
TECHNICAL REPORT
IGE–332

THE GANLIB5 KERNEL GUIDE
(64–BIT CLEAN VERSION)

A. Hébert and R. Roy

Institut de génie nucléaire
Département de génie mécanique

École Polytechnique de Montréal
August 26, 2023

IGE–332 ii

Contents

Contents . ii
1 The GANLIB Version 5 architecture . 1

1.1 From Versions 3 or 4 to Version 5 . 1
2 The ANSI C lcm API . 3

2.1 General utility functions . 4
2.1.1 strcut c . 4
2.1.2 strfil c . 4

2.2 Opening, closing and validation of LCM objects . 4
2.2.1 lcmop c . 4
2.2.2 lcmcl c . 5
2.2.3 lcmval c . 5

2.3 Interrogation of LCM objects . 6
2.3.1 lcmlen c . 6
2.3.2 lcminf c . 7
2.3.3 lcmnxt c . 7
2.3.4 lcmlel c . 8

2.4 Management of the array of elementary type . 8
2.4.1 lcmget c . 8
2.4.2 lcmput c . 9
2.4.3 lcmgpd c . 10
2.4.4 lcmppd c . 11
2.4.5 lcmdel c . 12
2.4.6 lcmgdl c . 12
2.4.7 lcmpdl c . 13
2.4.8 lcmgpl c . 14
2.4.9 lcmppl c . 14

2.5 Management of the associative tables and of the heterogeneous lists 15
2.5.1 lcmdid c . 15
2.5.2 lcmlid c . 16
2.5.3 lcmlil c . 16
2.5.4 lcmdil c . 17
2.5.5 lcmgid c . 18
2.5.6 lcmgil c . 19
2.5.7 lcmsix c . 19

2.6 LCM utility functions . 20
2.6.1 lcmlib c . 20
2.6.2 lcmequ c . 20
2.6.3 lcmexp c . 20

2.7 Using variable-length string arrays . 21
2.7.1 lcmgcd c . 21
2.7.2 lcmpcd c . 21
2.7.3 lcmgcl c . 22
2.7.4 lcmpcl c . 23

2.8 Dynamic allocation of the elementary blocks of data 24
2.8.1 setara c . 24
2.8.2 rlsara c . 24

2.9 Abnormal termination of the execution . 25
2.9.1 xabort c . 25

3 The ANSI C hdf5 API . 26
3.1 Opening and closing of HDF5 files . 26

IGE–332 iii

3.1.1 hdf5 open file c . 26
3.1.2 hdf5 close file c . 27

3.2 Interrogation of HDF5 files . 27
3.2.1 hdf5 list c . 27
3.2.2 hdf5 get dimensions c . 27
3.2.3 hdf5 get num group c . 28
3.2.4 hdf5 list datasets c . 28
3.2.5 hdf5 list groups c . 28
3.2.6 hdf5 info c . 29
3.2.7 hdf5 group exists c . 29

3.3 Management of groups and datatypes . 29
3.3.1 hdf5 create group c . 29
3.3.2 hdf5 delete c . 30
3.3.3 hdf5 copy c . 30
3.3.4 hdf5 read data int c . 30
3.3.5 hdf5 read data real4 c . 30
3.3.6 hdf5 read data real8 c . 31
3.3.7 hdf5 read data string c . 31
3.3.8 hdf5 write data int c . 31
3.3.9 hdf5 write data real4 c . 32
3.3.10 hdf5 write data real8 c . 32
3.3.11 hdf5 write data string c . 32

4 The ANSI C CLE-2000 API . 34
4.1 The main entry point for CLE-2000 . 34

4.1.1 cle2000 c . 34
4.1.2 dummod . 34
4.1.3 Calling a main CLE-2000 procedure . 35
4.1.4 Calling a parametrized CLE-2000 procedure 37
4.1.5 Calling a CLE-2000 procedure with in-out CLE-2000 variables 38

4.2 Calling a calculation module without a CLE-2000 procedure 40
4.2.1 clemod c . 40

4.3 Management of the last-in-first-out (lifo) stack . 41
4.3.1 cleopn . 43
4.3.2 clepop . 43
4.3.3 clepush . 44
4.3.4 clecls . 44
4.3.5 clenode . 44
4.3.6 clepos . 44
4.3.7 clelib . 45

4.4 The free-format input reader . 45
4.4.1 redopn c . 45
4.4.2 redget c . 45
4.4.3 redput c . 46
4.4.4 redcls c . 46

4.5 Defining built-in constants in CLE-2000 . 47
4.5.1 clecst . 47

5 The ISO Fortran lcm API . 48
5.1 Opening, closing and validation of LCM objects . 48

5.1.1 LCMOP . 48
5.1.2 LCMCL . 48
5.1.3 LCMVAL . 49

5.2 Interrogation of LCM objects . 49
5.2.1 LCMLEN . 50

IGE–332 iv

5.2.2 LCMINF . 50
5.2.3 LCMNXT . 51
5.2.4 LCMLEL . 51

5.3 Management of the array of elementary type . 52
5.3.1 LCMGET . 52
5.3.2 LCMPUT . 53
5.3.3 LCMGPD . 53
5.3.4 LCMPPD . 54
5.3.5 LCMDEL . 55
5.3.6 LCMGDL . 55
5.3.7 LCMPDL . 56
5.3.8 LCMGPL . 57
5.3.9 LCMPPL . 58

5.4 Management of the associative tables and of the heterogeneous lists 59
5.4.1 LCMDID . 59
5.4.2 LCMLID . 59
5.4.3 LCMLIL . 60
5.4.4 LCMDIL . 61
5.4.5 LCMGID . 62
5.4.6 LCMGIL . 63
5.4.7 LCMSIX . 63

5.5 LCM utility functions . 64
5.5.1 LCMLIB . 64
5.5.2 LCMEQU . 64
5.5.3 LCMEXP . 64

5.6 Using fixed-length character arrays . 65
5.6.1 LCMGTC . 65
5.6.2 LCMPTC . 65
5.6.3 LCMGLC . 66
5.6.4 LCMPLC . 66

5.7 Using variable-length character arrays . 67
5.7.1 LCMGCD . 68
5.7.2 LCMPCD . 68
5.7.3 LCMGCL . 69
5.7.4 LCMPCL . 69

5.8 Dynamic allocation of an elementary blocks of data in ANSI C 70
5.8.1 LCMARA . 70
5.8.2 LCMDRD . 70

5.9 Abnormal termination of the execution . 71
5.9.1 XABORT . 71

6 The ISO Fortran hdf5 API . 72
6.1 Opening and closing of HDF5 files . 72

6.1.1 hdf5 open file . 72
6.1.2 hdf5 close file . 72

6.2 Interrogation of HDF5 files . 72
6.2.1 hdf5 list . 72
6.2.2 hdf5 info . 73
6.2.3 hdf5 get dimensions . 73
6.2.4 hdf5 get shape . 73
6.2.5 hdf5 list datasets . 74
6.2.6 hdf5 list groups . 74
6.2.7 hdf5 group exists . 75

6.3 Management of groups and datatypes . 75

IGE–332 v

6.3.1 hdf5 create group . 75
6.3.2 hdf5 delete . 75
6.3.3 hdf5 copy . 76
6.3.4 hdf5 read data . 76
6.3.5 hdf5 write data . 77

7 The ISO Fortran CLE-2000 API . 79
7.1 Management of Fortran files outside CLE-2000 . 79

7.1.1 KDROPN . 79
7.1.2 KDRCLS . 79

7.2 Management of word-addressable (KDI) files outside CLE-2000 80
7.2.1 KDIOP . 80
7.2.2 KDIGET . 80
7.2.3 KDIPUT . 80
7.2.4 KDICL . 80

7.3 Management of Fortran and KDI files used as CLE-2000 parameters 81
7.3.1 FILOPN . 81
7.3.2 FILCLS . 81
7.3.3 FILUNIT . 82
7.3.4 FILKDI . 82

7.4 The main entry point for CLE-2000 . 82
7.4.1 KERNEL . 82
7.4.2 DUMMOD . 83

7.5 The free-format input reader . 86
7.5.1 REDOPN . 86
7.5.2 REDGET . 86
7.5.3 REDPUT . 87
7.5.4 REDCLS . 87

8 The Python3 lcm API . 89
8.1 Structures . 89
8.2 LCM object Python API . 90

8.2.1 Attribute Variables . 90
8.2.2 lcm.new() . 90
8.2.3 o.keys() . 91
8.2.4 o.lib() . 92
8.2.5 o.val() . 92
8.2.6 o.close() . 92
8.2.7 o.erase() . 92
8.2.8 o.len() . 92
8.2.9 o.rep() . 92
8.2.10 o.lis() . 93

9 The Python3 CLE-2000 API . 94
9.1 The lifo class . 94

9.1.1 Attribute Variables . 94
9.1.2 lifo.new() . 94
9.1.3 o.lib() . 94
9.1.4 o.push() . 94
9.1.5 o.pushEmpty() . 95
9.1.6 o.pop() . 95
9.1.7 o.node() . 95
9.1.8 o.getMax() . 96
9.1.9 o.OSname() . 96

9.2 The cle2000 class . 96
9.2.1 Attribute Variables . 96

IGE–332 vi

9.2.2 cle2000.new() . 97
9.2.3 o.exec() . 97
9.2.4 o.getLifo() . 97
9.2.5 o.putLifo() . 97

References . 98
Index . 99

IGE–332 1

1 The GANLIB Version 5 architecture

The GANLIB is a small library that is linked to a software application in order to facilitate modularity,
interoperability, and to bring generic capabilities in term of data transfer. The GANLIB is an application
programming interface (API) made of subroutines that are called by the software application (e.g., a
lattice code) or by the multi-physics surrounding application. In other words, the GANLIB acts as a
standardized interface between the software application and the multi-physics application, as depicted in
Figure 1.

