this nuclide as a function of burnup. This will help in estimating reactivity variations
due to change in concentration of the nuclide. By using makeFp option, we avoid generating scattering
matrices in (NG X NG) format, where NG is number of groups. We instead generate only the scattering
matrices along the diagonal.

candu.hmat = "Xe135"

candu.temperatures = ( 293.6, 323.6, 573.6, )

candu.scatteringLaw = None

candu.legendre = 0

candu.fission = None

candu.dilutions = None

candu.mat = 5458

candu.evaluationFile = "/home/karam/Njoy99/evaluations/database/jendl310.asc"

candu.makeFp()

4.5 U235

U-235 is one of the most prevalently used fissile material for energy production. In case of CANDU
reactors, natural uranium is used as fuel, where weight (%) of U-235 is 0.711.

candu.hmat = "U235"

candu.temperatures = ( 293.6, 323.6, 573.6, )

candu.mat = 9228

candu.evaluationFile = "/home/karam/Njoy99/evaluations/database/U-235"

candu.fission = 2

candu.ss = (2.76792, 1.22773e5)

candu.potential = 11.6070

candu.dilutions = ( 1.e10, 94.5317612, 56.3173141, 33.5510521, 19.9880447, \

11.9078817, 7.09412289, 4.22632504, 2.51783395, 1.5 )

candu.pendf()

candu.gendf()

candu.draglib()

candu.dilutions = ( 1.e10, 10000.0, 5957.50244, 3549.18335, 2114.42676, 1259.67004, \

750.448669, 447.079956, 266.347961, 158.676849 )

candu.pendf()

candu.gendf()

candu.draglib()
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4.6 Process burnup

It is important to identify the tapes provided by evaluators which contains information on fission
yields and decay chains. These files are provided as mentioned below, along with the chain(self) file
mentioned already.

candu.fissionFile = ”/home/karam/Njoy99/evaluations/database/TAPE.107”
candu.decayFile = ”/home/karam/Njoy99/evaluations/database/TAPE.106”
candu.burnup()
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5 ACELIB Library Generation

The modules that will be used in the generation of ACELIB are moder, reconr, broadr, purr(if
dilutions present), thermr and acer. Figure 3 gives the flow chart for generation of ACE formatted
library. In this section specific examples of elements will be provided to understand the nuances of
ACELIB library generation. The examples will be along the same lines as that for DRAGLIB library
generation, i.e scattering material (heavy water), structural material (Zirconium), fission product (Xe135),
Actinide (U-235). The prsent script is such that the ACELIBs are appended in a single file named
“acecandu” and is available in the same directory as the draglib file. The other important file that
is generated is the “acexsdir”, which contains the information about the nuclides for which the cross
sections are generated and the temperature at which the ACELIB is generated. A small code has been
written-“append.f”, which will read the file acecandu and acexsdir and create the file “myxsdir”. This
file has to be appended to existing xsdir file provided with MCNP5 data. It is important to provide suffix
values “self.suff” for different temperatures. This will be automatically appended to the ZA value and
written in main ACELIB and xsdir file. Care should be taken not to repeat the “.suff” value already used
in xsdir file for other evaluations. For each temperature provide different “self.dirName” so that all the
required data for comparison with PENDF tape generated using PREPRO code is made possible. The
“self.comp()” does the task of verifying the ACELIBs generated, and is described in the next section.
The example provided here helps in generating ACELIB alone. In case a DRAGLIB file also is to be
generated, please refer to Figure 2.

5.1 Heavy water

candu.hmat = "H2_D2O"

candu.temperatures = ( 293.6, 323.6, 573.6, )

candu.mat = 128

candu.za = 1002

candu.scatName = "hwtr"

candu.evaluationFile = "/home/develop/Tripoli4/JEF2/eval/jef2.neutron.H2.bcd"

candu.scatteringLaw = "/home/develop/Tripoli4/JEF2/eval/jef2.neutron.D_D2O.bcd.therm"

candu.scatteringMat = 11

candu.fission = None

candu.dilutions = None

candu.pendf()

candu.dirName = "D2O-1"

candu.tempace = ( 293.6,)

candu.suff=0.20

candu.acer()

candu.comp()

candu.dirName = "D2O-2"

candu.tempace = ( 323.6,)

candu.suff=0.21

candu.acer()

candu.comp()

candu.dirName = "D2O-3"

candu.tempace = ( 573.6,)

candu.suff=0.22

candu.acer()

candu.comp()

