A USER GUIDE FOR OPTEX VERSION4

R. Chambon

Institut de génie nucléaire Département de génie mécanique École Polytechnique de Montréal July 4, 2015

Contents

Contents ii
List of Tables iii
1 OPTEX MODULES 1
1 Fuel Management Optimization 2
1.1 The FOBJCT: module 2
1.1.1 Data input for module FOBJCT: 3
1.1.2 Data input for module functions definition 6
1.1.3 Examples of function definition 11
1.2 The QLPUTL: module 13
1.2.1 Data input for module QLPUTL: 14
1.3 The PERTUR: module 19
1.3.1 Data input for module PERTUR: 20
1.4 The GPTSRC: module 21
1.4. Data input for module GPTSRC: 21
1.5 The GPTGRD: module 23
1.5.1 Data input for module GTPGRD: 24
1.6 The TABU: module 26
1.6.1 Data input for module TABU: 26
2 Output Data Treatment 31
2.1 The ADDOBJ: module 31
2.1.1 Data input for module ADDOBJ: 31
2.2 The MATLAB: module 34
2.2.1 Data input for module MATLAB: 34
2.3 The GPTVRF: module 37
2.3.1 Data input for module GPTVRF: 37
2 OPTEX STRUCTURES 39
1 Contents of a /tabu/ data structure 40
1.1 The sub-directories in /tabu/ 41
2 Contents of a /optimize/ data structure 43
2.1 The sub-directory /OLD-VALUE/ in /optimize/ 48
2.2 The sub-directory /stepdir/ in /optimize/ 48
2.3 Contents of a /optimize/ data structure for module GPTVRF: 49
Index 51

List of Tables

1.1 Structure FOBJCT: 2
1.2 Structure (descfobjct) 3
1.3 Structure (czdf_data) 3
1.4 Structure (fcdf_data) 4
1.5 Structure (cstzdf_data) 5
1.6 Structure (eval_data) 6
1.7 Structure (vardef_data) 8
1.8 Structure (seq_data) 10
1.9 Structure (data) 11
1.10 Structure QLPUTL: 13
1.11 Structure (descqlputl) 14
1.12 Structure (def_data) 16
1.13 Structure (PERTUR:) 19
1.14 Structure (pertur_data) 20
1.15 Structure GPTSRC: 21
1.16 Structure gptsrc_data 21
1.17 Structure GPTGRD: 23
1.18 Structure direct_data 24
1.19 Structure gptgrd_data 24
1.20 Structure TABU: 26
1.21 Structure (desctabu) 26
1.22 Structure (def_data) 27
1.23 Structure (nelder_data) 30
1.24 Structure ADDOBJ: 31
1.25 Structure (addmac_data) 31
1.26 Structure (addflu_data) 33
1.27 Structure MATLAB: 34
1.28 Structure (descmatlgrd) 34
1.29 Structure (descmatlfiu) 35
1.30 Structure GPTVRF: 37
1.31 Structure gptvrf_data 37
2.1 Main records and sub-directories in /tabu/ 40
2.2 Main records in sub-directories 42
2.3 Additional records in NELDER-MEAD directory 42
2.4 Main records and sub-directories in /optimize/ 44
2.5 Main records and sub-directories in //OLD-VALUE// 48
2.6 Main records and sub-directories in //stepdir// 48
2.7 /optimize/ in the particular case of module GPTVRF: 49
2.8 The sub-directory /varpertdir/ in /optimize/ 50

Chapter 1

OPTEX MODULES

1 Fuel Management Optimization

In this section, modules used for fuel management optimization will be described.

1.1 The FOBJCT: module

The FOBJCT: module is used to define the different parameters for an optimization calculation. These parameters can be decision variables, contraint zone definitions, constraint limits, ... This module can also evaluate the objective function and the constraints values.

The calling specifications are:
Table 1.1: Structure FOBJCT:

```
OPTIM := FOBJCT : [ OPTIM ] [ MAPFL ] [ FLUX [ FLUXP ] ] [ MACRO ] [ TRACK INDEX ] : :
```

(descfobjct)
where
OPTIM character*12 name of the extended optimize. If OPTIM appears on the RHS, the information previously stored in OPTIM is modified if necessary and stored.

MAPFL character*12 name of the extended MAP. If MAPFL appears on the RHS, the information in it will be read for many parameters initialisation.

FLUX character*12 name of the FLUX linked list. This object is used for the function evaluation. It is recommended to provide it even if no function evaluation is done for many parameter reading.

FLUXP character*12 name of the FLUX linked list. This object is used for some function evaluation such as void reactivity.

MACRO character*12 name of the MACROLIB linked list file containing fuel regions description and burnup informations. If it appears on RHS, it means it will be necessary for a function evaluation (objective or constraint).

TRACK character*12 name of the TRACKING linked list file containing the tracking informations. If it appears on RHS, it means it will be necessary for a function evaluation (objective or constraint) or to memorize the average exit burnup or the fuel cost distribution.

INDEX character*12 name of the INDEX linked list file containing the index informations. If it appears on RHS, it means it will be necessary for a function evaluation (objective or constraint) or to memorize the average exit burnup or the fuel cost distribution.
(descfobjct) structure containing the data to module FOBJCT: .
1.1.1 Data input for module FOBJCT:

Table 1.2: Structure (descfobjct)

```
EDIT iprint ]
CTRL-ZONE-DF (czdf_data)]
FUEL-COST-DF (fcdf_data) ]
EXIT-B-DIST MEMORY]
CST-ZONE-DF (cstzdf_data)]
EVAL-OBJ-CST (eval_data)]
```

where
EDIT key word used to set iprint.
iprint index used to control the printing in module.
CTRL-ZONE-DF
(czdf_data)
structure containing the data to the option CTRL-ZONE-DF.
FUEL-COST-DF key word used to define the cost of the uranium is the core.
(fcdf_data) structure containing the data to the option FUEL-COST-DF.
EXIT-B-DIST key word used to specify that the distribution of the average exit burnup for each volume will be pre-calculated.

MEMORY key word used to specify that the distribution of the average exit burnup will be stored in the OPTIM object.

CST-ZONE-DF key word used to define the constraint (type, value, zone of influence).
(cstzdf_data) structure containing the data to the option CST-ZONE-DF.
EVAL-OBJ-CST key word used to define and evaluate the objective and / or constraints functions.
(eval_data) structure containing the data to the option EVAL-OBJ-CST. This will be treated as a section in itself because other module will refer to it.

Table 1.3: Structure (czdf_data)

```
BURNUP-ZONE burn min burn max { ALL | { { Y | N }
[ ENRICH-ZONE enrimin enrimax { { Y Y | N }
```

where

```
BURNUP-ZONE
key word used to specify that exit-burnup decision variables will be set. This exitburnup zone were defined previously and are stored in the MAP.
burn \(_{\text {min }} \quad\) minimum value of the exit-burnup.
burn \(_{\max } \quad\) maximum value of the exit-burnup.
ALL key word used to specify that all burnup-exit zone will be a decision variable.
key word used to specify that a specific burnup-exit zone will be a decision variable.
key word used to specify that a specific burnup-exit zone will not be a decision variable.
number of average exit burnup zone.
key word used to specify that exit-burnup decision variables will be set. This exitburnup zone were defined previously and are stored in the map.
enrimin minimum value of the exit-burnup.
enri \(i_{\max } \quad\) maximum value of the exit-burnup.
Y
N
nez
key word used to specify that a specific enrichment zone will be a decision variable.
key word used to specify that a specific enrichment zone will not be a decision variable. number of enrichment zone.
```

Table 1.4: Structure (fcdf_data)

```
FIXED cost i, i=1,nez )
DEPENDANT }\mp@subsup{\varepsilon}{w}{}\mp@subsup{C}{NU}{}\mp@subsup{C}{S}{}\mp@subsup{C}{FAB}{}\mathrm{ interest tobt tenr ]
[ MEMORY ]
```

where
FIXED key word used to specify that the price of the fuel is fixed for each enrichment zone.
cost
nez number of enrichment zone.
DEPENDANT
$\varepsilon_{w} \quad U^{235}$ concentration of waste uranium after the separation work.
$C_{N U}$
C_{S}
$C_{F A B}$
interest
$t_{o b t}$
cost of the fuel.
key word used to specify that the price of the fuel is dependant of the enrichment for each enrichment zone.
natural uranium cost $(\$ / \mathrm{kg})$.
cost of a separation work unit (\$/SWU).
cost of fabrication of the bundles $(\$ / \mathrm{kg})$.
interest rate $\left(\mathrm{y}^{-1}\right)$.
time to obtain uranium (y).
$t_{e n r} \quad$ time for enrichment (y).
MEMORY
key word used to specify that the distribution of the purchase cost of uranium actually in the reactor will be pre-calculated and stored in the OPTIM object.

Table 1.5: Structure (cstzdf_data)

```
KEFF }\mp@subsup{k}{eff}{}
MAXPOWER
\ldots. [[ ZONE-DEF [[ SURV-ZONE }\mp@subsup{n}{\mathrm{ surv_zone [[ PLAN }\mp@subsup{i}{\mathrm{ plan }}{}{\mp@subsup{i}{zonej}{},j=1,\mp@subsup{n}{\mathrm{ cha }}{}|\mathrm{ SAME }\mp@subsup{j}{\mathrm{ plan }}{}}]]}{
\ldots...............| BUNDLE { ALL | [[ PLAN iplan { {0| 1 }j,j=1,ncha | SAME jplan } ]]
................. CHANNEL {ALL | { 0 | 1 } }\mp@subsup{j}{j}{\prime}j=1,\mp@subsup{n}{cha}{c}} ]
```



```
...END-MAX-POW ]
[ VOID-REACT-FC }\mp@subsup{\rho}{V,FC}{}
[ ANALYTIC-FCT cst type cst lim
```

where
KEFF key word used to defined $k_{\text {eff }}$.
$k_{e f f} \quad$ neutron multiplication factor aimed (this is a constraint of type equal).
MAXPOWER key word used to defined a maximum power in a zone (this is a constraint of type inferior).

ZONE-DEF key word used to specify that the definition of the zone will be provided.
SURV-ZONE key word used to specified that the zone will be defined manually.
$n_{\text {surv_zone }}$
total number of surveillance zone.
$i_{\text {zone }}$
BUNDLE
CHANNEL
PLAN
$i_{\text {plan }}$
number of the zone that the bundle is part of (0 if no surveillance zone for this bundle).
key word to specified that surveillance zone are bundles.
key word to specified that surveillance zone are channels.
key word to specify that the definition of surveillance zone for $i_{\text {plan }}$ will follow.
numbers of the plan to be defined.
SAME key word used to specify that the definition of surveillance zone in the plan $i_{\text {plan }}$ will be the same one as in the plan $j_{\text {plan }}$.
$j_{\text {plan }} \quad$ number of the plan already defined.
ALL key word used to specify that the power in all bundles or channels will be a constraint.
$n_{c h a} \quad$ number of channels.
VALUE-DEF key word used to specify that the limit of maximum zone power will be provided.
$i_{z o n e 1} \quad$ first number of surveillance zone.

```
cstlim constraint limit.
RANGE key word used to specify that the constraint limit will be specified for several zones.
izone2 second number of surveillance zone.
ALLSAME key word used to specify that all the constraint will have the same limit for the zone
    number between }\mp@subsup{i}{zone1}{}\mathrm{ and }\mp@subsup{i}{zone2}{}\mathrm{ .
END-MAX-POW key word used to specify that the definition of the maximum power surveillance zones
    is finished.
VOID-REAC-FC key word used to define the full core void reactivity.
\rho
ANALYTIC-FCT key word used to specify that the corresponding constraint will be defined analytically.
cst type type of the analytic constraint (-1 for }\leq,0\mathrm{ for = and 1 for }\geq)
```


1.1.2 Data input for module functions definition

Because the functions definition is common with other modules, its description will be grouped in this section, as a independent part of the FOBJCT : module description.

The functions definition is based on inverted polish notation logic. Some functions are predefined, but if it is not the case, new functions can be defined manually. In this particular case, variables may be required. Some of them are predefined also, otherwise the user can get them with the same logic as the module GREP. For the functions representing the constraints the user need to specify its number. So it is important to know the order in which constraints where defined.