GANLIBAPPLICATION

SOFTWARE 1

SOFTWARE 2

MULTI-PHYSICS APPLICATION

GANLIB

APPLICATION

Figure 1: Implementing a multi-physics application.

The GANLIB is made of two distinct and inter-related components:

• CLE–2000 is a compact supervisor responsible for the free-format recovery of input data, for the
modularization of the software application and for the insertion of loops and control statements
in the input data flow. CLE-2000 permits the conception of computational schemes, dedicated to
specific engineering studies, without any need for recompilation of the software application.[1]

• LCM objects are data structures used to transfer data between modules of the software application
and towards the multi-physics application. LCM objects are structures made of associative table
and heterogeneous lists. These structures are either memory resident or persistent (i.e., stored in a
file). The LCM object API is implemented with access efficiency as its first requirement, even for
frequent calls with small chunks of data.[2]

The GANLIB Version 5 is implemented in the ANSI C programming language[3], in order to max-
imize its compatibility in a multi-physics environment where different components are implemented in
various programming languages (C++, Fortran, Java, etc.). The GANLIB Version 5 is 64-bit clean,
another benefit of using an ANSI C implementation. This last property allows the execution of software
applications with 32-bit integers and 64-bit addresses. Specific Fortran APIs are also available and are
implemented according to the C interoperability mechanism, available in Fortran 2003 and standardized
by the International Organization for Standardization (ISO). This architecture is 64-bit clean.[4]

1.1 From Versions 3 or 4 to Version 5

The Version 3 and Version 4 software applications available at GAN are using a legacy GANLIB,
implemented in FORTRAN 77, and relatively unchanged for more than 15 years.[5] The only addition
in Version 4 are the heterogeneous lists within LCM objects. This Fortran implementation is not ISO

IGE–332 2

standard and not 64-bit clean. However, the corresponding API is mature and efficient, two qualities
that we want to preserve.

A software application is not 64-bit clean when 32-bit integers are used to store addresses (or differ-
ences between two addresses). This nasty operation is possible in ANSI C but can always be avoided.
Unfortunately, this operation is extensively used in software applications DRAGON, TRIVAC and DON-
JON Versions 3 or 4, due to design constraints related to the choice of FORTRAN 77 as programming
language.

Versions 3 or 4 software applications can be re-implemented around the Version 5 GANLIB in order
to become ISO standard and 64-bit clean. However, the conversion process is not automatic and is
time-consuming. Two major modifications must be done:

1. All variables containing addresses of LCM objects must be declared as TYPE(C PTR) instead of been
declared as INTEGER. The intrinsic type TYPE(C PTR) is available in Fortran 2003, as defined by
ISO.

2. Every call to the SETARA subroutine of the GANLIB must be replaced by an ALLOCATE statement
and every call to the RLSARA subroutine must be replaced by a DEALLOCATE statement. Statements
ALLOCATE and DEALLOCATE are available in Fortran 90, as defined by ISO. The ALLOCATABLE at-
tribute is used to identify allocated arrays. Blank common are no longer required as reference
addresses. This modification is the more time-consuming of the two.

Implementing software applications in Fortran 2003 offers the opportunity to use advanced features
of this language, such as pointers, Fortran modules (not to be confused with CLE-2000 modules) and
polymorphism. However, this is a programming style issue which is independent of the selection of
GANLIB Version 5. It is possible, as a pragmatic choice, to keep the Fortran-77 programming style and
just use the GANLIB Version 5, TYPE(C PTR) types and ALLOCATABLE arrays.

IGE–332 3

2 The ANSI C lcm API

LCM objects are data structures, implemented in ANSI C, with characteristics of associative tables
(a.k.a., dictionaries or hash tables) and/or heterogeneous lists (a.k.a., cell arrays). These data structures
are either stored in memory or are persistent (i.e., stored in a file). These objects are primarily accessed
via an API implemented in ANSI C. Access by other languages is possible via specific bindings that are
also described in this report. Deep copy and serialization utilities are available.

Persistence is implemented using XSM data structures, together with another API implemented in
ANSI C. xsm files are used in this case. However, the XSM API is invoked from within LCM and a
developer using the GANLIB never has to call it directly.

The lcm API was implemented in such a way that

• the access from ANSI C or from Fortran is highly optimized, even for frequent calls with small
chunks of data.

• the access from other languages (Matlab, Python, Java, or Objective C) permits a complete
read/write access of the totality of information contained in the object.

This technical report contains the precise description of each ANSI C function available in the lcm

API and dedicated to a programmer using the GANLIB Version 5.

A LCM object is a collection of the following elements:

Associative tables
An associative table is equivalent to a Python dictionary or to a Java hash table. Each element of an
associative table is an association between a 12-character name and a block of data. A block of data can
be an array of some elementary type, another associative table or an heterogeneous list. Tree structures
can be constructed that way.

Heterogeneous list
An heterogeneous list is an ordered set of blocks of information (referred as “0”, “1”, “2”, etc.). A block
of data can be an array of some elementary type, another associative table or an heterogeneous list.

Array of elementary type
An array of elementary type is a set of consecutive values in memory, all of the same type. The type is
selected in the following table:
index array of ... type
1 32-bit integer int 32
2 32-bit real float 32
3 4-character strings
4 64-bit real double 64
5 32-bit logical int 32
6 64-bit complex

Any ANSI C function calling the lcm API must use an include file of the form

#include "lcm.h"

Each LCM object has a root associative table from which the complete object is constructed.

IGE–332 4

2.1 General utility functions

2.1.1 strcut c

Copy n characters from string ct to s. Eliminate leading ’ ’ and ’\0’ characters in s. Terminate s
with a ’\0’.

strcut_c(s, ct, n);

input parameters:
ct char* character variable of length n. May not be null-terminated.
n int 32 length of ct.

output parameter:
s char* null terminated string.

value of the function:
void

2.1.2 strfil c

Copy n characters from string ct to s. Eliminate ’\0’ characters and pack with ’ ’. Assume that
ct is null-terminated.

strfil_c(s, ct, n);

input parameters:
ct char* null-terminated character variable.
n int 32 expected length of s.

output parameter:
s char* character variable of length n (not null-terminated).

value of the function:
void

2.2 Opening, closing and validation of LCM objects

2.2.1 lcmop c

Open an LCM object (either memory resident or persistent). Obtain the address of the LCM object
if it is created. Note that CLE-2000 is responsible to perform the calls to lcmop c for the LCM objects

IGE–332 5

that are used as parameters of a CLE-2000 module. The use of lcmop c is generally restricted to the use
of temporary LCM objects created within a CLE-2000 module.

lcmop_c(iplist,namp,imp,medium,impx);

input parameters:
iplist lcm** address of the LCM object if imp=1 or imp=2. iplist corresponds to

the address of the root associative table.
namp char[73] name of the LCM object if imp=0.
imp int 32 =0 to create a new LCM object ; =1 to modify an existing LCM object;

=2 to access an existing LCM object in read-only mode.
medium int 32 =1 to use a memory-resident LCM object; =2 to use an xsm file to store

the LCM object.
impx int 32 print parameter. Equal to zero to suppress all printings.

output parameters:
iplist lcm** address of an LCM object if imp=0.
namp char* name of the LCM object if imp=1 or imp=2.

value of the function:
void

2.2.2 lcmcl c

Close an LCM object (either memory resident or persistent). Note that CLE-2000 is responsible to
perform the calls to lcmcl c for the LCM objects that are used as parameters of a CLE-2000 module. The
use of lcmcl c is generally restricted to the use of temporary LCM objects created within a CLE-2000
module.

A LCM object can only be closed if iplist points towards its root directory.

lcmcl_c(iplist,iact);

input parameters:
iplist lcm** address of the LCM object (address of the root directory of the LCM

object).
iact int 32 =1 close the LCM object without destroying it; =2 and destroying it;

=3 erase and close the LCM object without destroying it.

output parameters:
iplist lcm** iplist=null indicates that the LCM object is closed and destroyed. A

memory-resident LCM object keeps the same address during its complete
existence. A persistent LCM object is associated to an XSM file and is
represented by a different value of iplist each time it is reopened.

value of the function:
void

IGE–332 6

2.2.3 lcmval c

Function to validate a single block of data in a LCM object or the totality of the LCM object,
starting from the address of an associative table. This function has no effect if the object is persistent.
The validation consists to verify the connections between the elements of the LCM object, to verify that
each element of the object is defined and to check for possible memory corruptions. If an error is detected,
the following message is issued:

LCMVAL_C: BLOCK xxx OF THE TABLE yyy HAS BEEN OVERWRITTEN.