5.2 Zirconium

candu.hmat = "Zr0"
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candu.temperatures = ( 293.6, 323.6, 573.6, )

candu.mat = 4000

candu.za = 40000

candu.evaluationFile = "/home/karam/Njoy99/evaluations/database/jendl306.asc"

candu.fission = None

candu.dilutions = ( 1.e10, 10000.0, 3549.18335, 1259.67004, 447.079956, \

158.676849, 56.3173141, 19.9880447, 7.09412289, 2.51783395 )

candu.pendf()

candu.dirName = "Zr-1"

candu.tempace = ( 293.6,)

candu.suff=0.20

candu.acer()

candu.comp()

candu.dirName = "Zr-2"

candu.tempace = ( 323.6,)

candu.suff=0.21

candu.acer()

candu.comp()

candu.dirName = "Zr-3"

candu.tempace = ( 573.6,)

candu.suff=0.22

candu.acer()

candu.comp()

5.3 Xe135

candu.hmat = "Xe135"

candu.temperatures = ( 293.6, 323.6, 573.6, )

candu.scatteringLaw = None

candu.legendre = 0

candu.fission = None

candu.dilutions = None

candu.mat = 5458

candu.za = 54135

candu.evaluationFile = "/home/karam/Njoy99/evaluations/database/jendl310.asc"

candu.makeFp()

candu.dirName = "Xe135-1"

candu.tempace = ( 293.6,)

candu.suff=0.20

candu.acer()

candu.comp()

candu.dirName = "Xe135-2"

candu.tempace = ( 323.6,)

candu.suff=0.21

candu.acer()

candu.comp()

candu.dirName = "Xe135-3"

candu.tempace = ( 573.6,)

candu.suff=0.22

candu.acer()

candu.comp()
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5.4 U235

candu.hmat = "U235"

candu.temperatures = ( 293.6, 323.6, 573.6, )

candu.mat = 9228

candu.za = 92235

candu.scatteringLaw = None

candu.legendre = 0

candu.evaluationFile = "/home/karam/Njoy99/evaluations/database/U-235"

candu.fission = 2

candu.dilutions = ( 1.e10, 10000.0, 5957.50244, 3549.18335, 2114.42676, \

1259.67004, 750.448669, 447.079956, 266.347961, 158.676849 )

candu.dirName = "U235-1"

candu.tempace = ( 293.6,)

candu.suff=0.20

candu.acer()

candu.comp()

candu.dirName = "U235-2"

candu.tempace = ( 323.6,)

candu.suff=0.21

candu.acer()

candu.comp()

candu.dirName = "U235-3"

candu.tempace = ( 573.6,)

candu.suff=0.22

candu.acer()

candu.comp()
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6 Verification of ACELIB

Cross section processing verification is described in ref(Trkov), where the steps involved is mentioned
in detail. For the sake of completeness, we have presented the discussion as part of this chapter. The ACE
(“A Compact ENDF”) libraries produced by the NJOY nuclear data processing system, involves some
data processing, which is susceptible to code errors. It is important to verify the ACELIB by comparing
it with an independently processed data set. This may highlight possible errors due to linearization
of data, resonance reconstruction from the resonance parameters included as part of the ENDF tape,
and conversion of data representation for angular and energy distributions, where applicable. ENDF
Pre-Processing codes included as part of PREPRO code system is independent to NJOY and can be
considered for the data verification tasks

At the outset let us consider that the ACELIB has already been generated. The flow chart that needs
to be subsequently followed for data verification is as under:

1. Run acelst to generate the ACELIB summary of contents and to convert the data as much as
possible into pointwise ENDF format. 2. Retrieve the basic evaluated nuclear data file from which the
ACE library was generated. 3. Run linear on the tested file to linearise any non-linear interpolation
laws. 4. Run recent on the output of linear to reconstruct cross sections from the resonance pa-
rameters. 5. Run sigma1 on the output of recent to Doppler-broaden the cross sections to the same
temperature that is specified in the ACELIB. 6. Run fixup on the output of sigma1 to reconstruct the
redundant cross sections. 7. Run complot to compare the output of acelst and sigma1.

Each of the tasks above serves a specific purpose and provides useful information. The acelst code is
included in the SIGACE code package, which has been developed to generate high temperature ACELIBs
from already provided low temperature files for use in MCNP. This code provides a compact listing of
the contents of the ACELIB, which is useful when insufficient information is provided on how the file was
generated. The complot comparison of the acelst and sigma1 output can reveal any inconsistency in
the redundant reactions. For example, the total cross section in the acelst output from the ACELIB is
given by the sum of the partials, but in sigma1 it is calculated directly from the total cross section. An
inconsistency in the resonance range might indicate that the implied competitive widths in the resonance
parameters are inconsistent with the pointwise data in file MF3 for the competing reaction (usually the
inelastic cross section).

The codes are linear, recent, sigma1, fixup, complot are provided free of cost at the website
“http://www-nds.iaea.org/ndspub/endf/prepro/”. The code acelst.f is included in SIGACE code pack-
age, whcih can be downloaded from “http://www-nds.iaea.org/fendl21/downloads/”. All the tolearnces
are within 0.1% for data generation using PREPRO. It is important that this value is the same as that
is used for PENDF file generation to make DRAGLIB or ACELIB.