Table 1.6: Structure (eval_data)

```
[[ { FOBJ | CONSTRAINT i icst1 icst2 } {[VARDEF (vardef_data) ] (seq_data)| FUNCT-PREDEF predef_func
} ]]
```

where
FOBJ key word used to specify that the objective function will be evaluated.
CONSTRAINT key word used to specify that constraint functions between number $i_{c s t 1}$ and $i_{\text {cst } 2}$ will be evaluated.
$i_{\text {cst1 }} \quad$ first number of constraint.
$i_{\text {cst } 2} \quad$ second number of constraint.
VARDEF
key word used to define the variables needed for the function evaluation.
(vardef_data) structure containing the data to the option VARDEF.
(seq_data) structure containing the data used to defined a function directly by the user.
FUNCT-PREDEF key word used to specify that a predefined function will be evaluated.
predef_func name of the predefined function. The predefined function name are :

UCOST	
DX-UCOST	
DPHI-UCOST	
POWERLIMIT	
DX-POWER	
DPHI-POWER	
KEFF	
D-KEFF	
VOID-REAC-FC	
D-VOID-R-FC	
KEFF=KREF	$k_{\text {ref }}$
D-KEFF=KREF	$k_{\text {ref }}$
MINPCMAX	$q_{\text {moy }} i_{c s t 1} i_{c s t 2}$
D-MINPCMAX	$q_{\text {moy }} i_{c s t 1} i_{c s t 2}$

Where :
UCOST is defined by F_{C} :

$$
\begin{equation*}
F_{C}=\frac{\left\langle\frac{C_{F}\left(\varepsilon_{j}\right)}{B_{j}} \cdot H, \phi\right\rangle_{\text {réacteur }}}{\langle H, \phi\rangle_{\text {réacteur }}} \tag{1.1}
\end{equation*}
$$

DX-UCOST is defined by $\frac{\partial F_{C}}{\partial X_{i}}$:

$$
\begin{align*}
\frac{\partial F_{C}}{\partial X_{i}}= & \frac{\left\langle\frac{\partial C u}{\partial X_{i}}, \frac{H}{B} \phi\right\rangle_{V_{i}}}{\langle H, \phi\rangle_{V}}+\frac{\left\langle C u\left(\frac{1}{B} \frac{\partial H}{\partial X_{i}}-\frac{H}{B^{2}} \frac{\partial B}{\partial X_{i}}\right), \phi\right\rangle_{V_{i}}}{\langle H, \phi\rangle_{V}} \\
& -F_{C} \cdot \frac{\left\langle\frac{\partial H}{\partial X_{i}}, \phi\right\rangle_{V_{i}}}{\langle H, \phi\rangle_{V}} \quad i \in\left(1, n_{v a r}\right) \tag{1.2}
\end{align*}
$$

DPHI-UCOST is defined by $\frac{\partial F_{C}}{\partial \phi}$:

$$
\begin{equation*}
\frac{\partial F_{C}}{\partial \phi}=S_{F_{C}}^{*}=\frac{\frac{C u}{B} \cdot H(\vec{r})-F_{C} \cdot H(\vec{r})}{\langle H, \phi\rangle_{V}} \tag{1.3}
\end{equation*}
$$

POWERLIMIT is defined by q_{j} :

$$
\begin{equation*}
q_{j}=Z P P F_{j} \cdot \frac{V}{V_{j}} \frac{\langle H, \phi\rangle_{V_{j}}}{\langle H, \phi\rangle_{V}} \leq \frac{P_{l i m}}{\bar{P}}=f_{l i m} \tag{1.4}
\end{equation*}
$$

DX-POWER is defined by $\frac{\partial q_{j}}{\partial X_{i}}$:

$$
\begin{align*}
\frac{\partial q_{j}}{\partial X_{i}}= & \frac{q_{j}}{Z P P F_{j}} \cdot \frac{\partial Z P P F_{j}}{\partial X_{i}} \cdot \delta_{i j}+\frac{q_{j}}{\langle H, \phi\rangle_{V_{j}}}\left\langle\frac{\partial H}{\partial X_{i}}, \phi\right\rangle_{V_{j}} \cdot \delta_{i j} \\
& -\frac{q_{j}}{\langle H, \phi\rangle_{V}}\left\langle\frac{\partial H}{\partial X_{i}}, \phi\right\rangle_{V} \quad i \in(1, I) \text { et } j \in\left(1, n_{\text {control-zone }}\right) \tag{1.5}
\end{align*}
$$

DPHI-POWER is defined by $\frac{\partial q_{j}}{\partial \phi}$:

$$
\begin{equation*}
\frac{\partial q_{j}}{\partial \phi}=S_{q_{j}}^{*}=\frac{Z P P F_{j} \frac{V}{V_{j}} \cdot H\left(\vec{r}_{j}\right)-q_{j} \cdot H(\vec{r})}{\langle H, \phi\rangle_{V}} j \in\left(1, n_{\text {control-zone }}\right) \tag{1.6}
\end{equation*}
$$

where $H\left(\vec{r}_{j}\right)= \begin{cases}H_{j} & \vec{r} \in V_{j} \\ 0 & \text { otherwise }\end{cases}$

KEFF is defined by $k_{e f f}: k_{e f f}$ is directly taken in the FLUX object.
D-KEFF is defined by $\frac{d k_{\text {eff }}}{d X_{i}}$:

$$
\begin{equation*}
\frac{d k_{e f f}}{d X_{i}}=-k_{e f f}^{2} \frac{d \lambda}{d X_{i}} \tag{1.7}
\end{equation*}
$$

where $\frac{d \lambda}{d X_{i}}$ is the derivative of the eigenvalue previously calculated with the PERTUR: module.
VOID-REAC-FC is defined by ρ_{V} :

$$
\begin{equation*}
\rho_{V}=\lambda-\lambda_{V}=\frac{1}{k_{e f f}}-\frac{1}{k_{e f f, V}} \tag{1.8}
\end{equation*}
$$

where $k_{\text {eff }}$ and $k_{e f f, V}$ are directly taken in the FLUX and FLUXP object respectively.
$\mathrm{D}-\mathrm{VOID}-\mathrm{R}-\mathrm{FC}$ is defined by $\frac{d \rho_{V}}{d X_{i}}$:

$$
\begin{equation*}
\frac{d \rho_{V}}{d X_{i}}=\frac{d \lambda}{d X_{i}}-\frac{d \lambda_{V}}{d X_{i}} \tag{1.9}
\end{equation*}
$$

where $\frac{d \lambda}{d X_{i}}$ is the derivative of the eigenvalue previously calculated with the PERTUR: module and $\frac{d \lambda_{V}}{d X_{i}}$ is the derivative of the eigenvalue previously calculated for a voided reactor with the PERTUR: module.
$\mathrm{KEFF}=\mathrm{KREF}$ is defined by $\Delta k_{\text {eff }}$:

$$
\begin{equation*}
\Delta k_{e f f}=\left(k_{e f f}-k_{r e f}\right)^{2} \tag{1.10}
\end{equation*}
$$

where $k_{\text {ref }}$ is the required reference multiplication factor.
$\mathrm{D}-\mathrm{KEFF}=\mathrm{KREF}$ is defined by

$$
\begin{equation*}
\frac{d \Delta k_{e f f}}{d X_{i}}=-2 *\left(k_{e f f}-k_{r e f}\right) \cdot k_{e f f}^{2} \frac{d \lambda}{d X_{i}} \tag{1.11}
\end{equation*}
$$

where $k_{r e f}$ is the required reference multiplication factor and $\frac{d \lambda}{d X_{i}}$ is the derivative of the eigenvalue previously calculated with the PERTUR: module.

MINPCMAX is defined by

$$
\begin{equation*}
\text { EPmoy }=\sum_{j=i_{\text {cst } 1} \mid q_{j}>q_{\text {moy }}}^{i_{\text {cst } 2}}\left(q_{j}-q_{\text {moy }}\right)^{2 m} \tag{1.12}
\end{equation*}
$$

where $q_{\text {moy }}$ is the average power zone. m can be changed with the module QLPUTL:. The sum is performed from constraint $i_{c s t 1}$ to $i_{c s t 2}$.

D-MINPCMAX is defined by

$$
\begin{equation*}
\frac{d \Delta E P m o y}{d X_{i}}=\sum_{j=i_{c s t 1} \mid q_{j}>q_{\text {moy }}}^{i_{\text {cst } 2}} 2 m\left(q_{j}-q_{\text {moy }}\right)^{2 m-1} \frac{d q_{j}}{d X_{i}} \tag{1.13}
\end{equation*}
$$

where $q_{\text {moy }}$ is the average power zone. m can be changed with the module QLPUTL:. The sum is performed from constraint $i_{c s t 1}$ to $i_{c s t 2}$.

Table 1.7: Structure (vardef_data)

```
[[ LOAD object [[ DOWN repertory ]] GREP data_name IN var_name ]]
[[ MSYS*FLUX object_sys { A | B } object_flux [ ADJOINT ] IN var_name ]]
[[ PREDEF predef_var ]]
```

where

LOAD	key word used to define the object where the data are stored.
object	name of the object.
DOWN	key word used to go in a sub-directory.
repertory	name of the repertory.
GREP	key word used to define the name of the data to load.
data_name	name of the data to load.
IN	key word used to define the name of the local variable.
var_name	name of the local variable name.
MSYS*FLUX	key word used to specify that a local variable will be calculated by the product of a system matrix and a flux (or adjoint).
object_sys	name of the object L_SYSTEM.
A	key word used to specify that the system matrix corresponding to the lost of the neutrons will be used. $(\mathbf{A}-\lambda B) \phi=0$
B	key word used to specify that the system matrix corresponding to the production of the neutrons will be used. $(A-\lambda \mathbf{B}) \phi=0$
object_flux	name of the object L_FLUX.
ADJOINT	key word used to specify that the adjoint flux will be used instead of the flux (default value). In this case the adjoint system matrix are used automatically.
PREDEF	key word used to specify that a predefined variable will be load.
predef_var	name of the predefined variable. The predefined variable name are define below.
key word	contents size
FLUX	neutron flux distribution nun \times ngrp
AFLUX	adjoint flux distribution of the second provided L_FLUX nun \times ngrp
FLUX2	neutron flux distribution of the second provided L_FLUX nun \times ngrp
AFLUX2	adjoint flux distribution nun \times ngrp
FLUX-AV	average flux distribution by channel \quad nch \times ngrp \times nzone
FLUX-AX	axial average flux distribution $n z \times n g r p$
DIFFX	diffusion coefficient along X abcisse nun \times ngrp
DIFFY	diffusion coefficient along Y abcisse nun \times ngrp
DIFFZ	diffusion coefficient along Z abcisse nun \times ngrp
TOTAL	total cross-sections nun \times ngrp
NFTOT	fission cross-sections nun \times ngrp
NUSIGF	number of neutrons per fission time fission cross-sections nun \times ngrp
H-FACTORS	fission cross section times the energy recovered by fission nun \times ngrp
CHI	fission spectrum nun \times ngrp
SIGW-0	isotropic component of the within group of the scattering of the nun \times ngrp scattering cross-sections

SIGW-1	linearly anisotropic component of the within group of the scattering of the scattering cross-sections	nun \times ngrp
D-TOTAL	derivative of total cross-sections	nun \times ngrp
D-CHI	derivative of fission spectrum	nun \times ngrp
D-DIFFX	derivative of diffusion coefficients along X abcisse	nun \times ngrp
D-DIFFY	derivative of diffusion coefficients along Y abcisse	nun \times ngrp
D-DIFFZ	derivative of diffusion coefficients along Z abcisse	nun \times ngrp
D-NUSIGF	derivative of fission cross-sections	nun \times ngrp
D-NFTOT	derivative of number of neutrons per fission time fission crosssections	nun \times ngrp
D-HFACT	derivative of fission cross section times the energy recovered by fission	nun \times ngrp
D-SIGW0	derivative of isotropic component of the within group of the scattering of the scattering cross-sections	nun \times ngrp
D-SIGW1	derivative of linearly anisotropic component of the within group of the scattering of the scattering cross-sections	nun \times ngrp
A*PHI	A system matrix times neutron flux vector	nun \times ngrp
$\mathrm{B} * \mathrm{PHI}$	B system matrix times neutron flux vector	nun \times ngrp
$\mathrm{AP} * \mathrm{PHI}$	perturbated A system matrix times neutron flux vector	nun \times ngrp
BP*PHI	perturbated B system matrix times neutron flux vector	nun \times ngrp
FUNCVALUE	value of the function, usually used when the derivative function is calculated (see the definition of the DX-UCOST predifined function for example).	ncst+1
FUNCZVOL	value of the volume on which the function is defined / integrated.	ncst+1
KEFF	$k_{e f f}$	nun \times ngrp
KEFF-VOID	$k_{\text {eff }}$ corresponding to a pertubated flux	nun \times ngrp
D-LAMBDA	derivative of the eigenvalue	nun \times ngrp
D-LAMBDA-V	derivative of the eigenvalue corresponding to a pertubated flux	nun \times ngrp

Table 1.8: Structure (seq_data)

```
INIT
[[ (data)
| INTEGRAL { REACTOR| CORE | CST-ZONE | VAR-ZONE | DBL-ZONE | DISCRETE-ALL | DISCRETE-COR |
DISCRETE-CST }
...[[ (data)| ENERGY { ALL | gpr from gpr to } [[ (data) ]] END-ENERGY ]]
... END-INTEGRAL ]] ]]
END
```

where
INIT key word used to specify that the function definition will follow.
(data) structure containing the data used to defined parts of the function.
INTEGRAL key word used to define an integral over one volume and energy.
REACTOR key word used to specify that the integration volume is the reactor

CORE key word used to specify that the integration volume is the core (all the bundles).

CST-ZONE key word used to specify that the integration volume is a control zone of one constraint.
VAR-ZONE key word used to specify that the integration volume is a zone where a decision variable applies.

DBL-ZONE key word used to specify that the integration volume is on the intersection of a control zone of one constraint and a zone where a decision variable applies.

DISCRETE-ALL key word used to specify that the integration will be performed only on the energy for every point of the reactor.

DISCRETE-COR key word used to specify that the integration will be performed only on the energy for every point of the core.

DISCRETE-CST key word used to specify that the integration will be performed only on the energy for every point of a control zone of one constraint.

ENERGY key word used to define the energy part of the integration.
ALL key word used to specify that the integration will be performed on all energy groups.
grp $_{\text {from }} \quad$ number of the first energy group for the integration.
$g r p_{t o} \quad$ number of the last energy group for the integration.
END-ENERGY key word used to specify that the definition of the integral over energy is finished.
END-INTEGRAL key word used to specify that the definition of the integral is finished.
END key word used to specify that the definition of the function is finished.