This function is called as

lcmval_c(iplist,namp);

input parameters:
iplist lcm** address of the associative table or of the heterogeneous list.
namp char* name of the block to validate in the associative table. If namp=’ ’, all

the blocks in the associative table are verified in a recursive way.

value of the function:
void

2.3 Interrogation of LCM objects

The data structures in an LCM object are self-described. It is therefore possible to interrogate them
in order to know their characteristics.

type of interrogation
father structure information block

father associative table lcminf c lcmlen c

lcmnxt c

heterogeneous list lcminf c lcmlel c

2.3.1 lcmlen c

Function used to recover the length and type of an information block stored in an associative table
(either memory-resident or persistent). The length is the number of elements in a daughter heterogeneous
list or the number of elements in an array of elementary type. If itylcm=3, the length is the number of
four-character words. As an example, the length required to store an array of eight-character words is
twice its dimension.

lcmlen_c(iplist,namp,ilong,itylcm);

input parameters:
iplist lcm** address of the associative table.
namp char* name of the block.

IGE–332 7

output parameters:
ilong int 32* length of the block. =−1 for a daughter associative table; =N for a

daughter heterogeneous list containing N components; =0 if the block
does’t exist.

itylcm int 32* type of information. =0 associative table; =1 32-bit integer; =2 32-bit
real; =3 4-character data; =4 64-bit real; =5 32-bit logical; =6 64-bit
complex; =10 heterogeneous list; =99 undefined (99 is returned if the
block does’t exist).

value of the function:
void

2.3.2 lcminf c

Function used to recover general information about a LCM object.

lcminf_c(iplist,namlcm,nammy,empty,ilong,lcm,access);

input parameter:
iplist lcm** address of the associative table or of the heterogeneous list.

output parameters:
namlcm char[73] name of the LCM object.
nammy char[13] name of the associative table at address iplist. =’/’ if the associative

table is the root of the LCM object; =’ ’ if the associative table is an
heterogeneous list component.

empty int 32* 32-bit integer variable set to 1 if the associative table is empty or set to
0 otherwise.

ilong int 32* = −1: iplist is an associative table; > 0: number of components in
the heterogeneous list iplist.

lcm int 32* 32-bit integer variable set to 1 if information is memory-resident or set
to 0 if information is persistent (stored in an XSM file).

access int 32* 32-bit integer variable set to the access mode of object. = 0: the object
is closed (only available for memory-resident LCM objects); = 1: the
object is open for modification; = 2: the object is open in read-only
mode.

value of the function:
void

2.3.3 lcmnxt c

Function used to find the name of the next block of data in an associative table. Use of lcmnxt c is
forbidden if the associative table is empty. The order of names is arbitrary. The search cycle indefinitely.

lcmnxt_c(iplist,namp);

input parameters:
iplist lcm** address of the associative table.
namp char* name of an existing block. namp=’ ’ can be used to obtain a first name

to initiate the search.

IGE–332 8

output parameters:
namp char* name of the next block. A call to xabort c is performed if the associative

table is empty.
value of the function:

void

2.3.4 lcmlel c

Function used to recover the length and type of an information block stored in an heterogeneous list
(either memory-resident or persistent). The length is the number of elements in a daughter heterogeneous
list or the number of elements in an array of elementary type. If itylcm=3, the length is the number of
four-character words. As an example, the length required to store an array of eight-character words is
twice its dimension.

lcmlel_c(iplist,iset,ilong,itylcm);

input parameters:
iplist lcm** address of the heterogeneous list.
iset int 32 index of the block in the list. The first element of the list is located at

index 0.

output parameters:
ilong int 32* length of the block. =0 if the block does’t exist.
itylcm int 32* type of information. =0 associative table; =1 32-bit integer; =2 32-bit

real; =3 4-chatacter data; =4 64-bit real; =5 32-bit logical; =6 64-bit
complex; =10 heterogeneous list; =99 undefined (99 is returned if the
block does’t exist).

value of the function:
void

2.4 Management of the array of elementary type

Management of the array of elementary type can be performed with copy of the data (lcmput c,
lcmget c, lcmpdl c or lcmgdl c) or without copy (lcmppd c, lcmgpd c, lcmppl c or lcmgpl c).

type of operation
put get

father associative table lcmput c lcmget c

lcmppd c lcmgpd c

heterogeneous list lcmpdl c lcmgdl c

lcmppl c lcmgpl c

2.4.1 lcmget c

Function used to recover an information block (array of elementary type) from an associative table
and to copy this data into memory.

lcmget_c(iplist,namp,data);

IGE–332 9

input parameters:
iplist lcm** address of the associative table.
namp char* name of the block to recover. A call to xabort c is performed if the

block does’t exist.

output parameters:
data int 32* array of dimension ≥ ilong in which the block is copied.

value of the function:
void

Function lcmget c can be used to recover information of type other than int 32* by using a cast
operation. Here is an example:

#include "lcm.h"

...

float_32 data[5];

lcm *iplist;

iplist=... ;

lcmget_c(&iplist,namp,(int_32*)data);

Function lcmget c can also be used to recover character-string information available in a block of
the LCM object. It is also possible to use function lcmgcd c presented in Section 2.7.1. In the following
example, a block is stored in an associative table located at address iplist. The block has a name namp
and a length equivalent to 5 32-bit words. The information is recovered into the integer array idata and
transformed into a null-terminated character string hname using the strcut c utility:

#include "lcm.h"

...

char *namp="...", hname[21];

int_32 idata[5];

lcm *iplist;

iplist=... ;

lcmget_c(&iplist,namp,idata);

strcut_c(hname,(char *)idata,20);

2.4.2 lcmput c

Function used to store a block of data (array of elementary type) into an associative table. The
information is copied from memory towards the LCM object. If the block already exists, it is replaced;
otherwise, it is created. This operation cannot be performed into a LCM object open in read-onlymode.

lcmput_c(iplist,namp,ilong,itylcm,data);

IGE–332 10

input parameters:
iplist lcm** address of the associative table.
namp char* name of the block.
ilong int 32 length of the block.
itylcm int 32 type of information. =1 32-bit integer; =2 32-bit real; =3 4-character

data; =4 64-bit real; =5 32-bit logical; =6 64-bit complex; =99 unde-
fined.

data int 32* array of dimension ≥ jlong to be copied into the LCM object.
jlong=2*ilong if itylcm=4 or itylcm=6; jlong=ilong otherwise.
Array elements data[0] to data[jlong-1] must be initialized before
the call to lcmput c.

value of the function:
void

Function lcmput c can be used to store information of type other than int 32* by using a cast
operation. Here is an example:

#include "lcm.h"

...

float_32 data[5];

lcm *iplist;

int_32 i;

iplist=... ;

for (i=0;i<5;i++) {

data[i]=... ;

}

lcmput_c(&iplist,namp,5,2,(int_32*)data);

Function lcmput c can also be used to store character-string information in an associative table of
a LCM object. It is also possible to use function lcmpcd c presented in Section 2.7.2. In the following
example, a character string hname is first transformed into an integer array idata using the strfil c

utility. This array (block of data) is stored into the LCM object located at address iplist, using
lcmput c. The block has a name namp, a length equivalent to 5 32-bit words, and a type equal to 3.

#include "lcm.h"

...

char *namp="...", hname[20];

int_32 idata[5], il=5, it=3;

lcm *iplist;

iplist=... ;

strfil_c((char *)idata,hname,20);

lcmput_c(&iplist,namp,il,it,idata);

2.4.3 lcmgpd c

Function used to recover the memory address of an information block (array of elementary type) from
an associative table, without making a copy of the information. Use of this function must respect the
following rules:

IGE–332 11

• If the information is modified after the call to lcmgpd c, a call to lcmppd c must be performed to
acknowledge the modification.

• The block *iofset should never be released using a deallocation function such as rlsara c, free,
etc.

• The address iofset must never be copied into another variable.

Non respect of these rules may cause execution failure (core dump, segmentation fault, etc) without
possibility to throw an exception.

A call to lcmgpd c doesn’t cause any modification to the LCM object. The data array information is
accessed directly from memory locations *iofset[0] to *iofset[ilong-1] where iofset is the address
returned by function lcmgpd c.

lcmgpd_c(iplist,namp,iofset);

input parameters:
iplist lcm** address of the associative table.
namp char* name of the block to recover. A call to xabort c is performed if the

block does’t exist.

output parameters:
iofset int 32** address of the data array.

value of the function:
void

2.4.4 lcmppd c

Function used to store a block of data (array of elementary type) into an associative table without
making a copy of the information. If the block already exists, it is replaced; otherwise, it is created. This
operation cannot be performed into a LCM object open in read-only mode.

If a block named namp already exists in the associative table, the address associated with namp is
replaced by the new address and the information pointed by the old address is deallocated.