Figures 6-8 gives the comparison of plots obtained using complot. It shows the magnitude of dif-
ference between generated ACELIB and PENDF generated using PREPRO. It was noted that the large
difference in cross section is at the interface of resolved resonance and unresolved resonance region. This
is not a major cause of concern though.
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Figure 1.2: Flowchart for DRAGLIB/ACELIB Production
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Figure 1.3: COMPLOT - Total cross section of U-235
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Figure 1.4: COMPLOT - Elastic cross section of U-235
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Figure 1.5: COMPLOT - N,2N cross section of U-235



Chapter 2

Creation of binary Dragligs

The PyNjoy.py script presented above produces an ascii-formatted (80-column) Draglib file in LCM/XSM
export format. Dragon is expecting binary Draglibs, either in little– or big–endian direct–access XSM
format. The required conversion can easily be performed using the Ganlib capabilities of Dragon.

Three files, present in Version4 wc/Dragon/data/, can be adapted to perform the conversion. These
files are:

a2b drglib.access: This Bourne–shell script is used to specify the location of the ascii-formatted Draglib
produced by Njoy.

#!/bin/sh

#

# ACCESS FILE OF CONVERSION DATA SET a2b_drglib.x2m

#

if [ $# = 0 ]

then

echo "usage: a2b_drglib.access directory" 1>&2

exit 1

fi

echo access a2b_drglib.access

ln -s "$1"/../Njoy99/python/Jeff3.1/draglibJeff3.1 EXPORT

ls -l

a2b drglib.x2m: This CLE-2000 Dragon input data file invokes the equality module of Ganlib to per-
form the conversion.

*----

* Draglib conversion, from ascii export to xsm binary

*----

XSM_FILE DRGLIB ;

SEQ_ASCII EXPORT ;

MODULE UTL: END: ;

*

DRGLIB := EXPORT :: EDIT 10 ;

UTL: DRGLIB :: DIR ;

END: ;

a2b drglib.save: This Bourne–shell script is used to specify the location of the binary-formatted Draglib
produced by the equality module of Ganlib. If the conversion is performed on a little-endian
computer (Intel, OSF1), the Draglib is little-endian.

18
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#!/bin/sh

#

# SAVE FILE OF CONVERSION DATA SET a2b_drglib.x2m

#

if [ $# = 0 ]

then

echo "usage: a2b_drglib.save directory" 1>&2

exit 1

fi

echo access a2b_drglib.save

MACH=‘uname -s‘

Sysx="‘echo $MACH | cut -b -6‘"

if [ $Sysx = "CYGWIN" ]; then

MACH=‘uname -o‘

elif [ $Sysx = "Darwin" ]; then

MACH=‘uname -sm‘

elif [ $Sysx = "SunOS" ]; then

MACH=‘uname -sm‘

fi

if [ "$MACH" = "Linux" -o "$MACH" = "OSF1" -o "$MACH" = "Cygwin" -o "$MACH" = "SunOS i86pc" \

-o "$MACH" = "Darwin i386" -o "$MACH" = "Darwin x86_64" ]

then

echo ’use little endian libraries’

pos=$1/../../libraries/l_endian

else

echo ’use big endian libraries’

pos=$1/../../libraries/b_endian

fi

mv DRGLIB $pos/draglibJeff3.1

ls -l

Once a Draglib has been converted in direct-access binary format, it is still possible to inspect its
contents using the UTL: utility module. Here is an example where the list of available isotopes in the
library and where the tabulated temperatures and non-infinite dilutions of U235 are printed.

*----

* Draglib inspection (xsm direct-access binary format)

*----

XSM_FILE DLIB_J2 ;

MODULE UTL: END: ;

*

* list of isotopes:

UTL: DLIB_J2 :: DIR ;

*

* temperatures of U235:

UTL: DLIB_J2 :: STEP UP U235 DIR IMPR TEMPERATURE * ;

*

* non-infinite dilutions of U235 at 293 K:

UTL: DLIB_J2 :: STEP UP U235 STEP UP SUBTMP0001 DIR IMPR DILUTION * ;

END: ;

together with the access script file

#!/bin/sh
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#

# Access Draglib in XSM DA binary format for look_drglib.x2m

#

if [ $# = 0 ]

then

echo "usage: look_drglib.access directory" 1>&2

exit 1

fi

echo access look_drglib.access

MACH=‘uname -s‘

if [ $MACH = "Linux" -o $MACH = "OSF1" ]

then

echo ’use little endian libraries’

pos=$1/../../libraries/l_endian

else

echo ’use big endian libraries’

pos=$1/../../libraries/b_endian

fi

if [ -f "$pos"/draglibJef2p2 ]

then

ln -s "$pos"/draglibJef2p2 DLIB_J2

fi

ls -l

echo "look_drglib access script terminated"
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