Table 1.9: Structure (data)

```
[[ { real | VAR loc_var_name | operator | VARF loc_var_name } ]]
```

where
real real number.
VAR key word used to specify that a local variable will be used.
VARF key word used to specify that a local variable which depend with the functional will be used (ex: zone volume).
loc_var_name name of a local variable name. Note: it has to be loaded before.
operator name of a numerical operator. The name must be one of these : PLUS, +, MINUS, -, TIMES, *, DIVISION, /, POWER, **, MAX, MIN, LOG, LN, EXP, SIN, COS, TAN, ABS, SQRT.

1.1.3 Examples of function definition

We will now give a few examples which will permit users a better understanding of the procedure to define the function for optimization in DONJON.

1. Predefined function:
```
OPTIMIZE := FOBJCT: OPTIMIZE FLUX MACRO ::
    EVAL-OBJ-CST CONSTRAINT 2 10 PREDEF POWERLIMIT
    ;
```

2. Function defiend by user:

For example, we suppose that a functional u defined by the user is :

$$
\begin{equation*}
f_{\text {cost }}=2 * k_{\text {eff }} * \int_{C O R E} C_{U} \int_{\text {allenergygroups }} \phi d E . d V \tag{1.14}
\end{equation*}
$$

Where :
C_{U} is the fuel cost.
$\bar{\phi}$ the flux distribution.

```
OPTIMIZE := FOBJCT: OPTIMIZE FLUX MACRO ::
    FUEL-COST-DF MEMORY
    EVAL-OBJ-CST FOBJ VARDEF LOAD FLUX GREP K-EFFECTIVE IN KEFF
                                    PREDEF FLUX
                                    2.0
                            VAR KEFF
                            *
                            INTEGRAL CORE
                                VAR FUELCOST
        ENERGY ALL
            VAR FLUX
            END-ENERGY
        *
        END-INTEGRAL
*
END
;
```


1.2 The QLPUTL: module

The QLPUTL: module is used to define the optimization options and tools. It is also used to do some pre-calcultaion.

The calling specifications are:
Table 1.10: Structure QLPUTL:

```
OPTIM := QLPUTL: OPTIM [ FLUX ] [ MAPFL ] [ MACRO [ MACROP ]] [ SYS [SYSP] TRACK
```

] : : (descqlputl)
where

OPTIMIZE	character*12 name of the extended optimize.
FLUX	character*12 name of the FLux linked list. This object is used for the function evaluation. It is recommended to provide it even if no function evaluation is done for many parameters reading. file.
MAPFL	character*12 name of the extended MAP linked list file containing fuel regions description and burnup informations. If MAPFL appears on the RHS, the information in it will be red for many parameters initialisation.
MACRO	character*12 name of the MACROLIB linked list file containing the mixtures cross sections. If it appears on RHS, it means it will be necessary for a function evaluation (objective or constraint).
MACROP	character*12 name of the MACROLIB linked list file containing the mixtures perturbated cross sections. If it appears on RHS, it means it will be necessary for a function evaluation (objective or constraint).
SYS	character*12 name of the SYSTEM containing the reference system matrices. SYSTEM must be a linked list. If it appears on RHS, it will be necessary for 'system matrice times flux' calculations.
SYSP	character*12 name of the SYSTEM containing the perturbated system matrices. SYSTEM must be a linked list. If it appears on RHS, it will be necessary for 'perturbated system matrice times flux' calculations.
TRACK	character*12 name of the TRACK (type L_TRIVAC) containing the tracking informations. TRACK must be a linked list. If it appears on RHS, it will be necessary for 'system matrice times flux' calculations.
(descqlputl)	structure containing the data to module PQLUTL:

1.2.1 Data input for module QLPUTL:

Table 1.11: Structure (descqlputl)

```
[ EDIT iprint ]
[ DEFINITION (def_data)]
[ STEP-VALID [ TEST-CST-VLD ] >> test1 << ]
[ STEP-INTERP { PUT | RECOVER >> test2<<} ]
DX-METHOD { EPS epsilon | PREVIOUS } ]
NEW-VAL-UPDT]
[ PERTURB-VAR { ivar 1 | RESTORE } ]
[BKP-MACRO-P ivar2]
[MAT*FLUX { A*PHI | B*PHI | AP*PHI }\mp@subsup{i}{var3}{}|\textrm{BP}*\textrm{PHI}\mp@subsup{i}{var 3}{}}
[ LA-PNLT [ INITIAL ] [ F-EVAL ] [ COEF-UPDATE ] [ CONV-TEST >> conv <<<]
...[ALMOST-FSBLE >> feas << ] ]
[ HISTORY i iter 1 [ POWER-CHA ] [ K-EFFECTIVE ] [ QUAD-CST ] ]
...[ CONSTRAINT { ALL | RANGE << icst1 >> << icst2 >> | << icst1 >> } ] ..[ [DIRECT << num
>> {vali,i=1,num} ]] [POWER-CHA#2 ] [POWER-CHA#3 ]
;
```

where

EDIT
iprint index used to control the printing in module.
DEFINITION
(def_data)
STEP-VALID
TEST-CST-VLD
test logical value for the validition of the new decision variables. test equals .true. if $F_{C}\left(X_{i}^{k+1}\right)$ is better than $F_{C}\left(X_{i}^{k}\right)$.
STEP-INTERP key word used to specify that an interpolation of the objective function for the midle point between $\left\{X_{i}^{k}\right\}$ and $\left\{X_{i}^{k+1}\right\}$ will be done.

PUT key word used to calculate and store the middle value.
RECOVER key word used to verify the middle value.
test2 logical value for the validation of interpolation. If $F_{C}\left(X_{i}^{k+\frac{1}{2}}\right)$ is less than $F_{C}\left(X_{i}^{k+1}\right)$ then the middle value is kept, otherwise the new value is restored.

DX-METHOD key word used to define which method will be used to evaluate the perturbated crosssection.

$$
\begin{equation*}
\frac{d \Sigma}{d X_{i}^{k}}=\frac{\Sigma\left(X_{i, p}^{k}\right)-\Sigma\left(X_{i}^{k}\right)}{X_{i, p}^{k}-X_{i}^{k}} \tag{1.15}
\end{equation*}
$$

where $X_{i, p}^{k}$ is the perturbated decision variable.

EPS

```
epsilon
```

PREVIOUS
NEW-VAL-UPDT
PERTURB-VAR
$i_{v a r 1}$
RESTORE
BKP-MACRO-P
$i_{\text {var } 2}$

MAT*FLUX
$\mathrm{A} * \mathrm{PHI}$
B*PHI
$\mathrm{AP} * \mathrm{PHI}$
$\mathrm{BP} * \mathrm{PHI}$
$i_{\text {var } 3}$

INITIAL

F-EVAL

COEF-UPDATE

CONV-TEST key word used to specify that a convergence test for external iteration will be performed.
conv logical value representing the result of the external convergence test.
ALMOST-FSBLE key word used to specify that a test will be permorfed to check if the current point is 'almost feasible'.
feas logical value representing the result of the 'almost feasible' test. The maximum error allowed to set feas to .true. is a relative difference between prescribed and current constraint values lower than the convergence crriterium.

HISTORY	key word used to store the decision vector and the functionnal values for iteration $i_{i t e r 1}$.
$i_{i t e r 1}$	integer representing the iteration number.
POWER-CHA	key word used to specify that the channel power distribution is also stored.
K-EFFECTIVE	key word used to specify that $k_{\text {eff }}$ value is also stored.
QUAD-CST	key word used to specify that quadratic constraint limit is also stored.
CONSTRAINT	key word used to specify that some constraint values are also stored.
ALL	key word used to specify that all constraint values are stored.
RANGE	key word used to specify that values of a range of constraint are stored.
$i_{\text {cst1 }}$	integer representing the first or only number of constraint.
$i_{\text {cst } 2}$	integer representing the second number of constraint.
DIRECT	key word used to specify that values provided by the user are stored.
num	integer representing the number of values provided by the user.
val_{i}	real representing the values provided by the user.
POWER-CHA\#2	same key word as POWER-CHA. It can be used when channel power distribution for a perturbated state of the reactor is also stored.
POWER-CHA\#3	same key word as POWER-CHA\#2.

Table 1.12: Structure (def_data)

```
[ METHOD { SIMPLEX| LEMKE | MAP | AUG-LAGRANG | PENAL-METH } ]
{ MAXIMIZE|MINIMIZE }]
[ INN-STEP-LIM step ]
[ VAR-WEIGHT { TYP-BURNUP weight | TYP-ENRICH weight } ]]
[[ CST-WEIGHT { i icst1 weight | RANGE icst1 }\mp@subsup{i}{cst2 { ALLSAME weight | weight }{j},j=\mp@subsup{i}{cst1}{},\mp@subsup{i}{cst2}{}}}}]
[ OUT-STEP-LIM step ]
INN-STEP-NMX }\mp@subsup{n}{\mathrm{ max }}{
OUT-STEP-NMX }\mp@subsup{n}{\mathrm{ max }}{
INN-STEP-EPS }\mp@subsup{\epsilon}{ext}{}
OUT-STEP-EPS }\mp@subsup{\epsilon}{inn}{}
STEP-REDUCT { HALF| PARABOLIC } ]
CST-QUAD-LIM epsilon4 ]
BKP-MCR-P-XS { ADD | NEW } [[ XS_name ]] ]
F-C-VOLUME [FOBJ {REACTOR | CORE}] [CONSTRAINT icst1 }\mp@subsup{i}{cst2}{}{\mathrm{ {REACTOR | CORE | ZONE}]
CST-WGT-MFAC \alpha ]
CST-VIOL-EPS }\mp@subsup{\epsilon}{cst}{}
MIN(PCMX)^2N m]
```

where

METHOD
SIMPLEX
LEMKE
MAP
AUG-LAGRANG
PENAL-METH
MAXIMIZE
MINIMIZE

INN-STEP-LIM
step
VAR-WEIGHT key word used to set the weight of the different types of the decision variables for the quadratic limit of the outer step of the optimization problem.

$$
\begin{equation*}
\sum w_{i} \cdot X_{i}^{2} \leq S_{k} \tag{1.16}
\end{equation*}
$$

CST-WEIGHT
$i_{c s t 1}$
weight
RANGE
$i_{c s t 2}$
ALLSAME
TYP-BURNUP
TYP-ENRICH
weight
OUT-STEP-LIM
INN-STEP-NMX
OUT-STEP-NMX
$n_{\text {max }}$
INN-STEP-EPS
$\epsilon_{e x t}$
OUT-STEP-EPS key word used to set the tolerence of outer iteration convergence criterium of the optimization problem.
$\epsilon_{i n n} \quad$ tolerence for convergence of external iterations (real)
STEP-REDUCT key word used to define the method of the reduction of the outer step.

HaLF	key word used to specify that the step will be reduced by a factor 2 .
PARABOLIC	key word used to specify that the step will be reduced with the parabolic method.
CST-QUAD-LIM	key word to set the parameter epsilon4 for the quadratic limit of the step.
epsilon4	parameter ϵ_{4}.
BKP-MCR-P-XS	key word used to specify which of the perturbated macroscopic cross-section will be stored on a backup repertory of the L_OPTIMIZE object. (for complementary information see PQLUTL/BKP-MACRO-P)
ADD	key word used to add name of cross-section to be stored.
NEW	key word used to define a new list of name of cross-section to be stored.
XS_name	name of the cross-section to be stored. The list of available name is: DIFFX, DIFFY, DIFFZ, TOTAL, NFTOT, NUSIGF, H-FACTORS, CHI, SIGW-0, SIGW-1, SCAT-0, SCAT-1, CHI, FIXE.
F-C-volume	key word used to specify that the volume where the functionals apply will be calculated.
FOBJ	key word used to specify that the volume corresponding to the objective function will be computed.
Constraint	key word used to specify that the volume corresponding to the constraints between number $i_{c s t 1}$ and $i_{c s t 2}$ will be computed.
$i_{\text {cst1 }}$	number of the first constraint for which the volume will be calculated.
$i_{\text {cst2 }}$	number of the last constraint for which the volume will be calculated.
REACTOR	key word used to specify that the volume of the functional is the whole reactor.
CORE	key word used to specify that the volume of the functional is the core represented by all the fuel channels.
Zone	key word used to specify that the volume of the functional is its corresponding zone.
CST-WGT-MFAC	key word used to set the multiplication factor α for the constraint weight update.
α	multiplication factor for the constraint weight update.
CST-VIOL-EPS	key word used to set the precision $\epsilon_{\text {cst }}$ when the validation of a new point is done with the constraint validity.
$\epsilon_{\text {cst }}$	precision for the constraint validity.
$\operatorname{MIN}($ PCMX $) \wedge 2 N$	key word used to set the coefficient m of the power distribution optimization problem. coefficient for channel having power greater than the average.

1.3 The PERTUR: module

The PERTUR: module is used to compute gradients of function using the first order of perturbation theory. Then it can be used to calculate the variation of reactivity of one reactor with a small perturbation of the cross-sections. There is two different approches to solve the problem of reactivity.