The array containing information stored by lcmppd c must be originally allocated by a call of the form
iofset = setara c(jlong) or iofset = (int 32*)malloc(jlong*sizeof(int 32)). where jlong is
generally equal to ilong except if itylcm=4 or itylcm=6 where jlong=2*ilong.

lcmppd_c(iplist,namp,ilong,itylcm,iofset);

input parameters:
iplist lcm** address of the associative table.
namp char* name of the block.
ilong int 32 length of the block.
itylcm int 32 type of information. =1 32-bit integer; =2 32-bit real; =3 4-character

data; =4 64-bit real; =5 32-bit logical; =6 64-bit complex; =99 unde-
fined.

iofset int 32* address of the data array of length jlong, as returned by setara c.
jlong=2*ilong if itylcm=4 or itylcm=6; jlong=ilong otherwise.
Data elements iofset[0] to iofset[jlong-1] must be initialized be-
fore the call to lcmppd c.

IGE–332 12

value of the function:
void

The information block of address iofset will automatically be deallocated using function rlsara c

at closing time of the LCM object. Situations exist where this block is shared with data structures other
than LCM, and where the block must not be deallocated by the lcm API. In this case, it is imperative
to follow the call to lcmppd c by a call to function refpush of the form:

refpush(iplist,iofset);

2.4.5 lcmdel c

Function used to erase an information block or a daughter heterogeneous list stored in a memory-
resident associative table. Function lcmdel c cannot be used with persistent LCM objects.

lcmdel_c(iplist,namp);

input parameters:
iplist lcm** address of the associative table.
namp char* name of the block to erase.

value of the function:
void

2.4.6 lcmgdl c

Function used to recover an information block (array of elementary type) from an heterogeneous list
and to copy this data into memory.

lcmgdl_c(iplist,iset,data);

input parameters:
iplist lcm** address of the heterogeneous list.
iset int 32 index of the block in the heterogeneous list. A call to xabort c is per-

formed if the block does’t exist. The first element of the list is located
at index 0.

output parameters:
data int 32* array of dimension ≥ ilong in which the block is copied.

value of the function:
void

Function lcmgdl c can be used to recover character-string information available in a block of the
LCM object. It is also possible to use subroutine lcmgcl c presented in Section 2.7.3. In the following
example, a block is stored in an the heterogeneous list located at address iplist. The block is located
at the iset–th position of the heterogeneous list and has a length equivalent to 5 32-bit words. The
information is recovered into the integer array idata and transformed into a null-terminated character
string hname using the strcut c utility:

IGE–332 13

#include "lcm.h"

...

char *namp="...", hname[21];

int_32 iset,idata[5];

lcm *iplist;

iplist=... ;

iset=...;

lcmgdl_c(&iplist,iset,idata);

strcut_c(hname,(char *)idata,20);

2.4.7 lcmpdl c

Function used to store a block of data (array of elementary type) into an heterogeneous list. The
information is copied from memory towards the LCM object. If the block already exists, it is replaced;
otherwise, it is created. This operation cannot be performed into a LCM object open in read-onlymode.

lcmpdl_c(iplist,iset,ilong,itylcm,data);

input parameters:
iplist lcm** address of the heterogeneous list.
iset int 32 index of the block in the list. The first element of the list is located at

index 0.
ilong int 32 length of the block.
itylcm int 32 type of information. =1 32-bit integer; =2 32-bit real; =3 4-character

data; =4 64-bit real; =5 32-bit logical; =6 64-bit complex; =99 unde-
fined.

data int 32* array of dimension ≥ ilong to be copied into the LCM object.
jlong=2*ilong if itylcm=4 or itylcm=6; jlong=ilong otherwise.
Array elements data[0] to data[jlong-1] must be initialized before
the call to lcmpdl c.

value of the function:
void

Function lcmpdl c can be used to store character-string information into an heterogeneous list of a
LCM object. In the following example, a character string hname is first transformed into an integer array
idata using the strfil c utility. This array (block of data) is stored into the LCM object located at
address iplist, using lcmpdl c . The block is located at the iset–th position of the heterogeneous list,
has a length equivalent to 5 32-bit words, and a type equal to 3.

#include "lcm.h"

...

char *namp="...", hname[20];

int_32 iset,idata[5],it=3,il=5;

lcm *iplist;

iplist=... ;

iset=...;

strfil_c((char *)idata,hname,20);

lcmpdl_c(&iplist,iset,il,it,idata);

IGE–332 14

2.4.8 lcmgpl c

Function used to recover the memory address of an information block (array of elementary type) from
an heterogeneous list, without making a copy of the information. Use of this function must respect the
following rules:

• If the information is modified after the call to lcmgpl c, a call to lcmppl c must be performed to
acknowledge the modification.

• The block *iofset should never be released using a deallocation function such as rlsara c, free,
etc.

• The address iofset must never be copied into another variable.

Non respect of these rules may cause execution failure (core dump, segmentation fault, etc) without
possibility to throw an exception.

A call to lcmgpl c doesn’t cause any modification to the LCM object. The data array information is
accessed directly from memory locations *iofset[0] to *iofset[ilong-1] where iofset is the address
returned by function lcmgpl c.

lcmgpl_c(iplist,iset,iofset);

input parameters:
iplist lcm** address of the heterogeneous list.
iset int 32 index of the block in the list. A call to xabort c is performed if the

block does’t exist. The first element of the list is located at index 0.

output parameters:
iofset int 32** address of the data array, as returned by setara c.

value of the function:
void

2.4.9 lcmppl c

Function used to store a block of data (array of elementary type) into an heterogeneous list without
making a copy of the information. If the block already exists, it is replaced; otherwise, it is created. This
operation cannot be performed into a LCM object open in read-only mode.

If the iset-th component of the heterogeneous list already exists, the address associated with this
component is replaced by the new address and the information pointed by the old address is deallocated.

The array containing information stored by lcmppl c must be originally allocated by a call of the form
iofset = setara c(jlong) or iofset = (int 32*)malloc(jlong*sizeof(int 32)) where jlong is
generally equal to ilong except if itylcm=4 or itylcm=6 where jlong=2*ilong.

lcmppl_c(iplist,iset,ilong,itylcm,iofset);

IGE–332 15

input parameters:
iplist lcm** address of the heterogeneous list.
iset int 32 index of the block in the list. The first element of the list is located at

index 0.
ilong int 32 length of the block.
itylcm int 32 type of information. =1 32-bit integer; =2 32-bit real; =3 4-character

data; =4 64-bit real; =5 32-bit logical; =6 64-bit complex; =99 unde-
fined.

iofset int 32* address of the data array, as returned by setara c. jlong=2*ilong

if itylcm=4 or itylcm=6; jlong=ilong otherwise. Data elements
iofset[0] to iofset[jlong-1] must be initialized before the call to
lcmppl c.

value of the function:
void

The information block of address iofset will automatically be deallocated using function rlsara c

at closing time of the LCM object. Situations exist where this block is shared with data structures other
than LCM, and where the block must not be deallocated by the lcm API. In this case, it is imperative
to follow the call to lcmppl c by a call to function refpush of the form:

refpush(iplist,iofset);

2.5 Management of the associative tables and of the heterogeneous lists

These functions permit to create (lcmsix c, lcmdid c, lcmdil c, lcmlid c, lcmlil c) or to access
(lcmsix c, lcmgid c, lcmgil c) daughter associative tables or daughter heterogeneous lists. Use of these
functions is summarized in the following table:

daughter
associative table heterogeneous list

father associative table lcmdid c lcmlid c

lcmgid c lcmgid c

heterogeneous list lcmdil c lcmlil c

lcmgil c lcmgil c

2.5.1 lcmdid c

Function used to create or access a daughter associative table included into a father associative table.
This operation cannot be performed in a LCM object open in read-only mode.

The daughter associative table is created if it doesn’t already exist. Otherwise, the existing daughter
associative table is accessed. In the latter case, it is recommended to use function lcmgid c which is
faster for a simple access and which can be used with LCM object open in read-only mode.

lcmdid_c(iplist,namp);

input parameterss:
iplist lcm** address of the father associative table.
namp char* name of the daughter associative table.

IGE–332 16

value of the function:
lcm* address of the daughter associative table.

2.5.2 lcmlid c

Function used to create or access a daughter heterogeneous list included into a father associative table.
This operation cannot be performed in a LCM object open in read-only mode.

In the following example, a daughter heterogeneous list is created as a block LIST into a father
associative table. The heterogeneous list contains 5 components. A block of data is stored in each
component of the heterogeneous list using lcmppl c:

#include "lcm.h"

...

lcm *iplist,*jplist;

int_32 n=5, i ;

...

jplist=lcmlid_c(&iplist,"LIST",n);

for(i=0;i<5;i++) {

lcmppl_c(&jplist,i,...

}

The heterogeneous list capability is implemented through calls to function lcmlid c. Such a call
permit the following possibilities:

• the heterogeneous list is created if it doesn’t already exist.

• the heterogeneous list is accessed if it already exists and if its length is unchanged. In this case, it
is recommended to use function lcmgid c which is faster for a simple access and which can be used
with LCM object open in read-only mode.

• the heterogeneous list is enlarged (components are added) if it already exists and if the new length
is larger than the preceding one.

lcmlid_c(iplist,namp,ilong);

input parameterss:
iplist lcm** address of the father associative table.
namp char* name of the daughter heterogeneous list.
ilong int 32 number of components in the daughter heterogeneous list.

value of the function:
lcm* address of the daughter heterogeneous list named namp.

2.5.3 lcmlil c

Function used to create or access a daughter heterogeneous list included into a father heterogeneous
list. This operation cannot be performed in a LCM object open in read-only mode.

In the following example, a daughter heterogeneous list is created as 77-th component of a father
heterogeneous list. The heterogeneous list contains 5 components. A block of data is stored in each
component of the heterogeneous list using lcmppl c:

IGE–332 17

#include "lcm.h"

...

lcm *iplist,*jplist;

int_32 n=5, i, iset=77 ;

...

jplist=lcmlil_c(&iplist,iset,n);

for(i=0;i<5;i++) {

lcmppl_c(&jplist,i,...

}

The heterogeneous list capability is implemented through calls to function lcmlil c. Such a call
permit the following possibilities:

• the heterogeneous list is created if it doesn’t already exist.

• the heterogeneous list is accessed if it already exists and if its length is unchanged. In this case, it
is recommended to use function lcmgil c which is faster for a simple access and which can be used
with LCM object open in read-only mode.

• the heterogeneous list is enlarged (components are added) if it already exists and if the new length
is larger than the preceding one.

lcmlil_c(iplist,iset,ilong);

input parameterss:
iplist lcm** address of the father heterogeneous list.
iset int 32 index of the daughter heterogeneous list in the father heterogeneous list.

The first element of the list is located at index 0.
ilong int 32 number of components in the daughter heterogeneous list.

value of the function:
lcm* address of the daughter heterogeneous list.

2.5.4 lcmdil c

Function used to create or access a daughter associative table included into a father heterogeneous
list. This operation cannot be performed in a LCM object open in read-only mode.

The daughter associative table is created if it doesn’t already exist. Otherwise, the existing daughter
associative table is accessed. In the latter case, it is recommended to use function lcmgil c which is
faster for a simple access and which can be used with LCM object open in read-only mode.

It is a good programming practice to replace a set of N distinct associative tables by a list made of
N associative tables, as depicted in Figure 2.

In the example of Figure 2, a set of 5 associative tables, created by lcmdid c:

#include "lcm.h"

...

char HDIR[13]

lcm*iplist,*kplist ;

int_32 i;

HDIR[12] = ’\0’;

IGE–332 18

for(i=0;i<5;i++) {

(void)sprintf(HDIR,"GROUP%3d/ 5",i+1);

kplist=lcmsix_c(&iplist,HDIR);

lcmppd_c(&kplist,...);

...

}

are replaced by a list of 5 associative tables, created by lcmlid c and lcmdil c:

#include "lcm.h"

...

lcm *iplist,*jplist,*kplist;

int_32 n=5 ;

jplist=lcmlid_c(&iplist,’GROUP’,n);

for(i=0;i<5;i++) {

kplist=lcmdil_c(&jplist,i);

lcmppd_c(&kplist,...);

}

'SIGNATURE'

'GROUP 1/ 5'

'GROUP 2/ 5'

'GROUP 3/ 5'

'GROUP 4/ 5'

'GROUP 5/ 5'

'K-EFFECTIVE'

'SIGNATURE'

'K-EFFECTIVE'

'GROUP' (5)

Set of associative tables List of associative tables

Figure 2: A list of associative tables.

The capability to include associative tables into an heterogeneous list is implemented using the
lcmdil c function:

lcmdil_c(iplist,iset);

input parameterss:
iplist lcm** address of the father heterogeneous list.
iset int 32 index of the daughter associative table in the father heterogeneous list.

The first element of the list is located at index 0.

value of the function:
lcm* address of the daughter associative table.

IGE–332 19

2.5.5 lcmgid c

Function used to access a daughter associative table or heterogeneous list included into a father
associative table.

lcmgid_c(iplist,namp);

input parameterss:
iplist lcm** address of the father associative table.
namp char* name of the daughter associative table or heterogeneous list.

value of the function:
lcm* address of the daughter associative table or heterogeneous list. A call to

xabort c is performed if this daughter doesn’t extst.

2.5.6 lcmgil c

Function used to access a daughter associative table or heterogeneous list included into a father
heterogeneous list.

lcmgil_c(iplist,iset);

input parameterss:
iplist lcm** address of the father heterogeneous list.
iset int 32 index of the daughter associative table or heterogeneous list in the father

heterogeneous list. The first element of the list is located at index 0.

value of the function:
lcm* address of the daughter associative table or heterogeneous list. A call to

xabort c is performed if this daughter doesn’t extst.

2.5.7 lcmsix c

Function used to move across the hierarchical structure of a LCM object made of associative tables.
Using this function, there is no need to remember the names of the father (grand-father, etc.) associative
tables. If a daughter associative table doesn’t exist and if the LCM object is open on creation or
modification mode, the daughter associative table is created. A daughter associative table cannot be
created if the LCM object is open in read-only mode.

Function lcmsix c is deprecated, as lcmdid c offers a more elegant way to perform the same operation.
However, lcmsix c is kept available in the lcm API for historical reasons.

lcmsix_c(iplist,namp,iact);

IGE–332 20

input parameters:
iplist lcm** address of the associative table before the call to lcmsix c.
namp char** name of the daughter associative table if iact=1. This parameter is not

used if iact=0 or iact=2.
iact int 32 type of move: =0 return towards the root directory of the LCM object;

=1 move towards the daughter associative table (create it if it doesn’t
exist); =2 return towards the father associative table.

output parameters:
iplist lcm** address of the associative table after the call to lcmsix c.

value of the function:
void

2.6 LCM utility functions

2.6.1 lcmlib c

Function used to print (towards stdout) the content of the active directory of an associative table or
heterogeneous list.

lcmlib_c(iplist);

input parameter:
iplist lcm** address of the associative table or of the heterogeneous list.

value of the function:
void

2.6.2 lcmequ c

Function used to perform a deep-copy of the information contained in an associative table (address
iplis1) towards another associative table (address iplis2). Note that the second associative table
(address iplis2) is modified but not created by lcmequ c.

lcmequ_c(iplis1,iplis2);

input parameter:
iplis1 lcm** address of the existing associative table or of the heterogeneous list (ac-

cessed in read-only mode).

output parameters:
iplis2 lcm** address of the associative table or of the heterogeneous list, modified by

lcmequ c.
value of the function:

void

IGE–332 21

2.6.3 lcmexp c

Function used to export (or import) the content of an associative table towards (or from) a sequential
file. The sequential file can be in binary or ascii format.

The export of information starts from the active directoty. Note that lcmexp c is basically a serial-
ization algorithm based on the contour algorithm.

lcmexp_c(iplist,impx,file,imode,idir);

input parameterss:
iplist lcm** address of the associative table or of the heterogeneous list to be exported

(or imported).
impx int 32 print parameter (equal to 0 for no print).
file FILE* sequential file.
imode int 32 =1 binary sequential file; =2 ascii sequential file.
idir int 32 =1 to export; =2 to import.

value of the function:
void

2.7 Using variable-length string arrays

The following functions are implemented using the C functions of the preceding sections. They permit
the use of variable-length string arrays, a capability not yet available with the Fortran lcm API.

type of operation
put get

father associative table lcmpcd c lcmgcd c

heterogeneous list lcmpcl c lcmgcl c

2.7.1 lcmgcd c

Function used to recover a variable-length string array from a block of data stored in an associative
table.

lcmgcd_c(iplist,namp,hdata);

input parameters:
iplist lcm** address of the associative table.
namp char* name of the variable-length string array to recover. A call to xabort c

is performed if the block does’t exist.

output parameters:
hdata char** variable-length string array of dimension ≥ ilong. The memory space

required to represent the string array is allocated by lcmgcd c.
value of the function:

void

IGE–332 22

2.7.2 lcmpcd c

Function used to store a variable-length string array into a block of data stored in an associative
table. If the block of data already exists, it is updated; otherwise, it is created. This operation cannot
be performed in a LCM object open in read-only mode.

lcmpcd_c(iplist,namp,ilong,hdata);

input parameters:
iplist lcm** address of the associative table.
namp char* name of the variable-length string array to store.
ilong int 32 number of components in the variable-length string array.
hdata char** array of dimension ≥ ilong to be copied in the LCM object.

value of the function:
void

Example:

#include "lcm.h"

...

lcm *iplist;

int_32 i, ilong = 5;

char *hdata1[ilong],*hdata2[ilong];

hdata1[0] = "string1";

hdata1[1] = " string2";

hdata1[2] = " string3";

hdata1[3] = " string4";

hdata1[4] = " string5";

for (i=0;i<ilong;i++) {

printf("i=%d string=’%s’ size=%d\n",i,hdata1[i],strlen(hdata1[i]));

}

lcmop_c(&iplist,"mon_dict",0,1,2);

/* Store the information */

lcmpcd_c(&iplist,"node1",ilong,hdata1);

/* Recover the information */

lcmgcd_c(&iplist,"node1",hdata2);

for (i=0;i<ilong;i++) {

printf("in table i=%d string=’%s’ size=%d\n",i,hdata2[i],strlen(hdata2[i]));

}

for (i=0;i<ilong;i++) free(hdata2[i]);

lcmcl_c(&iplist,2);

IGE–332 23

2.7.3 lcmgcl c

Function used to recover a variable-length string array from a block of data stored in an heterogeneous
list.

lcmgcl_c(iplist,namp,hdata);

input parameters:
iplist lcm** address of the heterogeneous list.
iset int 32 index of the variable-length string array in the heterogeneous list. A

call to xabort c is performed if the component doesn’t exist. The first
element of the list is located at index 0.