The first method uses in fact the module 'SORKEF:' of the previous version. This part of the module computes source terms based on a first order perturbation theory over diffusion equation. The direct diffusion equation for system matrix perturbations ΔA and ΔB can be written for a linear perturbation of the flux $\phi=\phi_{o}+\Delta \phi$:

$$
\begin{equation*}
\left(A_{o}-\lambda_{o} B_{o}\right) \Delta \phi=-\left(\Delta A-\lambda_{o} \Delta B-\Delta \lambda B_{o}\right) \phi_{o} \tag{1.17}
\end{equation*}
$$

The direct source term is then simply $\left(\Delta A-\lambda_{o} \Delta B-\Delta \lambda B_{o}\right) \phi_{o}$ where $\Delta \lambda$ is the first order estimate of the eiganvalue variation, Rayleigh formulation.
The adjoint source terms are easily obtained from a similar expression of the ajoint diffusion equation.
The second method is a part of the optimization modules package. To calculate $\frac{\Delta \lambda}{\Delta X_{i}}$, the user has to precalculate system matrices * flux. It can be done easily and automaticaly by using the module PQLUTL: with the key word 'MAT*FLUX'. For the specific case of the reactivity, the variation of the inverse of k -effective is given by the following equation:

$$
\begin{align*}
\frac{\partial \lambda}{\partial X_{i}} & =\lambda\left(\frac{\left\langle\phi^{*}, \frac{\partial A}{\partial X_{i}} \phi\right\rangle}{\left\langle\phi^{*}, A \phi\right\rangle}-\frac{\left\langle\phi^{*}, \frac{\partial B}{\partial X_{i}} \phi\right\rangle}{\left\langle\phi^{*}, B \phi\right\rangle}\right) \tag{1.18}\\
\frac{\Delta \lambda}{\Delta X_{i}} & =\lambda\left(\frac{\left\langle\phi^{*}, \frac{A_{p}}{\Delta X_{i}} \phi\right\rangle}{\left\langle\phi^{*}, A \phi\right\rangle}-\frac{\left\langle\phi^{*}, \frac{B_{p}}{\Delta X_{i}} \phi\right\rangle}{\left\langle\phi^{*}, B \phi\right.}\right) \quad i \in\left(1, n_{\text {var }}\right) \tag{1.19}
\end{align*}
$$

The calling specifications are:

Table 1.13: Structure (PERTUR:)

```
OPTIMIZE := PERTUR: OPTIMIZE FLUX [ SYS [ SYSP ] TRACK ] [ MACRO [ MACROP ] ] : :
(pertur_data)
```

where
GPT character*12 name of the SOURCE containing the source terms. If GPT appears on the RHS, the previous values will be updated.

FLUX character*12 name of the FLUX containing the unperturbed flux, direct or adjoint.
SYS character*12 name of the SYSTEM containing the reference system matrices. SYSTEM must be a linked list.

SYSP character*12 name of the SYSTEM containing the perturbation of the system matrices.
TRACK character*12 name of the TRACK (type L_TRIVAC) containing the tracking informations. TRACK must be a linked list.

OPTIMIZE character*12 name of the optimize containing the optimization informations. GPT must appear on the RHS to be able to updated the previous values.
(pertur_data) structure containing the data to the second choice for the module PERTUR:.
1.3.1 Data input for module PERTUR:

Table 1.14: Structure (pertur_data)

```
[ EDIT iprint ]
[ VARMUN { ivar1 }\mp@subsup{i}{\mathrm{ var 2 }}{|}|\mathrm{ ALL }
...{D-LAMBDA | D-LAMBDA/DX | D-LAMBDA-V | D-LAMBDA-V/DX |(eval_data) } ];
```

where
EDIT key word used to set iprint.
iprint index used to control the printing in module.
VARNUM key word used to define the decision variable for which the perturbation theory calculations will be done.
$i_{\text {var } 1} \quad$ number of the first decision variable.
$i_{\text {var } 2} \quad$ number of the second decision variable.
ALL key word used to specify that the perturbation theory calculations will be done for all the decision variables.

D-LAMBDA key word used to specify that absolute variation of the eigenvalue perturbation will be calculated for the corresponding perturbated decision variables.

D-LAMBDA/DX key word used to specify that derivative of the eigenvalue perturbation will be calculated for the corresponding perturbated decision variables.

D-LAMBDA-V key word used to specify that absolute variation of the eigenvalue perturbation will be calculated for the corresponding perturbated decision variables and that the provided system matrix correspond to the voided reactor (or an other configuration of the reactor).

D-LAMBDA-V/DX key word used to specify that derivative of the eigenvalue perturbation will be calculated for the corresponding perturbated decision variables and that the provided system matrix correspond to the voided reactor (or an other configuration of the reactor).
(eval_data) see explanations in the module FOBJCT: key word 'EVAL-OBJ-CST' 1.1.2. Some predefined function are described too.

1.4 The GPTSRC: module

The GPTSRC: module is used to calculate the sources terms (direct and / or adjoint) for generalized perturbation theory.

The calling specifications are:

Table 1.15: Structure GPTSRC :

```
{ GPT := GPTSRC: [ GPT ] OPTIMIZE FLUX [ SYS [ SYSP ] TRACK ] [ MACRO ] [ MAPFL ]
:: (gptsrc_data)
```

where
GPT character*12 name of the GPT linked list file containing fuel regions description and burnup informations. If GPT appears on the RHS, the information previously stored in GPT is modified if necessary and stored.

OPTIMIZE character*12 name of the extended OPTIMIZE linked list.
FLUX character*12 name of the FLUX linked list. This object is used for the function evaluation. It is recommended to provide it even if no function evaluation is done for many parameters reading. file.

MACRO character*12 name of the MACROLIB linked list file containing fuel regions description and burnup informations. If it appears on RHS, is means it will be necessary for a function evaluation (objective or constraint).

MAPFL character*12 name of the extended mAP. If MAPFL appears on the RHS, the information in it will be red for many parameters initialisation.

TABFL character*12 name of the TABLE linked list file containing fuel regions description and burnup informations. If it appears on RHS, is means it will be necessary for a function evaluation (objective or constraint).
(gptsrc_data) structure containing the data to module GPTSRC: .
1.4.1 Data input for module GPTSRC:

Table 1.16: Structure gptsrc_data

```
[ EDIT iprint ]
```



```
[[ ADJOINT (eval_data) ]]
[[ OTHER { DIRECT | ADJOINT } ivar1 (eval_data) ]] ;
```

where

EDIT
iprint
DIRECT
$i_{v a r 1}$
$i_{\text {var } 2}$
ALL

ADJOINT
key word used to calculate a adjoint source term for decision variables S_{j}^{*}.

$$
\begin{equation*}
S_{j}^{*}=\frac{\partial G_{j}}{\partial \phi} \tag{1.21}
\end{equation*}
$$

(eval_data) see explainations in the module FOBJCT: key word 'EVAL-OBJ-CST'. Some predefined function are described too.

1.5 The GPTGRD: module

The GPTGRD: module is used to compute the gradient of functions using the generalized perturbation theory. To do that the user must precalculate the sources terms (module GPTSRC) and the generalized adjoints (module GPTFLU).

The GPTGRD: module also allows to define directly values of gradient of functions.
The calling specifications are:

Table 1.17: Structure GPTGRD:

```
OPTIMIZE := GPTGRD: OPTIMIZE FLUXP [ SYS [ SYSP [ SYS2 [ SYS2P ] ] ] TRACK
    MACRO [ FLUX ] [ MATEX ] [ MAPFL ] : : [ (direct_data)] (gptgrd_data)
OPTIMIZE := GPTGRD: OPTIMIZE :: (direct_data)
```

where
OPTIMIZE character*12 name of the OPTIMIZE containing the optimization informations. GPT must appear on the RHS to be able to updated the previous values.

FLUXP character*12 name of the FLUX containing the generalized adjoint flux, explicit or implicit.

TRACK character*12 name of the TRACK linked list file containing tracking information corresponding to FLUXP.

MACRO character*12 name of the MACROLIB linked list file containing fuel regions description and burnup informations.

FLUX character*12 name of the FLUX containing the unperturbed flux, direct or adjoint. If it appears on RHS, is means it will be necessary for a function evaluation (objective or constraint).

GPT character*12 name of the GPT linked list file containing fuel regions description and burnup informations. If it appears on RHS, is means it will be necessary for a function evaluation (objective or constraint).

MATEX character*12 name of the MATEX object created by the USPLIT: module and containing the complete reactor material index including devices.

MAPFL character*12 name of the MAP linked list file containing the fuel map informations.
(direct_data) structure containing the data to the direct definition of gradient for the module GPTGRD: .
(gptgrd_data) structure containing the data to the generalized theory based gradients choice for the module GPTGRD: .
1.5.1 Data input for module GTPGRD:

Table 1.18: Structure direct_data

```
[ NEW-VALUE ] [ REL ]
DIRECT-VALUE }\mp@subsup{i}{var 1 [ }{\mp@subsup{i}{var 2 }{*}]{\mathrm{ FOBJ | CONSTRAINT }\mp@subsup{i}{fcn1 }{*}\mp@subsup{i}{fcn1}{}}
\ldots..grad ( j=1, (ivar 2 - ivar1 + 1).(iffcn2}-\mp@subsup{i}{fcn1}{}+1)
[; ]
```

where
NEW-VALUE key word used to specify that the value of gradient is set to zero.
REL key word used to recover the epsilon in record OPT-PARAM-R of object OPTIMIZE.
DIRECT-VALUE key word used to specify that the value of gradient will be directly given by the user.
$i_{\text {var } 1} \quad$ first decision variable for which the gradient will be defined.
$i_{\text {var } 2} \quad$ last decision variable for which the gradient will be defined. If it is not defined, the default value is $i_{\text {var } 1}$.

FOBJ key word used to specify that the gradient of the objective function will be defined.
CONSTRAINT key word used to specify that the gradient of conctraints will be defined.
$i_{f c n 1} \quad$ first constraint for which the gradient will be defined.
$i_{f c n 2} \quad$ last constraint for which the gradient will be defined.
grad value of the gradient.
; this key word has to be provided if (gptgrd_data) is not used.

Table 1.19: Structure gptgrd_data


```
;
```

where

DIRECT
$i_{\text {var } 1} \quad$ first decision variable for which the gradient will be defined.
$i_{\text {var } 2} \quad$ last decision variable for which the gradient will be defined.
ALL key word used to specify that the gradient will be calculated for all decision variables.
(eval_data) see explainations in the module FOBJCT: key word 'EVAL-OBJ-CST'. Some predefined function are described too.

INDIREC
EXPLICIT
IMPLICIT key word used to obtain the solution of an adjoint fixed source eigenvalue problem. If neither 'EXPLICIT' nor 'IMPLICIT' are provided the default value will be chosen as a function of $n_{v a r}$ and $n_{c s t}+1$.

FOBJ key word used to specify that the gradient of the objective function will be defined.
CONSTRAINT
$i_{f c n 1}$
$i_{f c n 2}$
key word used to specify that the indirect part of the gradient will be calculated.
key word used to obtain the solution of an direct fixed source eigenvalue problem. key word used to specify that the gradient of conctraints will be defined.
first constraint for which the gradient will be defined.
last constraint for which the gradient will be defined.

1.6 The TABU: module

The TABU: module is used to define options and data storage for the tabu search optimization algorithm.

The calling specifications are:
Table 1.20: Structure TABU:

```
TABUSH [ OPTIM ] := TABU : [ TABUSH ] OPTIM : : (desctabu)
```

where
TABUSH character*12 name of the extended TABU linked list file.
OPTIM character*12 name of the extended optimize linked list file. If OPTIM appears on the LHS, decision variables or their limits (for exemple) may be changed for further evaluation of the objective function and constraint.
(desctabu) structure containing the data to module TABU:.
1.6.1 Data input for module TABU:

Table 1.21: Structure (desctabu)

```
EDIT iprint]
DEFINITION (def_data)]
[ NEIGHB-CREAT]
[ NEIGHB-CHOIC [ INIT-PRO-LIST ] [ NELDER-MEAD ] ineig
[ NEIGHB-EVAL [ INIT-PRO-LIST ] [ NELDER-MEAD ] ineig ]
[ NEIGHB-BEST [ CONV-TEST >> Lconv << ] [ PROMISE-TEST [ NO-THRESHOLD ] >> Lpro << ] ]
[ PROMISE-AREA [ NELDER-MEAD ] { CREATION | UPDATE } ]
[ NELDER-MEAD (nelder_data)]
;
```

where
EDIT key word used to set iprint.
iprint index used to control the printing in module.
DEFINITION key word used to define the tabu search optimization options.
(def_data) structure containing the data to the option DEFINITION.
NEIGHB-CREAT key word used to create the neighborhood for the decision variable set stored as the current one in the TABUSH object.
key word used to specify the number $i_{n e i g}$ within the neighbors which will be evaluated. The corresponding decision variable values are copied in the OPTIM object as the current decision variables.

NEIGHB-EVAL key word used to specify the number $i_{n e i g}$ within the neighbors which have been evaluated. The corresponding functional values and the tabu function result are stored in the TABU object.

INIT-PRO-LIST key word used to specify the initial elements of the promising list are selected and evaluated (and not the neighbors).

NELDER-MEAD key word used to specify the initial elements of the polytope for the Nelder-Mead simplex algorithm are selected and evaluated (and not the neighbors).
$i_{\text {neig }} \quad$ integer value for a neighbor point to be / which has been evaluated.
NEIGHB-BEST key word used to check the neighbors results. The best neighbor result is compared to the fittest solution ever found. An update is performed if necessary. Tests for global convergence and promising area detection can be done. The tabu list is updated.

CONV-TEST key word used to verify if global convergence is achieved.
Lconv logical value for the global convergence. Lconv equals .true. if Nit is greater than Nit ${ }_{\text {max }}$.

PROMISE-TEST key word used to verify if a promising area has been detected.
NO-THRESHOLD key word used to specify that no threshold limits the acceptance of promising areas.
Lconv logical value for the promising area detection.
PROMISE-AREA key word used to specify that calculation based on gradient methods will be performed on a promising area previously detected.

NELDER-MEAD key word used to specify the Nelder-Mead simplex algorithm is used instead of the gradient method.

CREATION key word used to define the area for the local gradient method optimization algorithm. A backup of original decision variable limits is done in TABUSH object and new smaller ones are stored in OPTIM object.

UPDATE key word used to set the gradient method result for the promising area as the new current decision variable. An update of the best point ever found is done is necessary. The promising list is also updated.

NELDER-MEAD key word used to specify the Nelder-Mead simplex algorithm is selected.
(def_data) structure containing the data to the option NELDER-MEAD corresponding to the different geometric transformations.

Table 1.22: Structure (def_data)

```
ISEED seed ]
[ NEIGHBOR-NB ngh ]
[ NEIGHBOR-TYP { RECTANGLE | BALL } ]
```

Structure (def_data)
continued from last page

```
NEIGHBOR-DIS { GEOMETRIC fact | LINEAR | ISOVOLUME } ]
NEIGHBOR-RAD R }\mp@subsup{R}{n}{}\mathrm{ ]
TABU-RAD R }\mp@subsup{R}{t}{
PROMIS-RAD }\mp@subsup{R}{p}{
NIT-MAX-CONV Nit max ]
TABU-LIST-LG { ALL |Lg
PROM-LIST-LG { ALL | Lg p }]
GET-CURRENT [ COMPLETE]]
PUT-CURRENT ]
INITIALIZE ]
INIT-PRO-LIST]
RESET-BEST ]
BEST-AS-CURR ]
NELDER-EPS }\mp@subsup{\epsilon}{ned}{l
```

where

GEOMETRIC
fact real number (>1) for the geometric serie for the radius determination.

LINEAR key word used to specify that the radius of the crowns are given by a linear serie (default). The radius are given by:

$$
r_{i}=R_{n} \frac{i}{n g h} \text { with } i \in\{1, n g h\}
$$

key word used to specify that the radius of the crowns are chosen to have a constant volume for all crowns. The radius are given by:

$$
r_{i}=R_{n} \sqrt[n_{v a r}]{\frac{i}{n g h}} \text { with } i \in\{1, n g h\}
$$

NEIGHBOR-RAD
R_{n}

TABU-LIST-LG

INIT-PRO-LIST
RESET-BEST
BEST-AS-CURR
NELDER-EPS
$\epsilon_{\text {ned }}$

TABU-RAD key word used to set the radius R_{t} of the hyperrectangle / ball around tabu values. All the points within this small domain are tabu as well.
$R_{t} \quad$ real number for tabu list radius. This radius is a fraction of the total limits and then must be between 0.0 and 1.0.

PROMIS-RAD key word used to set the radius R_{p} of the hyperrectangle / ball around tabu values. All the points within this small domain are tabu as well.
$R_{p} \quad$ real number for promising list radius. This radius is a fraction of the total limits and then must be between 0.0 and 1.0 .

NIT-MAX-CONV key word used to specify the number Nit $_{\text {max }}$ of required external iteration without improvement of the best solution ever found for global convergence achievement.

Nit $t_{\max } \quad$ integer value of required iterations for global convergence.
key word used to specify the maximum length of the tabu list.
PROM-LIST-LG key word used to specify the maximum length of the promising area list.
ALL key word used to specify the values entering in a list are kept until the end of the optimization procedure.
$L g_{t} \quad$ integer value of maximum tabu list length.
$L g_{p} \quad$ integer value of maximum promising area list length.
GET-CURRENT key word used to specify the decision variable set in OPTIM object will be stored as the current one in TABUSH object.

COMPLETE key word used to specify the objective function, the constraints and the penalty functions will also be stored with the current values.

PUT-CURRENT key word used to specify the current decision variable set in TABU object will be stored as the variable values in OPTIM object.

INITIALIZE key word used to initialize (chose a random value) the starting decision variables in the decision space.
key word used to set the radius R_{n} of the neighborhood.
real number for neighborhood radius. This radius is a fraction of the total limits and then must be between 0.0 and 1.0.
key word used to specify that the initial promising list is created. key word used to reset the best value of the tabu search objective function.
key word used to set the best value as the current value.
key word used to set the convergence limit for the Nelder-Mead simplex algorithm.
real value for the Nelder-Mead convergence criterium (default 0.01).

Table 1.23: Structure (nelder_data)

```
[ FIND-NEW >> i
COMPARE-NEW >> L Lexp}<<<>>\mp@subsup{L}{ctt}{}<<>>\mp@subsup{L}{\mathrm{ conv }}{}<<
EXPAN-VLD >> L Lonv }<<<
[ CONTRACTION >> L mctt }<<>>\mp@subsup{i}{\mathrm{ best }}{}<<>>\mp@subsup{L}{\mathrm{ conv }}{}<<
```

where
FIND-NEW key word used to find the worst point of the polytope for the Nelder-Mead simplex algorithm, and compute its reflected point.
$i_{\text {worst }} \quad$ integer value for the index of the worst point of the polytope.
COMPARE-NEW
key word used to compare the reflected point of the worst point of the polytope with the other points. Next geometrical transformation is decided according to the results of the comparison.
$L_{\text {exp }} \quad$ logical value for the expansion move.
$L_{c t t} \quad$ logical value for the contraction move.
$L_{\text {conv }} \quad$ logical value for convergence.
EXPAN-VLD key word used to validate the expansion point (comparison of its results with the reflection point).

CONTRACTION key word used to compare the contraction point (comparison of its results with the reflection point). Next geometrical transformation is decided according to the results of the comparison.
$L_{c t t} \quad$ logical value for the multi-contraction move.
$i_{\text {best }} \quad$ integer value for the index of the best point of the polytope.

2 Output Data Treatment

In this section, input of output data treatment modules will be given.

2.1 The ADDOBJ: module

The ADDOBJ: module is used to perform the differences between two objects or to add two objects. For the macrolib and flux, this is possible only if they contain the same energy group and material mixture numbers.

The calling specifications are:
Table 1.24: Structure ADDOBJ :

```
MACNEW := ADDOBJ: [ MACNEW ] MACRO1 MACRO2 :: (addmac_data)
FLUNEW := ADDOBJ: [ FLUNEW ] FLU1 FLU2 :: (addflu_data)
```

where
MACNEW character*12 name of the MACROLIB containing either the nuclear increments, from the calculation of MACRO1 - MACRO2 or the sum of properties from MACRO1 + MACRO2. Be aware the order of mACROLIB is important, even for addition option.

MACRO1 character*12 name of a MACROLIB.
MACRO2 character*12 name of a MACROLIB. When addition is performed, it must contain incremental nuclear properties.
(addmac) structure containing the data to module ADDOBJ : with the options for MACROLIB operations.

FLUNEW character*12 name of the FLUX which will be the result of the addition or the subtraction of the two old one. This object has to be in create mode only.

FLU1 character*12 name of the first FLUX.
FLU2 character*12 name of the second FLUX.
(addflu) structure containing the data to module ADDOBJ: with the options for FLUX addition.
2.1.1 Data input for module ADDOBJ:

Table 1.25: Structure (addmac_data)

```
[ EDIT iprt]
STEP ilev ]
[ { ADD [ frac1 [ frac2 ] ] | SUB } ]
```

```
FROM-MP ]
[{ DDIFF| NODIF } ]
```

;
where
EDIT key word used to set iprt.
iprt index used to control the printing. $<=2$ minimum printing; >3 macroscopic differences are printed.

ADD keyword to specify that the two objects will be added. If only frac1 is specifeid, MACRO1 + frac1.MACRO2 will be performed using the options for the diffusions coefficients. If frac1 and frac1 are specified, frac1.MACRO1 + frac2.MACRO2 will be performed even for the diffusion coefficients.
frac1 first real that will multiply the value of the first object. (default 1.0)
frac2 second real that will multiply the value of the second object. (default 1.0)
SUB keyword to specify that the two objects will be substracted. This is the default option.
FROM-MP keyword to specify that the two objects have been partially calculated by different CPU. An addition will be performed to calculate the 'complete' object (frac1 and frac2 equal 1.0).

STEP key word used to set ilev.
ilev number of the perturbed level in macrolib. In case of substraction of two macrolib: If a single set of increments is stored, it must be equal to 1 . This step is used to later compute perturbation system matrices. If this information is absent, incremental cross sections are stored on root directory. In case of addition of two macrolib: ilev specifies the perturbed level where informations is stored in the two initial macrolib. If both macrolib have a perturbed level, it must the same. The resulting properties will be stored on root directory.

DDIFF keyword to specify a correct treatment of diffusion coefficients. If SUB is specified, the resulting incremental diffusion coefficient will be:

$$
\Delta D=\frac{1}{\frac{1}{D_{1}}-\frac{1}{D_{2}}}
$$

where D_{1} is taken from the first macrolib and D_{2} from the second. If ADD is specified, the resulting diffusion coefficient will be:

$$
D=\frac{1}{\frac{1}{D_{1}}+\frac{1}{\Delta D_{2}}}
$$

where D_{1} is taken from the first MACROLIB and ΔD_{2} from the second.
NODIF
keyword to specify that no addition or substraction of diffusion coefficients will be done. This is the default option.

Table 1.26: Structure (addflu_data)

```
EDIT iprt]
{
[{ ADD [frac1 frac2 ] | SUB } ] [ F-ADJOINT [ ADJ-ONLY ] ]
|
FROM-2-PARTS { FLUX | AFLUX |DFLUX iga1 |ADFLUX iga1 } frac1
......{ FLUX | AFLUX |DFLUX iga2 |ADFLUX iga2 } frac2
......IN { FLUX | AFLUX |DFLUX iga2 |ADFLUX iga2 }
};
```

where

EDIT
iprt
ADD
frac1
frac2
SUB
F-ADJOINT

ADJ-ONLY keyword to specify that the numerical operation will be performed on the adjoint flux only.

FROM-2-PARTS keyword to specify that the two objects contain one part of the result flux. An addition will be performed to calculate the 'complete' object. This option can not be done with other options (except EDIT) in the same call of the module.

FLUX keyword to specify that the flux will be used or the result of the addition.
AFLUX keyword to specify that the adjoint flux will be used or the result of the addition.
DFLUX keyword to specify that the explicit generalized adjoint will be used or the result of the addition.

ADFLUX keyword to specify that the implicit generalized adjoint will be used or the result of the addition.
iga1 number of the first generalized adjoint if applicable.
iga2 number of the second generalized adjoint if applicable.
IN
iga3 number of the third generalized adjoint if applicable.

2.2 The MATLAB: module

The MATLAB: module is used to create an ASCII file executable by MATLAB. Two options are available. First one is used to create a file to draw the gradiants of functions calulated in a optimisation problem. Second option allows to draw maps of the flux distribution.

The calling specifications are:

Table 1.27: Structure MATLAB:

```
{ ASCII-MAT := MATLAB: OPTIM :: (descmatlgrd)|
ASCII-MAT := MATLAB: FLUX TRACK INDEX GEOM :: (descmatlflu) }
```

where

ASCII-MAT
OPTIM character*12 name of the OPTIMISATION linked list or XSM file containing the gradiants and the stored perturbated values of the functions. Such file is obtained using the module GPTVRF: .
(descmatlgrd) structure containing the data input to module MATLAB: for gradiants ploting.
FLUX character*12 name of the FLUX linked list or XSM file containing the flux or adjoint or generalized adjoints or harmonics to be mapped.

TRACK character*12 name of the TRACK linked list or XSM file containing the tracking datas (TRIVAA is the only type of tracking compatible).

INDEX character*12 name of the INDEX linked list or XSM file containing the index datas.
GEOM character*12 name of the GEOM linked list or XSM file containing the geometry description.
(descmatlflu) structure containing the data input to module MATLAB: for flux distribution's mapping.
2.2.1 Data input for module MATLAB:

Table 1.28: Structure (descmatlgrd)

```
[ EDIT iprint]
OPT-GRAD-VRF
```

;
where
EDIT key word used to set iprint.
iprint index used to control the printing in module XSFUEL: . $=0$ for no print (default value); $=1$ for minimum printing; larger values produce increasing amounts of output.

OPT-GRAD-VRF
key word used to select the gradiants verification and ploting option and produce the ASCII-MAT file. An exemple of the results is presented on the following figure.

Table 1.29: Structure (descmatlflu)

```
[ EDIT iprint]
MAP-FLUX {FLUX| ADJOINT | GPT-FLU isrc | GPT-ADJOINT isrc | HARMONIC ihrm }
{ NO-GRID | CENTER-GRID | CHANEL-GRID }
;
```

where
EDIT key word used to set iprint.
iprint index used to control the printing in module XSFUEL: . $=0$ for no print (default value); $=1$ for minimum printing; larger values produce increasing amounts of output.

MAP-FLUX key word used to select the flux distribution mapping option and produce the ASCIIMAT file.

FLUX key word used to specify that the distribution of the flux will be drawn.
ADJOINT key word used to specify that the distribution of the adjoint will be drawn.
GPT-FLU key word used to specify that the distribution of the explicit generalized adjoint corresponding to the source number iscr will be drawn.

GPT-ADJOINT key word used to specify that the distribution of the implicit generalized adjoint corresponding to the source number iscr will be drawn.
iscr identifier for the source number corresponding to generalized adjoint to be drawn.
HARMONIC key word used to specify that the distribution of the flux corresponding to the harmonic number ihrm will be drawn.
ihrm identifier for the harmonic number corresponding to the flux to be drawn.

NO-GRID key word used to specify that no grid will be add on the map of the flux distribution. An exemple of the results is presented on the figure a.

CENTER-GRID key word used to specify that a grid will be add on the map of the flux distribution. The nodes of the grid correspond to the center of the volumes where the flux are calculated. An exemple of the results is presented on the figure b.