output parameters:
hdata char** variable-length string array of dimension ≥ ilong. The memory space

required to represent the string array is allocated by lcmgcl c.
value of the function:

void

2.7.4 lcmpcl c

Function used to store a variable-length string array into a block of data stored in an heterogeneous
list. If the block of data already exists, it is updated; otherwise, it is created. This operation cannot be
performed in a LCM object open in read-only mode.

lcmpcl_c(iplist,iset,ilong,hdata);

input parameters:
iplist lcm** address of the heterogeneous list.
iset int 32 index of the variable-length string array in the heterogeneous list. The

first element of the list is located at index 0.
ilong int 32 number of components in the variable-length string array .
hdata char** array of dimension ≥ ilong to be copied in the LCM object.

value of the function:
void

Example:

#include "lcm.h"

...

lcm *iplist, *jplist;

int_32 i, ilong = 5;

char *hdata1[ilong],*hdata2[ilong];

hdata1[0] = "string1";

hdata1[1] = " string2";

hdata1[2] = " string3";

IGE–332 24

hdata1[3] = " string4";

hdata1[4] = " string5";

for (i=0;i<ilong;i++) {

printf("i=%d string=’%s’ size=%d\n",i,hdata1[i],strlen(hdata1[i]));

}

lcmop_c(&iplist,"mon_dict",0,1,2);

/* Creation of the heterogeneous list */

jplist = lcmlid_c(&iplist,"node2",77);

/* Store the information */

lcmpcl_c(&jplist,4,ilong,hdata1);

/* Recover the information */

lcmgcl_c(&jplist,4,hdata2);

for (i=0;i<ilong;i++) {

printf("in list i=%d string=’%s’ size=%d\n",i,hdata2[i],strlen(hdata2[i]));

}

for (i=0;i<ilong;i++) free(hdata2[i]);

lcmcl_c(&iplist,2);

2.8 Dynamic allocation of the elementary blocks of data

2.8.1 setara c

Function used to allocate a block of data for storing a memory-resident int 32 data array. Function
setara c is a simple wrapper for malloc standard library function. If the operating system fails to
allocate the memory, a call to xabort c is performed.

setara_c(ilong);

input parameter:
ilong int 32 length of the block of data to allocate in unit of 32-bit words.

value of the function:
int 32* address of the allocated block of data.

2.8.2 rlsara c

Function used to deallocate a memory-resident block of data previously allocated by setara c. The
implementation of rlsara c in ANSI C is based on the free standard library function. If the operating
system fails to deallocate the memory, a call to xabort c is performed.

rlsara_c(iofset);

IGE–332 25

input parameter:
iofset int 32* address of the block of data to deallocate. This value must have been

allocated by a previous call to setara c.

value of the function:
void

2.9 Abnormal termination of the execution

2.9.1 xabort c

Function used to cause the program termination. A message describing the conditions of the termi-
nation is printed.

It is important to use this function to abort a program instead of using the exit() function of the
standard library. The xabort c function can be used to implement exception treatment in situations
where the application software is driven by a multi-physics system.

If an abnormal termination occurs, the xabort c function is called as

xabort_c("sub001: execution failure.");

xabort_c(hsmg);

input parameter:
hsmg char* message describing the conditions of the abnormal termination.

value of the function:
void

IGE–332 26

3 The ANSI C hdf5 API

HDF5 is a hierarchical filesystem data format. HDF5 is self-describing, allowing an application to
interpret the structure and contents of a file with no outside information. A HDF5 file created on a
little endian CPU can be read on a big endian CPU, and vice versa. Similarly, real(4) datasets can be
recovered in real(8) arrays, and vice versa. HDF5 includes two major types of object:

• Datasets, which are multidimensional arrays of a homogeneous type

• Groups, which are container structures which can hold datasets and other groups.

The Ganlib5 implementation of HDF5 relies on the official ANSI C API provided by the HDF Group, a
non-profit corporation whose mission is to ensure continued development of HDF5 technologies and the

continued accessibility of data stored in HDF.
[8]

The Ganlib5 kernel reimplements simplified ANSI C and
Fortran bindings of the legacy HDF5 API to facilitate its use. The compilation and link edition of the
new bindings require the definition of a UNIX environment variables HDF5 INC and HDF5 API pointing
towards directories containing the official HDF5 include and C API sub-directories compatible with your
operating system.

• On a OSX operating system, these variables may be set as

export HDF5_INC="/usr/local/Cellar/hdf5/1.12.1/include" # HDF5 include directory

export HDF5_API="$HDF5_INC/../lib" # HDF5 C API

• On a Linux RedHat operating system, these variables may be set as

export HDF5_INC="/usr/local/hdf5/include" # HDF5 include directory

export HDF5_API="$HDF5_INC/../lib" # HDF5 C API

• On a Linux Scibian operating system, these variables may be set as

export HDF5_INC="/usr/include/hdf5/serial" # HDF5 include directory

export HDF5_API="/usr/lib/x86_64-linux-gnu/hdf5/serial" # HDF5 C API

• On a Unix AIX operating system, these variables may be set as

export HDF5_INC="/usr/include" # HDF5 include directory

export HDF5_API="$HDF5_INC/../lib" # HDF5 C API

On Linux and AIX systems, the environment variable LD LIBRARY PATH must also be set:

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$HDF5_API"

Any ANSI C program using the Ganlib5 HDF5 API implementation should use the following include:

#include "hdf5_aux.h"

3.1 Opening and closing of HDF5 files

3.1.1 hdf5 open file c

Open a HDF5 file. Obtain the address of the HDF5 file if it is created. Note that CLE-2000 is
responsible to perform the calls to hdf5 open file c for the HDF5 files that are used as parameters of
a CLE-2000 module. The use of hdf5 open file c is generally restricted to the use of temporary HDF5
files created within a CLE-2000 module.

IGE–332 27

hdf5_open_file_c(fname, ifile, irdonly);

input parameters:
fname char[1024] name of the HDF5 file.
irdonly int 32 =0 to create a new HDF5 file or to to modify an existing HDF5 file. A

file is not created if it does not already exist. =1 to access an existing
HDF5 file in read-only mode.

output parameters:
ifile hid t* HDF5 file identifier.

3.1.2 hdf5 close file c

Close a HDF5 file. Note that CLE-2000 is responsible to perform the calls to hdf5 close file c for
the HDF5 files that are used as parameters of a CLE-2000 module. The use of hdf5 close file c is
generally restricted to the use of temporary HDF5 files created within a CLE-2000 module.

hdf5_close_file_c(ifile);

input parameters:
ifile hid t* HDF5 file identifier.

3.2 Interrogation of HDF5 files

The data structures in a HDF5 file are self-described. It is therefore possible to interrogate them in
order to know their characteristics.

3.2.1 hdf5 list c

List the root table of contents of a group on the standard output. The name of a group can include
one or many path separators (character /) to list different hierarchical levels.

hdf5_list_c(ifile, namp);

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of a group.

3.2.2 hdf5 get dimensions c

Find the rank (number of dimensions) of a dataset.

hdf5_get_dimensions_c(ifile, namp, rank);

IGE–332 28

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of a dataset.

output parameters:
rank int 32* rank of the dataset.

3.2.3 hdf5 get num group c

Find the number of objects (daughter datasets and daughter groups) in a group.

hdf5_get_num_group_c(ifile, namp, nbobj);

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of a group.

output parameters:
nbobj int 32* number of objects in group namp.

3.2.4 hdf5 list datasets c

Recover character daughter dataset names in a group.

hdf5_list_datasets_c(file, namp, ndsets, idata);

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of a group.

output parameters:
nbobj int 32* number of daughter datasets in group namp.
idata char* list of character names of each daughter dataset. Each name is null

terminated.

3.2.5 hdf5 list groups c

Recover character daughter groups names in a group.

hdf5_list_groups_c(file, namp, ndsets, idata);

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of a group.

IGE–332 29

output parameters:
nbobj int 32* number of daughter groups in group namp.
idata char* list of character names of each daughter group. Each name is null ter-

minated.

3.2.6 hdf5 info c

Find dataset information.

hdf5_info_c(ifile, namp, rank, type, nbyte, dimsr);

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of a dataset.

output parameters:
rank int 32* rank (number of dimensions) of dataset.
type int 32* type of dataset: =1 32-bit integer; =2 32-bit real; =3 character data;

=4 64-bit real.
nbyte int 32* number of bytes in each component of the dataset.
dimsr int 32* integer array containing the dimension of dataset. rank values are pro-

vided.

3.2.7 hdf5 group exists c

Test for existence of a group.

ierr = hdf5_group_exists_c(ifile, namp);

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of a group.

output parameter:
ierr int 32* existence flag: =0/1 the group does/does not exist.

3.3 Management of groups and datatypes

3.3.1 hdf5 create group c

Create a group.

hdf5_create_group_c(ifile, namp);

IGE–332 30

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of the group to create.

3.3.2 hdf5 delete c

Delete a group or a dataset.

hdf5_delete_c(ifile, namp);

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of the group or dataset to delete.