CHANEL-GRID key word used to specify that a grid will be add on the map of the flux distribution. The squares of the grid correspond to the limits of the channels. An exemple of the results is presented on the figure c.

2.3 The GPTVRF: module

The GPTVRF: module is used to verify the computation of the gradients with classical and generalized perturbation theories. The analytical gradients calculated with the modules PERTUR: and GPTGRD: are compared with numerical gradients calculated with the Ceshino method using several values of the functionals for pertubated values of the decision variables.

The calling specifications are:

Table 1.30: Structure GPTVRF :

```
OPTIMV := GPTVRF:[ OPTIMV ] OPTIM :: (gptvrf_data)
```

where
OPTIMV character*12 name of the OPTIMIZE containing the pertubated and unpertubated values of the decision variables and of the functionals. If OPTIMV is the same as OPTIM, then the perturbated datas will be stored in the same optimize object.

OPTIM character*12 name of the OPTIMIZE containing the curent values of the decision variables and of the functionals.
(gptvrf_data) structure containing the data to module GPTVRF: .
2.3.1 Data input for module GPTVRF:

Table 1.31: Structure gptvrf_data

```
EDIT iprint]
[SAVE-PERT }\mp@subsup{i}{var}{}\epsilon
[ SAVE-GPT {ABS | REL \epsilon }\mp@subsup{\epsilon}{GPT}{}}
```


;
where
EDIT key word used to set iprint.
iprint index used to control the printing in module.
SAVE-PERT key word used to store the current values of the functionals for the corresponding perturbation ϵ of the decision variable $i_{\text {var }}$.
$i_{\text {var }} \quad$ number of the perturbated decision variable.
$\epsilon \quad$ amount of the pertubation (ex: $\epsilon=0.01$ corresponds to 1% of perturbation).

SAVE-GPT key word used to specify that the analytical gradient will be stored.

ABS

REL key word used to specify that the stored analytical gradient will be devided by the corresponding amount of perturbation to obtain the relative gradient (the derivative).
$\epsilon_{G P T}$
COMPARE key word used to specify that the numerical gradient will be computed and compared to the analytical gradients.
$i_{\text {var } 1} \quad$ number of the first decision variable for which the comparason will be done.
$i_{\text {var } 2}$
$i_{f c t 1}$
$i_{f c t 2}$
ALL key word used to specify that the comparason will be done for all decision variables and/or all functionals.

Chapter 2

OPTEX STRUCTURES

1 Contents of a /tabu/ data structure

The / tabu/ specification is used to store the decision variable set used for a tabu search optimization method. The different options of this method are also stored in the /tabu/ data structure.

The signature variable for this data structure must be SIGNA=L_TABU parameters for this data structure, which are stored in the state vector \mathcal{S}_{i}^{t}, represents:

- The number of neighbors $N_{e i g}=\mathcal{S}_{1}^{t}$.
- The type of neighborhood \mathcal{S}_{2}^{t} where

$$
\mathcal{S}_{3}^{t}= \begin{cases}1 & \text { hyperrectangle } \\ 2 & \text { ball }\end{cases}
$$

- The type of discretisation of the neigborhood. \mathcal{S}_{3}^{t} where

$$
\mathcal{S}_{3}^{t}= \begin{cases}1 & \text { geometric } \\ 2 & \text { linear } \\ 3 & \text { isovolume }\end{cases}
$$

- The test for external convergence $N i t_{\max }=\mathcal{S}_{4}^{t}$.
- The current number of iterations without improvement of the best value $N i t=S_{5}^{t}$.
- The tabu list maximum size $L_{t}=\mathcal{S}_{6}^{t}$.
- The promising area list maximum size $L_{p}=\mathcal{S}_{7}^{t}$.
- The tabu list current size $L_{t}^{c}=\mathcal{S}_{8}^{t}$.
- The promising list current size $L_{p}^{c}=\mathcal{S}_{9}^{t}$.
- The number of decision variables $N_{v a r}=\mathcal{S}_{10}^{t}$.
- The number of constraints $N_{c s t}=\mathcal{S}_{11}^{t}$.
- The first number for the random point generation algorithm $\mathcal{S}_{39}^{t}(=\operatorname{TIME}())$.
- The number of generated random numbers \mathcal{S}_{40}^{t}.

Table 2.1: Main records and sub-directories in /tabu/

Name	Type	Condition
SIGNATURE UnitsComment STATE-VECTOR $\mathrm{C} * 12$	Signature of the data structure (SIGNA) Vector describing the various parameters as- sociated with this data structure \mathcal{S}_{i}^{t} and the tabu search optimization integer options	

Main records and sub-directories in /tabu/
continued from last page

Name	Type	Condition	UnitsComment
TABU-PARAM-R	$\mathrm{R}(40)$	Vector containing various tabu search opti- mization real options and several current val- ues. The values of the current decision variables, the corresponding functionals and the tabu	
function			

Notes related with the different limits and values for the iterative calculations of the optimization problem:

1.1 The sub-directories in /tabu/

The sub-directories are NEIGHBORHOOD, TABU-LIST, PROMISE-LIST and NELDER-MEAD. They all have two main records in common. NELDER-MEAD has several additional records. Those two types of records are presented in the two following tables.

Table 2.2: Main records in sub-directories

Name	Type	Condition Units	Comment
ITEM $_{\text {LUபபபபபபப }}$	R()	$\mathrm{R}\left(N_{\text {eig }}\right)$	List of decision variable set, its corresponding functional and tabu search function values. The tabu search function values of the neigh- bors.

The length of the ITEM list is given by:

- $N_{\text {eig }}$ for NEIGHBORHOOD directory
- $\min \left\{L_{t}^{c}, L_{t}\right\}$ for TABU-LIST directory
- $\min \left\{L_{p}^{c}, L_{p}\right\}$ for PROMISE-LIST directory
- $N_{v a r}+1$ for NELDER-MEAD directory

Table 2.3: Additional records in NELDER-MEAD directory

Name	Type	Condition	UnitsComment
IWORST பபபபபப	$\mathrm{I}(1)$		Index corresponding to the summit of the polytope with the worst value of tabu search fonction.
IWORST2பபபபப	I(1)		Index corresponding to the summit of the polytope with the second worst value of tabu search fonction.
IBEST பபபபபபப	$\mathrm{I}(1)$		Index corresponding to the summit of the polytope with the worst value of tabu search fonction.
XAVERGபபபபபப	$\mathrm{R}\left(N_{\text {var }}\right)$		The average values of the decision variables for all the points of the polytope.
REFLECT-VAL ${ }_{\sqcup}$	$\mathrm{R}\left(N_{v a r}+N_{c s t}+2\right)$		The reflection of the worst point of the polytope with the centroid given by XAVERG. It also includes the corresponding objective function, constraints and tabu search values after their evaluation.
EXPAN-VLD	$\mathrm{R}\left(N_{v a r}+N_{c s t}+2\right)$		The reflection of the centroid of the polytope given by XAVERG with the worst point. It also includes the corresponding objective function, constraints and tabu search values after their evaluation.

2 Contents of a /optimize/ data structure

The /optimize/ specification is used to store the optimization variables and functions values and definitions, limits and options. It is also used in a particular case with the module GPTVRF : to store the functions for many perturbated values of the decision variables and the gradients calculated numerically and analytically.

In any case, the signature variable for this data structure must be SIGNA=L_OPTIMIZE SU $^{\text {. }}$. The dimensioning parameters for this data structure, which are stored in the state vector \mathcal{S}_{i}^{o}, represents:

- The number of decision variables $N_{v a r}=\mathcal{S}_{1}^{o}$.
- The number of constraints $N_{c s t}=\mathcal{S}_{2}^{o}$.
- The type of optimization. \mathcal{S}_{3}^{o} where

$$
\mathcal{S}_{3}^{o}=\left\{\begin{aligned}
1 & \text { minimization } \\
-1 & \text { maximization }
\end{aligned}\right.
$$

- The test for external convergence \mathcal{S}_{4}^{o}. where

$$
\mathcal{S}_{4}^{o}= \begin{cases}0 & \text { not converged } \\ 1 & \text { converged }\end{cases}
$$

- The number of external iterations S_{5}^{o}.
- The type of reduction for external step \mathcal{S}_{6}^{o}. where

$$
\mathcal{S}_{6}^{o}= \begin{cases}1 & \text { half } \\ 2 & \text { parabolic }\end{cases}
$$

- The number of inner iterations S_{7}^{o}.
- The number of outer iterations S_{8}^{o}.
- The resolution's method for the linearized problem \mathcal{S}_{9}^{o}. where

$$
\mathcal{S}_{9}^{o}= \begin{cases}1 & \text { SIMPLEX/LEMKE } \\ 2 & \text { LEMKE/LEMKE } \\ 3 & \text { MAP } \\ 4 & \text { Augmented Lagragian } \\ 5 & \text { Penalty Method }\end{cases}
$$

- The type of perturbation for the decision variables S_{10}^{o}. where

$$
\mathcal{S}_{10}^{o}= \begin{cases}1 & \text { epsilon } \\ 2 & \text { previous }\end{cases}
$$

- The type of fuel cost definition S_{11}^{o}. where

$$
\mathcal{S}_{11}^{o}= \begin{cases}1 & \text { dependent of the enrichment } \\ 2 & \text { fixed }\end{cases}
$$

- The test for a realistic decision vector S_{12}^{o}. where

$$
\mathcal{S}_{12}^{o}= \begin{cases}0 & \text { do not respect all constraints } \\ 1 & \text { do respect all constraints }\end{cases}
$$

- A flag for unsuccessful resolution in QLP S_{13}^{o}. where

$$
\mathcal{S}_{13}^{o}=\left\{\begin{aligned}
0 & \text { successful at last iteration } \\
\geq 1 & \text { number of iteration with unsuccessful resolution }
\end{aligned}\right.
$$

- The number of regions $N_{r}=\mathcal{S}_{16}^{o}$.
- The number of channels in the core $N_{c h}=\mathcal{S}_{17}^{o}$.
- The number of bundles per channel $N_{k}=\mathcal{S}_{18}^{o}$.
- The number of unknowns per energy group $N_{u}=\mathcal{S}_{19}^{o}$.
- The number of energy groups $G=\mathcal{S}_{20}^{o}$.

Table 2.4: Main records and sub-directories in /optimize/

Name	Type	Condition	Units	Comment
SIGNATURE Uபப	$\mathrm{C} * 12$			Signature of the data structure (SIGNA)
STATE-VECTOR	$\mathrm{I}(40)$			Vector describing the various parameters associated with this data structure \mathcal{S}_{i}^{o}
VAR-VALUE பபப	$\mathrm{R}\left(N_{v a r}\right)$			The values of the decision variables
VAR-TYPE	$\mathrm{R}\left(N_{\text {var }}\right)$			The type of the decision variables V ar ${ }_{\text {type }}$.
\{var-zone\}	$\mathrm{I}\left(N_{z, v}\right)$			The definition of the zone where i-th decision variable have an influence on the material properties.
VAR-MAX-VAL ${ }_{\square}$	$\mathrm{R}\left(N_{v a r}\right)$			The maximum values of the decision variables can be.
VAR-MIN-VAL ${ }_{\sqcup}$	$\mathrm{R}\left(N_{v a r}\right)$			The minimum values of the decision variables can be.
VAR-WEIGHT பப	$\mathrm{R}\left(N_{v a r}\right)$			The weight of the decision variables w_{i} in the quadratic constraint.
CST-VOL-TYPE	$\mathrm{I}\left(N_{c s t}\right)$			Record containing the type for the zone where the constraints apply.
CST-0BJ பபபபப	$\mathrm{R}\left(N_{c s t}\right)$			The limit value of the contraints. The units depends with the type of the constraint type.
CST-TYPE	$\mathrm{I}\left(N_{c s t}\right)$			The type of the contraints: $=-1$ for $\geq ;=0$ for $=$; $=1$ for \leq.
\{cst-zone $\}$	$\mathrm{I}\left(N_{z, c}\right)$			The definition of the zone where the constraint j apply.
CST-WEIGHT பப $^{\text {S }}$	$\mathrm{R}\left(N_{c s t}\right)$			The weight of the constraint η_{j} and γ_{j} for the duals and meta-heuristic methods.

Main records and sub-directories in /optimize/
continued from last page

Name	Type	Condition	Units	Comment
FOBJ-CST-VAL	$\mathrm{R}\left(N_{c s t}+1\right)$			The actual values of the objective function (first value) and the contraints (the following values). The number of the constraints are assigned in the order they have been defined.
OPT-PARAM-R R_{\sqcup}	R (40)			The different limits and values for the iterative calculations of the optimization problem.
FUNC-ZON-VOL	$\mathrm{R}\left(N_{c s t}+1\right)$			The first value is the volume where the objective function applies and the followingones correspond to the volumes where the constraints apllie.
BKP-PERT-XS ${ }_{\sqcup}$	$\mathrm{I}(13)$			The indexes of the perturbated material properties to backup.
FUEL-COST பபப	R (dependant)			The fixed fuel cost of each enrichment zone if $S_{11}^{o}=-1.0$, or the parameters to calculate the enrichment dependant cost if $S_{11}^{o}=-2.0$.
$\mathrm{FUEL}^{-C-D I S T}{ }_{\sqcup}$	$\mathrm{R}\left(N_{u}\right)$		\$/kg	The fuel cost distribution corresponding to each point of the neutrons flux unknowns.
BURN-C-DIST ${ }_{\sqcup}$	$\mathrm{R}\left(N_{u}\right)$		$M W$	The average exit burnup distribution corresponding to each point of the neutrons flux unknowns.
D-LAMBDA பபபப	$\mathrm{R}\left(N_{v a r}\right)$			The gradients or the absolute variation depending of the keyword used in the PERTUR: module of the eigenvalue with the decision variables.
D-LAMBDA-V Vப	$\mathrm{R}\left(N_{v a r}\right)$			The gradients or the absolute variation depending of the keyword used in the PERTUR: module of the eigenvalue for the coolant voided reactor with the decision variables.
GRADIENT பபபப	$\mathrm{R}\left(N_{v a r}, N_{c s t}+1\right)$			The gradients of the objective function and the constraints. The gradients of the objective for all the decision variables are in first position, then follow the gradients of the constraints.
OLD-VALUE	Dir			Directory containing differents informations of the previous iterations. the values of the decision variables, the objective function, the constraints and the gradients of these functions for the previous external iteration. This repertory will be created by the module PLQ: unless it is specified to not do.

Main records and sub-directories in /optimize/
continued from last page

Name	Type	Condition Units	Comment
BKP-VALUE	Dir	Directory containing a backup of the values of the decision variables, the objective function, the constraints and the gradients of these func- tions for this external iteration. This reper- tory will be created if the interpolation of the objective function in the middle point is cal- culated. Directory containing the perturbated proper- ties and the $A_{p} \phi$ and $B_{p} \phi$ vectors.	
$\{/$ stepdir $\}$	Dir		

Notes related with the decision variables definition:
The type of the decision variable are given by $V_{\text {ar }}{ }_{\text {type }}$ which is defined by:

$$
\text { Var }_{\text {type }}=i_{\text {type }} * 1000+i_{\text {zone }}
$$

where

$$
i_{\text {type }}= \begin{cases}1 & \text { average exit burnup } \\ 2 & \text { enrichment } \\ 3 & \text { number of bundles shift } \\ 4 & \text { device thickness }\end{cases}
$$

$i_{z o n e}$ for the number of the corresponding zone in the L_MAP for the decision variable.
The zones definition information records \{var-zone\} will be composed using the following FORTRAN instructions

$$
\text { WRITE }\left(\text { var - zone, },^{\prime}(\mathrm{A} 8, \mathrm{I} 4)^{\prime}\right)^{\prime} \mathrm{VAR}-\mathrm{ZONE}^{\prime}, i
$$

for $1 \leq i \leq N_{v a r}$. The size $N_{z, v}$ of the records depends of the type of the decision variable. For average exit burnup, enrichment and number of bundles shift, $N_{z, v}=N_{c h}$. For device thickness, $N_{z, v}=N_{c h} * N_{k}$.

Notes related with the constraints definition:
The type of each constraint zones is defined by the following index :

$$
j_{\text {type }}= \begin{cases}1 & \text { one value for the whole reactor (ex: } \left.k_{e f f}\right) \\ 2 & \text { one value for all channels (ex: total power) } \\ 3 & \text { one value for one channel (ex: channel power) } \\ 4 & \text { one value for one bundle (ex: bundle power) } \\ 5 & \text { one value for one zone defined by many bundles } \\ 6 & \text { void reactivity } \\ 7 & \text { analytic function }\end{cases}
$$

The zones definition information records \{cst-zone $\}$ will be composed using the following FORTRAN instructions

$$
\text { WRITE }\left(\text { cst }- \text { zone, },(\mathrm{A} 8, \mathrm{I} 4)^{\prime}\right)^{\prime} \mathrm{CST}-\mathrm{ZONE}^{\prime}, j
$$

for $1 \leq j \leq N_{c s t}$. The size $N_{z, c}$ of the records depends of the type of the constraint.

$$
\mathcal{N}_{z, c}= \begin{cases}1 & \text { if } j_{\text {type }}=3, \text { the record contains the number of the channel } \\ 2 & \text { if } j_{\text {type }}=4, \text { the record contains the number of the channel and the plan } \\ N_{c h} \times N_{k} & \text { if } j_{\text {type }}=5, \text { the record contains one value for each bundle }:=0 \text { out of the } \\ \text { zone } j,=1 \text { in the zone } j .\end{cases}
$$

If $j_{t y p e}=1$ or 2 , no record is necessary to define the volume because it is implicit with the type of the constraint (reactor or core respectively).

Notes related with the different limits and values for the iterative calculations of the optimization problem:

1st	S	external step limit. It is used for the quadratic constraint if applicable. (default: 1.0)
2nd	δ	internal step limit for MAP method. (default: 0.1)
3 rd	$\varepsilon_{\text {ext }}$	limit for external convergence. (default: 10^{-3})
4th	$\varepsilon_{\text {int }}$	limit for internal convergence. (default: 10^{-3})
5 th	ε_{4}	limit for convergence for the quadratic constraint.
6 th		expected value for the objective function calculated with the linearized problem.
7th	$\varepsilon_{\Delta X}$	relative variation of the decision variables for the 'epsilon' method of perturbation. (default: 10^{-2})
8th	m	Exponent for a objective function : $\min \sum_{j}\left(P_{j}-\bar{P}^{2 m}\right.$. (default: 8.0)
9th	α	multiplication factor for constraint weight if $S_{9}^{o}=4$ or 5 . (default: 2.0)
10th	ε_{α}	limit of the error of the constraints for which function penalty weight have to be adjust.
11th	$V_{\text {core }}$	Volume of the core.
12 th	V reactor	Volume of the reactor.
The ot	value of	ecord are not used and set to 0.0.

Notes related with the perturbated material properties:
In the record BKP-PERT-XS-, 1 and 0 means that the corresponding perturbated material properties will be backuped or not respectively. The available perturbated material properties are :

1st	DIFFX	diffusion coefficient along x axes $\left(D_{x}\right)$
2nd	DIFFY	diffusion coefficient along y axes $\left(D_{y}\right)$
3rd	DIFFZ	diffusion coefficient along z axes $\left(D_{z}\right)$
4th	TOTAL	total cross-section $\left(\Sigma_{t}\right)$

Notes related with the fuel cost:
If the cost of the fuel is fixed, the dimension of the record is given by the number of enrichment zones. Otherwise the record contains the 7 parameters necessary to calculate the fuel cost, which are :

1st concentration in ${ }^{235} U$ of the waste uranium $\left(\varepsilon_{w}\right)$.
2nd cost of natural uranium $\left(C_{N U} \$ / \mathrm{kg}\right)$.
3rd cost of a separation work unit $\left(C_{S} \$ / S W U\right)$.
4 th cost of the bundle fabrication $\left(C_{F A B} \$ / \mathrm{kg}\right)$.
5 th interest rate (int\%/day).
6th time to obtain uranium (days).
7th time for enrichment (days).

The fuel cost is given by the equation:

Notes related with the perturbated materials properties directory:
The directories \{stepdir\} will be composed using the following FORTRAN instructions

$$
\text { WRITE(stepdir,' (A4, I8)') 'STEP' }, i
$$

for $1 \leq i \leq N_{v a r}$. Each directory contains also the result of the multiplication of the perturbated system matrix and the flux. $i=0$ is used to stored the result of the unperturbated system matrix and the flux.

2.1 The sub-directory /OLD-VALUE/ in /optimize/

Table 2.5: Main records and sub-directories in //OLD-VALUE//

Name	Type	Condition	UnitsComment
VAR-VALUE பபப	$\mathrm{R}\left(N_{v a r}\right)$		The values of the decision variables of the last valid iteration.
FOBJ-CST-VAL	$\mathrm{R}\left(N_{c s t}+1\right)$		The values of the objective function and the contraints of the last valid iteration.
GRADIENT	$\mathrm{R}\left(N_{v a r}, N_{c s t}+1\right)$		The gradients of the objective function and the constraints of the last valid iteration.
VAR-VALUE2பப	$\mathrm{R}\left(N_{v a r}\right)$		The values of the decision variables of the second-last valid iteration.
BEST-VAR	$\mathrm{R}\left(N_{v a r}\right)$		The values of the decision variables corresponding to the best valid solution ever found.
BEST-FCT பபபப	R(1)		The value of the objective function corresponding to the best valid solution ever found.

2.2 The sub-directory /stepdir/in /optimize/

Table 2.6: Main records and sub-directories in //stepdir//

Name	Type Condition Units	Comment
$\{$ Aphi $\}$	$R\left(N_{u}\right)$	The group-dependent vectors representing the multiplication of a system matrix A and the unperturbated flux. The group-dependent vectors representing the multiplication of a system matrix B and the unperturbated flux.
Bphi $\}$	$R\left(N_{u}\right)$	und

Main records and sub-directories in //stepdir//
continued from last page

| Name | Type Condition Units | Comment |
| :--- | :--- | :--- | :--- |
| $\{/$ grpdir $\}$ | Dir | The group-dependent directory containing the
 perturbated properties. The content is the
 same as for the $/$ macrolib/but limited to the
 properties to be saved only (see. BKP-PERT-
 XS-). |

The records $\{$ Aphi $\}$ and $\{$ Bphi $\}$ will be composed using the following FORTRAN instructions:

WRITE(Aphi, $\left.{ }^{\prime}(\mathrm{A} 5, \mathrm{I} 7)^{\prime}\right){ }^{\prime} \mathrm{A} * \mathrm{PHI}^{\prime}, g$
and
WRITE(Bphi,' $\left.(\mathrm{A} 5, \mathrm{I} 7)^{\prime}\right)$) $\mathrm{B} * \mathrm{PHI}^{\prime}, g$
respectively where g represent the energy group.

2.3 Contents of a /optimize/ data structure for module GPTVRF:

When the module GPTVRF : is used a new /optimize/ data structure can be created. This new structure contains a copy of the STATE-VECTOR record of the /optimize/ data structure used on the RHS of the module. Then only the bare minimum necessary datas for gradients verification will be stored. This structure can also be deleted when a new point of the optimization procedure is calculated. If the same /optimize/ data structure is used in the module GPTVRF: unnecessary data will be stored for the rest of the optimization calculations. This is why we recommend to use a new /optimize/ data structure on the LHS. In both cases, the /optimize/ data structure will contain the data described in the following table.

Table 2.7: /optimize/ in the particular case of module GPTVRF:

Name	Type	Condition	UnitsComment
SIGNATURE ${ }_{\text {Uபப }}$	$\mathrm{C} * 12$		Signature of the data structure (SIGNA)
STATE-VECTOR	$\mathrm{I}(40)$		Vector describing the various parameters associated with this data structure \mathcal{S}_{i}^{o}, same one or a copy of the previous description.
VAR-VALUE-RF	$\mathrm{R}\left(N_{v a r}\right)$		The references values of the decision variables for which the gradients are numerically and analytically calculated.
GRADIENT-GPT	$\mathrm{R}\left(N_{v a r}, N_{c s t}+1\right)$		The gradients calculated analytically. This record is simply a copy of the record GRADIENT of the /optimize/ data structure on the RHS.

/optimize/ in the particular case of module GPTVRF:

Name	Type	Condition	UnitsComment
GRADIENT-EXP	$\mathrm{R}\left(N_{v a r}, N_{c s t}+1\right)$	The gradients calculated numerically of the objective function and the constraints. The gradients are stored the same way as for the record GRADIENT of the first description.	
Directory containing the perturbation values			
and the corresponding values of the functions			
for a decision variable i.			

Notes related with the perturbated decision variables directory:
The directories \{varpertdir\} will be composed using the following FORTRAN instructions

$$
\text { WRITE (varpertdir,' (A8, I4)') 'VAR - PERT' }, i
$$

for $1 \leq i \leq N_{v a r}$. Each directory contains also the records described in the following table.

Table 2.8: The sub-directory /varpertdir/ in /optimize/

Name	Type	Condition Units	Comment
EPSILON	R $\left(N_{\varepsilon, i}\right)$	$R\left(N_{c s t}+1\right)$	The value of the perturbation of the decision variable i. The values of the objective function and con- straints for the perturbation p of the decision variable i.

The number of perturbation $N_{\varepsilon, i}$ can include the unperturbated case $(\varepsilon=0.0)$ and can be different for each decision variable i. Moreover, the values of the perturbation do not have to be in increasing or decreasing order.

The records $\{$ fvalpert $\}$ will be composed using the following FORTRAN instructions

$$
\text { WRITE(fvalpert, } \left.{ }^{\prime}(\mathrm{A} 9, \mathrm{I} 3)^{\prime}\right)^{\prime} \mathrm{F}-\mathrm{C}-\mathrm{VAL}-\mathrm{P}^{\prime}, p
$$

for $1 \leq p \leq N_{\varepsilon, i}$.