3.3.3 hdf5 copy c

Copy a group or a dataset from one location to another. The source and destination need not be in
the same file.

hdf5_copy_c(ifile_s, namp_s, ifile_d, namp_d);

input parameters:
ifile s hid t* HDF5 source file identifier.
namp s char[1024] name of the source group or dataset to copy.

output parameters:
ifile d hid t* HDF5 destination file identifier.
namp d char[1024] name of the destination group or dataset.

3.3.4 hdf5 read data int c

Copy an integer dataset from HDF5 file into memory.

hdf5_read_data_int_c(ifile, namp, idata);

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of a dataset.

output parameters:
idata int 32* integer array.

IGE–332 31

3.3.5 hdf5 read data real4 c

Copy a real(4) dataset from HDF5 file into memory.

hdf5_read_data_real4_c(ifile, namp, rdata);

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of a dataset.

output parameters:
rdata float* real(4) array.

3.3.6 hdf5 read data real8 c

Copy a real(8) dataset from HDF5 file into memory.

hdf5_read_data_real8_c(ifile, namp, rdata);

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of a dataset.

output parameters:
rdata double* real(8) array.

3.3.7 hdf5 read data string c

Copy a character dataset from HDF5 file into memory.

hdf5_read_data_string_c(ifile, namp, idata);

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of a dataset.

output parameters:
idata char* character array.

3.3.8 hdf5 write data int c

Copy an integer array from memory into a HDF5 dataset

IGE–332 32

hdf5_write_data_int_c(ifile, namp, rank, dimsr, idata);

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of a dataset.
rank int 32* rank (number of dimensions) of dataset.
dimsr int 32* integer array containing the dimension of dataset. rank values are pro-

vided.
idata int 32* integer array.

3.3.9 hdf5 write data real4 c

Copy a real(4) array from memory into a HDF5 dataset

hdf5_write_data_real4_c(ifile, namp, rank, dimsr, rdata);

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of a dataset.
rank int 32* rank (number of dimensions) of dataset.
dimsr int 32* integer array containing the dimension of dataset. rank values are pro-

vided.
rdata float* real(4) array.

3.3.10 hdf5 write data real8 c

Copy a real(8) array from memory into a HDF5 dataset

hdf5_write_data_real8_c(ifile, namp, rank, dimsr, rdata);

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of a dataset.
rank int 32* rank (number of dimensions) of dataset.
dimsr int 32* integer array containing the dimension of dataset. rank values are pro-

vided.
rdata double* real(8) array.

3.3.11 hdf5 write data string c

Copy an character array from memory into a HDF5 dataset

hdf5_write_data_string_c(ifile, namp, rank, dimsr, idata);

IGE–332 33

input parameters:
ifile hid t* HDF5 file identifier.
namp char[1024] name of a dataset.
rank int 32* rank (number of dimensions) of dataset.
len int 32* length of a string element in the array (in bytes).
dimsr int 32* integer array containing the dimension of dataset. rank values are pro-

vided.
idata char* character array.

IGE–332 34

4 The ANSI C CLE-2000 API

4.1 The main entry point for CLE-2000

The CLE-2000 supervisor have been entirely reprogrammed in ANSI C in its GANLIB Version 5
implementation. Its main entry point is function cle2000 c() that can be used to execute a CLE-2000
source file which can be a main procedure (a sequential ascii file with .x2m suffix) or a parametrized
procedure (a sequential ascii file with .c2m suffix). Parametrized procedures can be called by func-
tion cle2000 c() or by other CLE-2000 procedures. Function cle2000 c() is therefore recursive. A
computational scheme is a set of parametrized procedures.

4.1.1 cle2000 c

The general specification of function cle2000 c() is

cle2000_c(ilevel, dummod, filenm, iprint, my_param);

input parameters:
ilevel int 32 recursivity level of cle2000 c() call. We recommend to call

cle2000 c() from the main entry point with ilevel = 1.
dummod int 32 (*)() external ANSI C function (or C-interoperable Fortran-2003 function)

responsible for dispatching the execution among calculation modules.
Note that the calculation modules can be implemented in any language
that is interoperable with ANSI C.

filenm char* name of sequential ascii file containing the CLE-2000 source file, without
the .c2m suffix. Can be set to " " (corresponding to stdin in ANSI C,
or unit 5 in Fortran). The name is null terminated.

iprint int 32 print parameter (set to zero for no print).
my param lifo* last-in-first-out (lifo) stack containing LCM (or XSM) objects, files

and/or CLE-2000 variables that are exchanged with the CLE-2000 pro-
cedure. Set my param = NULL if no information is exchanged. The spec-
ification of my param is detailed in Sect. 4.3.

value of the function:
int 32 error code equal to zero if the execution of the CLE-2000 source file is

successful. Equal to the error code otherwise.

4.1.2 dummod

Function dummod() is an external ANSI C function (or C-interoperable Fortran-2003 function) re-
sponsible for dispatching the execution among calculation modules. A specific version, named ganmod(),
is used to dispatch the execution among the modules of the GANLIB. Its specifications are:

dummod(cmodul, nentry, hentry, ientry, jentry, kentry, hparam);

IGE–332 35

input parameters:
cmodul char* name of the calculation module to execute
nentry int 32 number of parameters (LCM objects or files) for this call
hentry char (*)[13] names of the parameters as known in the CLE-2000 procedure
ientry int 32* types of the parameters. = 1: memory-resident LCM object; = 2: per-

sistent LCM object (stored in a XSM file); = 3: sequential binary file;
= 4: sequential ascii file; = 5: direct access file; = 6: HDF5 file.

jentry int 32* access mode of the parameters. = 0: the object is created; = 1: the
object is opened for modifications ; = 2: the object is opened in read-
only mode.

kentry lcm** equal to the address of the LCM object corresponding to a parameter or
set to NULL if the parameter is a file

hparam char (*)[73] names of the parameters as known by the operating system

value of the function:
int 32 error code equal to zero if the execution of dummod() is successful. Equal

to the error code otherwise.

4.1.3 Calling a main CLE-2000 procedure

The simplest situation occurs when a main CLE-2000 procedure is called. This situation corresponds
to the case where an application software is run in stand-alone mode. In this case, it is sufficient to write
a main program calling a main CLE-2000 procedure. The main program can be written in ANSI C (as
in the following example) or as a C-interoperable Fortran-2003 program. A main CLE-2000 procedure
has no in-out CLE-2000 variables and no in-out parameters.

In the following example, an application software contains three modules, named MOD1:, MOD2 and
MOD3, respectively. A main program is simply written as

#include <string.h>

#include "cle2000.h"

main()

{

int_32 iprint = 0;

int_32 ier, ilevel = 1;

int_32 ganmod();

ier = cle2000_c(ilevel, &ganmod, " ", iprint, NULL);

printf("end of execution; ier=%d\n", ier);

}

The ganmod() function is another developer-supplied function that is responsible for dispatching the
execution among modules MOD1:, MOD2 or MOD3. The ganmod() function is responsible for opening any
file that can be requested by these modules. This open/close operation may be different, depending if
the modules are programmed in ANSI C (as in this example) or in another language.

#include <string.h>

#include <stdio.h>

#include "cle2000.h"

int_32 ganmod(char *cmodul, int_32 nentry, char (*hentry)[13], int_32 *ientry,

int_32 *jentry, lcm **kentry, char (*hparam)[73])

{

int_32 iloop1, ier;

IGE–332 36

FILE *kentry_file[maxent];

char hsmg[132];

/* open files */

for (iloop1 = 0; iloop1 < nentry; ++iloop1) {

if (ientry[iloop1] >= 3) {

char *mode;

if ((ientry[iloop1] == 3) && (jentry[iloop1] == 0)) {

strcpy(mode, "w");

} else if ((ientry[iloop1] == 3) && (jentry[iloop1] == 1)) {

strcpy(mode, "a");

} else if ((ientry[iloop1] == 3) && (jentry[iloop1] == 2)) {

strcpy(mode, "r");

} else if ((ientry[iloop1] == 4) && (jentry[iloop1] == 0)) {

strcpy(mode, "wb");

} else if ((ientry[iloop1] == 4) && (jentry[iloop1] == 1)) {

strcpy(mode, "ab");

} else if ((ientry[iloop1] == 4) && (jentry[iloop1] == 2)) {

strcpy(mode, "rb");

} else {

sprintf(hsmg, "ganmod: type not supported for file %s", hentry[iloop1]);

xabort_c(hsmg);

}

kentry_file[iloop1] = fopen(hparam[iloop1], mode);

if (kentry_file[iloop1] == NULL) {

sprintf(hsmg, "ganmod: unable to open file %s", hentry[iloop1]);

xabort_c(hsmg);

}

} else {

kentry_file[iloop1] = NULL;

}

}

/* call modules */

if(strcmp(cmodul, "MOD1:") == 0) {

mod1(nentry, hentry, ientry, jentry, kentry, kentry_file);

} else if(strcmp(cmodul, "MOD2:") == 0) {

mod2(nentry, hentry, ientry, jentry, kentry, kentry_file);

} else if(strcmp(cmodul, "MOD3:") == 0) {

mod3(nentry, hentry, ientry, jentry, kentry, kentry_file);

} else {

return 1;

}

/* close files */

for (iloop1 = 0; iloop1 < nentry; ++iloop1) {

if (ientry[iloop1] >= 3) {

ier = fclose(kentry_file[iloop1]);

if (ier != 0) {

sprintf(hsmg, "ganmod: unable to close file %s", hentry[iloop1]);

xabort_c(hsmg);

}

}

IGE–332 37

}

return 0;

}

4.1.4 Calling a parametrized CLE-2000 procedure

In cases where an application software is called from a multi-physics application, it is likely that
the multi-physics application will need to call parametrized CLE-2000 procedures (with “.c2m” suffix).
This approach provides an efficient way of communication between the application software and the
multi-physics application. It also permit to develop computational schemes outside the scope (i.e., inde-
pendently) of the multi-physics application. Parameters are either LCM objects (memory-resident) or files
that are managed by the operating system. Multi-physics applications are generally programmed in C++
or in Java. In the latter case, Java Native Interfaces (JNIs) are required to allow this communication.