Index

$C_{F A B}, 4$
$C_{N U}, 4$
$C_{S}, 4$
$L_{\text {conv }}, 30$
$L_{c t t}, 30$
$L_{\text {exp }}, 30$
$L_{m c t t}, 30$
Lconv, 26
$L g_{p}, 28,29$
$L g_{t}, 28,29$
Lpro, 26
Nit max $^{\text {, 28, }} 29$
$R_{n}, 29$
$R_{p}, 29$
$R_{t}, 29$
$R_{n}, 28$
$R_{p}, 28$
$R_{t}, 28$
$\alpha, 16,18$
$\epsilon, 37$
$\epsilon_{G P T}, 37$
$\epsilon_{\text {cst }}, 16,18$
$\epsilon_{\text {ext }}, 16,17$
$\epsilon_{i n n}, 16,17$
$\epsilon_{\text {ned }}, 28,29$
$\rho_{V, F C}, 5,6$
$\varepsilon_{w}, 4$
burn $_{\text {max }}, 3,4$
burn $_{\text {min }}, 3,4$
cst $_{\text {lim }}, 5,6$
cst $_{\text {type }}, 5,6$
enri max $, 3,4$
enrimin $, 3,4$
gpr $_{\text {from }}, 10$
$g_{p r}{ }_{t o}, 10$
grp $_{\text {from }}, 11$
grp $_{t o}, 11$
$i_{\text {best }}, 30$
$i_{\text {cst } 1}, 6,7,14,16-18$
$i_{\text {cst } 2}, 6,7,14,16-18$
$i_{f c n 1}, 24,25$
$i_{f c n 2}, 24,25$
$i_{f c t 1}, 37,38$
$i_{\text {fct } 2}, 37,38$
$i_{i t e r ~}, 14,16$
$i_{\text {neig }}, 26,27$
$i_{\text {plan }}, 5$
$i_{\text {var } 1}, 14,15,20-22,24,37,38$
$i_{\text {var } 2}, 14,15,20-22,24,37,38$
$i_{\text {var } 3}, 14,15$
$i_{\text {var }}, 37$
$i_{\text {worst }}, 30$
$i_{\text {zone } 1}, 5,6$
$i_{z o n e 2}, 5,6$
$i_{\text {zone }}, 5$
$j_{\text {plan }}, 5$
$k_{\text {eff }}, 5$
$k_{\text {ref }}, 7$
m, 16, 18
$n_{\text {cha }}, 5$
$n_{\max }, 16,17$
$n_{\text {surv_zone }}, 5$
num, 14, 16
$q_{\text {moy }}, 7$
$t_{\text {enr } r}, 4,5$
$t_{o b t}, 4$
$\operatorname{val}_{i}, 14,16$
*, 11
**, 11
+, 11
-, 11
.true., 14, 27
/, 11
//OLD-VALUE//, 48
//stepdir//, 48, 49
: : , 2, 13, 19, 21, 23, 26, 31, 34, 37
$:=, 2,13,19,21,23,26,31,34,37$
; 24
A, 8, 9
A $*$ PHI, $10,14,15$
ABS, 11, 37
ADD, 16, 18, 31-33
(addflu), 31
(addflu_data), 31, 33
(addmac), 31
(addmac_data), 31, 32
ADDOBJ:, 31
ADFLUX, 33
ADJ-ONLY, 33
ADJOINT, 8, 9, 21, 22, 35
AFLUX, 9, 33
AFLUX2, 9
ALL, $3-5,10,11,14,16,20-22,24,28,29,37$
ALLSAME, 5, 6, 16, 17
ALMOST-FSBLE, 14,15
ANALYTIC-FCT, 5, 6
AP*PHI, 10, 14, 15
ASCII-MAT, 34, 35
AUG-LAGRANG, 16, 17
B, 8,9

B*PHI, 10, 14, 15
BALL, 27, 28
BEST-AS-CURR, 28, 29
BKP-MACRO-P, 14, 15
BKP-MCR-P-XS, 16, 18
BP*PHI, 10, 14, 15
BUNDLE, 5
BURNUP-ZONE, 3, 4
CENTER-GRID, 35, 36
CHANEL-GRID, 35, 36
CHANNEL, 5
CHI, 9, 18
COEF-UPDATE, 14, 15
COMPARE, 37
COMPARE-NEW, 30
COMPLETE, 28, 29
CONSTRAINT, $6,14,16,18,24,25$
CONTRACTION, 30
conv, 14, 15
CONV-TEST, 14, 15, 26, 27
CORE, 10, 16, 18
COS, 11
cost, 4
CREATION, 26, 27
CST-QUAD-LIM, 16, 18
CST-VIOL-EPS, 16, 18
CST-WEIGHT, 16, 17
CST-WGT-MFAC, 16, 18
CST-ZONE, 10, 11
CST-ZONE-DF, 3
(cstzdf_data), 3, 5
CTRL-ZONE-DF, 3
(czdf_data), 3
D-CHI, 10
D-DIFFX, 10
D-DIFFY, 10
D-DIFFZ, 10
D-HFACT, 10
D-KEFF, 7, 8
D-KEFF=KREF, 7, 8
D-LAMBDA, 10, 20
D-LAMBDA-V, 10, 20
D-LAMBDA-V/DX, 20
D-LAMBDA/DX, 20
D-MINPCMAX, 7, 8
D-NFTOT, 10
D-NUSIGF, 10
D-SIGWO, 10
D-SIGW1, 10
D-TOTAL, 10
D-VOID-R-FC, 7, 8
(data), 10, 11
data_name, 8, 9
DBL-ZONE, 11
DDIFF, 32
(def_data), 14, 16, 26-28
DEFINITION, 14, 26
DEPENDANT, 4
(descfobjct), 2, 3
(descmatlflu), 34, 35
(descmatlgrd), 34
(descqlputl), 13, 14
(desctabu), 26
DFLUX, 33
DIFFX, 9, 18
DIFFY, 9, 18
DIFFZ, 9, 18
DIRECT, 14, 16, 21, 22, 24
DIRECT-VALUE, 24
(direct_data), 23
direct_data, 24
DISCRETE-ALL, 10, 11
DISCRETE-COR, 10, 11
DISCRETE-CST, 10, 11
DIVISION, 11
DOWN, 8, 9
DPHI-POWER, 7
DPHI-UCOST, 7
DX-METHOD, 14
DX-POWER, 7
DX-UCOST, 7, 10
EDIT, 3, 14, 20-22, 26, 31-35, 37
END, 10, 11
END-ENERGY, 10, 11
END-INTEGRAL, 10, 11
END-MAX-POW, 5, 6
ENERGY, 10, 11
ENRICH-ZONE, 3, 4
EPS, 14, 15
epsilon, 14, 15
epsilon4, 16, 18
EVAL-OBJ-CST, 3
(eval_data), 3, 6, 20-22, 24, 25
EXIT-B-DIST, 3
EXP, 11
EXPAN-VLD, 30
EXPLICIT, 24, 25
F-ADJOINT, 33
F-C-VOLUME, 16, 18
F-EVAL, 14, 15
fact, 28
(fcdf_data), 3, 4
feas, 14, 15
FIND-NEW, 30

FIXE, 18
FIXED, 4
FLU1, 31
FLU2, 31
FLUNEW, 31
FLUX, 2, 8, 13, 19, 21, 23, 34
FLUX, 9, 33, 35
FLUX, 2, 13, 19, 21, 23, 31, 34
FLUX-AV, 9
FLUX-AX, 9
FLUX2, 9
FLUXP, 2, 8, 23
FOBJ, 6, 16, 18, 24, 25
FOBJCT:, 2, 3, 6
frac1, 31-33
frac2, 31-33
FROM-2-PARTS, 33
FROM-MP, 32
FUEL-COST-DF, 3
FUNCT-PREDEF, 6
FUNCVALUE, 10
FUNCZVOL, 10

GEOM, 34
GEOM, 34
GEOMETRIC, 28
GET-CURRENT, 28, 29
GPT, 19, 21, 23
GPT, 24
GPT, 21, 23
GPT-ADJOINT, 35
GPT-FLU, 35
GPTGRD: , 23
(gptgrd_data), 23, 24
gptgrd_data, 24
GPTSRC:, 21
(gptsrc_data), 21
gptsrc_data, 21
GPTVRF:, 34, 37, 43, 49, 50
(gptvrf_data), 37
gptvrf_data, 37
grad, 24
GREP, $6,8,9$

H-FACTORS, 9, 18
HALF, 16, 18
HARMONIC, 35
HISTORY, 14, 16
iga1, 33
iga2, 33
iga3, 33
ihrm, 35
ilev, 31, 32

IMPLICIT, 24, 25
IN, $8,9,33$
INDEX, 2, 34
INDEX, 2, 34
INDIRECT, 24, 25
INIT, 10
INIT-PRO-LIST, 26-29
INITIAL, 14, 15
INITIALIZE, 28, 29
INN-STEP-EPS, 16, 17
INN-STEP-LIM, 16, 17
INN-STEP-NMX, 16, 17
INTEGRAL, 10
interest, 4
iprint, 3, 14, 20-22, 26, 34, 35, 37
iprt, 31-33
iscr, 35
ISEED, 27, 28
ISOVOLUME, 28
isrc, 35

K-EFFECTIVE, 14, 16
KEFF, 5, 7, 8, 10
KEFF-VOID, 10
KEFF=KREF, 7,8
LA-PNLT, 14, 15
Lconv, 27
LEMKE, 16, 17
LINEAR, 28
LN, 11
LOAD, 8,9
loc_var_name, 11
LOG, 11
MACNEW, 31
MACRO, 2, 13, 19, 21, 23
MACRO1, 31, 32
MACRO2, 31, 32
/macrolib/, 49
macrolib, $2,13,21,23,31,32$
MACROP, 13, 19
MAP, 16,17
MAP, $2,4,13,21,23$
MAP-FLUX, 35
MAPFL, 2, 13, 21, 23
MAT*FLUX, 14,15
MATEX, 23
MATEX, 23
MATLAB: 34
MAX, 11
MAXIMIZE, 16,17
MAXPOWER, 5
MEMORY, 3-5

METHOD, 16, 17
MIN, 11
MIN (PCMX) ^2N, 16, 18
MINIMIZE, 16, 17
MINPCMAX, 7, 8
MINUS, 11
MSYS*FLUX, 8, 9
N, 4
nbz, 3, 4
nch, 9
ncst, 10
NEIGHB-BEST, 26, 27
NEIGHB-CHOIC, 26, 27
NEIGHB-CREAT, 26
NEIGHB-EVAL, 26, 27
NEIGHBOR-DIS, 28
NEIGHBOR-NB, 27, 28
NEIGHBOR-RAD, 28, 29
NEIGHBOR-TYP, 27, 28
NELDER-EPS, 28, 29
NELDER-MEAD, 26, 27
(nelder_data), 26, 30
NEW, 16, 18
NEW-VAL-UPDT, 14, 15
NEW-VALUE, 24
nez, 3, 4
NFTOT, 9, 18
ngh, 27, 28
ngrp, 9, 10
NIT-MAX-CONV, 28, 29
NO-GRID, 35, 36
NO-THRESHOLD, 26, 27
NODIF, 32
nun, 9, 10
NUSIGF, 9,18
nz, 9
nzone, 9
object, 8, 9
object_flux, 8, 9
object_sys, 8, 9
operator, 11
OPT-GRAD-VRF, 34, 35
OPT-PARAM-R, 24
OPTIM, 2, 3, 5, 13, 26, 27, 29, 34, 37
OPTIMISATION, 34
OPTIMIZE, 13, 19, 21, 23, 24
/optimize/, 43-46, 49, 50
OPTIMIZE, $2,13,19,21,23,26,37$
OPTIMV, 37
OTHER, 21
OUT-STEP-EPS, 16, 17
OUT-STEP-LIM, 16, 17

OUT-STEP-NMX, 16, 17

PARABOLIC, 16, 18
PENAL-METH, 16, 17
(PERTUR:), 19
PERTUR:, 19, 45
(pertur_data), 19, 20
PERTURB-VAR, 14, 15
PLAN, 5
PLQ:, 45
PLUS, 11
POWER, 11
POWER-CHA, 14, 16
POWER-CHA\#2, 14, 16
POWER-CHA\#3, 14, 16
POWERLIMIT, 7
PREDEF, 8, 9
predef_func, 6, 7
predef_var, 8, 9
PREVIOUS, 14, 15
PROM-LIST-LG, 28, 29
PROMIS-RAD, 28, 29
PROMISE-AREA, 26, 27
PROMISE-TEST, 26, 27
PUT, 14
PUT-CURRENT, 28, 29
QLPUTL: , 13
QUAD-CST, 14, 16
RANGE, 5, 6, 14, 16, 17
REACTOR, 10, 16, 18
real, 11
RECOVER, 14
RECTANGLE, 27, 28
REL, 24, 37
repertory, 8, 9
RESET-BEST, 28, 29
RESTORE, 14, 15
SAME, 5
SAVE-GPT, 37
SAVE-PERT, 37
SCAT-0, 18
SCAT-1, 18
seed, 27, 28
(seq_data), 6, 10
SIGW-0, 9, 18
SIGW-1, 10, 18
SIMPLEX, 16, 17
SIN, 11
SOURCE, 19
SQRT, 11
STEP, 31, 32
step, 16, 17
STEP-INTERP, 14
STEP-REDUCT, 16, 17
STEP-VALID, 14
SUB, 31-33
SURV-ZONE, 5
SYS, 13, 19, 21, 23
SYS2, 23
SYS2P, 23
SYSP, 13, 19, 21, 23
SYSTEM, 13, 19
TABFL, 21
table, 21
TABU, 27, 29
/tabu/, 40, 41
TABU, 26
TABU-LIST-LG, 28, 29
TABU-RAD, 28, 29
TABU:, 26
TABUSH, 26, 27, 29
TAN, 11
test, 14
TEST-CST-VLD, 14
test1, 14
test2, 14
TIMES, 11
TOTAL, 9, 18
TRACK, 2, 13, 19, 21, 23, 34
TRACK, 13, 19, 23, 34
TRACKING, 2
TYP-BURNUP, 16, 17
TYP-ENRICH, 16, 17
UCOST, 7
UPDATE, 26,27
USPLIT:, 23
VALUE-DEF, 5
VAR, 11
VAR-WEIGHT, 16, 17
VAR-ZONE, 10, 11
var_name, 8,9
VARDEF, 6
(vardef_data), 6, 8
VARF, 11
VARMUN, 20
VARNUM, 20
/varpertdir/, 50
VOID-REAC-FC, 6-8
VOID-REACT-FC, 5
weight, 16, 17

XS_name, 16, 18
xSm, 34
Y, 4

ZONE, 16, 18
ZONE-DEF, 5