In the following example, a parametrized procedure, TESTproc.c2m, take two object parameters and
three CLE-2000 input variables. Note that the CLE-2000 variables are always defined after LCM and file
objects. The first parameter, MACRO ASCII, is an ascii file written by the procedure and containing an
export of the information pointed by the second parameter MACRO. This second parameter is a memory
resident LCM object containing a Macrolib. It is accessed in read-onlymode. The procedure also prints
a table-of-content of the root directory of MACRO, using the UTL: module of the GANLIB. The procedure
TESTproc.c2m is implemented as

REAL KEFF1 KEFF2 ;

INTEGER I123 ;

PARAMETER MACRO_ASCII MACRO ::

EDIT 1

::: SEQ_ASCII MACRO_ASCII ;

::: LINKED_LIST MACRO ;

;

:: >>KEFF1<< >>KEFF2<< >>I123<< ;

MODULE UTL: END: ;

*

UTL: MACRO :: DIR ;

MACRO_ASCII := MACRO ;

ECHO "KEFF1=" KEFF1 ""KEFF2=" KEFF2 "I123=" I123 ;

ECHO "procedure TESTproc completed" ;

END: ;

QUIT "XREF" .

More information about the development of CLE-2000 procedures can be found in Ref. 1.

The next ANSI C function is an example of how a multi-physics application can call such a procedure.
A LCM object containing a Macrolib is first created by importing its information from an existing ascii

file named Macrolib. Next, a call to function cle2000 c() is performed to execute TESTproc.c2m. The
corresponding main program is written

#include <string.h>

#include <stdlib.h>

#include "cle2000.h"

main()

{

int_32 iprint = 0;

int_32 ier, ilevel = 1;

FILE *filein;

IGE–332 38

char cproce[13];

int_32 ganmod();

lcm *my_lcm;

lifo *my_lifo;

lifo_node *my_node;

/* create the LCM object containing a Macrolib */

filein = fopen("Macrolib", "r");

lcmop_c(&my_lcm, "MACRO1", 0, 1, iprint);

lcmexp_c(&my_lcm, iprint, filein, 2, 2);

fclose(filein);

lcmlib_c(&my_lcm);

lcmcl_c(&my_lcm, 1);

/* construct the lifo stack */

cleopn(&my_lifo);

/* node 1 */

my_node = (lifo_node *) malloc(sizeof(lifo_node));

strcpy(my_node->name, "MACRO_ASCII1"); strcpy(my_node->OSname, "my_ascii_file");

my_node->type = -6;

clepush(&my_lifo, my_node);

/* node 2 */

my_node = (lifo_node *) malloc(sizeof(lifo_node));

strcpy(my_node->name, "MACRO1"); strcpy(my_node->OSname, "MACRO1"); my_node->type = 3;

my_node->value.mylcm = my_lcm;

clepush(&my_lifo, my_node);

/* node 3 */

my_node = (lifo_node *) malloc(sizeof(lifo_node));

strcpy(my_node->name, "value1"); my_node->type = 12; my_node->value.fval = 1.703945;

clepush(&my_lifo, my_node);

/* node 4 */

my_node = (lifo_node *) malloc(sizeof(lifo_node));

strcpy(my_node->name, "value2"); my_node->type = 12; my_node->value.fval = 1.562276;

clepush(&my_lifo, my_node);

/* node 5 */

my_node = (lifo_node *) malloc(sizeof(lifo_node));

strcpy(my_node->name, "value3"); my_node->type = 11; my_node->value.ival = 12345;

clepush(&my_lifo, my_node);

/* call the parametrized procedure */

strcpy(cproce, "TESTproc");

ier = cle2000_c(ilevel, &ganmod, cproce, iprint, my_lifo);

if (ier != 0) xabort_c("example2.1.5: cle2000 failure");

/* erase the lifo stack */

while (my_lifo->nup > 0) {

my_node = clepop(&my_lifo);

free(my_node);

}

clecls(&my_lifo);

printf("successful end of execution\n");

}

IGE–332 39

4.1.5 Calling a CLE-2000 procedure with in-out CLE-2000 variables

The CLE-2000 API also offers the possibility to exchange CLE-2000 variables with a procedure. The
following CLE-2000 procedure permits to compute the factorial of a number, as proposed in Ref. 1. Here,
n and n fact are input and output CLE-2000 variable, respectively. The fact.c2m procedure is written

!

! Example of a recursive procedure.

!

! input to "fact": *n*

! output from "fact": *n_fact*

!

INTEGER n n_fact prev_fact ;

:: >>n<< ;

IF n 1 = THEN

EVALUATE n_fact := 1 ;

ELSE

EVALUATE n := n 1 - ;

! Here, "fact" calls itself

PROCEDURE fact ;

fact :: <<n>> >>prev_fact<< ;

EVALUATE n_fact := n 1 + prev_fact * ;

ENDIF ;

:: <<n_fact>> ;

QUIT " Recursive procedure *fact* XREF " .

This procedure can be called from a program implemented in ANSI C, using

#include <string.h>

#include <stdlib.h>

#include "cle2000.h"

main()

{

int_32 iprint = 0;

int_32 ier, ilevel = 1;

char cproce[13];

int_32 ganmod();

lifo *my_lifo;

lifo_node *my_node;

/* construct the lifo stack */

cleopn(&my_lifo);

/* node 1 */

my_node = (lifo_node *) malloc(sizeof(lifo_node));

strcpy(my_node->name, "input_val"); my_node->type = 11; my_node->value.ival = 5;

clepush(&my_lifo, my_node);

/* node 2 */

my_node = (lifo_node *) malloc(sizeof(lifo_node));

strcpy(my_node->name, "output_val"); my_node->type = -11;

clepush(&my_lifo, my_node);

/* call the procedure with in-out CLE-2000 variables*/

strcpy(cproce, "fact");

ier = cle2000_c(ilevel, &ganmod, cproce, iprint, my_lifo);

IGE–332 40

if (ier != 0) xabort_c("fact: cle2000 failure");

/* recover and erase the lifo stack */

printf("\noutput stack:\n");

while (my_lifo->nup > 0) {

my_node = clepop(&my_lifo);

printf("node %d (name=%12s) ---> %d\n", my_lifo->nup, my_node->name,

my_node->value.ival);

free(my_node);

}

clecls(&my_lifo);

printf("successful end of execution\n");

}

4.2 Calling a calculation module without a CLE-2000 procedure

The GANLIB API also provides the possibility to call directly a calculation module without a CLE-
2000 procedure. This capability is required in the first-generation Jargon framework, as presented in
Ref. 6. The actual implementation does not support CLE-2000 variables. A calculation module with
“>> <<” variables must therefore be encapsulated in a CLE-2000 procedure.

4.2.1 clemod c

The general specification of function clemod c() is

clemod_c(cmodul, filein, nentry, hentry, ientry, jentry, kentry, hparam, dummod);

input parameters:
cmodul char* name of the calculation module to execute
filein FILE* sequential ascii file containing the data for module cmodul (i.e., the data

between the “::” and the “;”). Can be set to stdin (standard input,
or unit 5 in Fortran)

nentry int 32 number of parameters (LCM objects or files) that are exchanged with
the CLE-2000 procedure. nentry = 0 if no parameters are exchanged.

hentry char (*)[13] names of these parameters, as known by the calculation module. Each
name is a character string with a maximum of 12 characters.

ientry int 32* types of each parameter. = 1: memory-resident LCM object; = 2:
persistent LCM object (stored in a XSM file); = 3: sequential binary
file; = 4: sequential ascii file; = 5: direct access file; = 6: HDF5 file.

jentry int 32* mode of each parameter. = 0: the object is created; = 1: the object is
opened for modifications ; = 2: the object is opened in read-only mode.

kentry lcm** addresses of the lcm objects (for parameters that are LCM objects). Set
to NULL for parameters that are files.

hparam char (*)[73] names of these parameters, as known by the operating system. Each
name is a character string with a maximum of 72 characters.

dummod int 32 (*)() external ANSI C function (or C-interoperable Fortran-2003 function)
responsible for dispatching the execution among calculation modules.
Note that the calculation modules can be implemented in any language
that is interoperable with ANSI C.

IGE–332 41

value of the function:
int 32 error code equal to zero if the execution of the calculation module is

successful. Equal to the error code otherwise.

In the following example, function clemod c() is used to call a calculation module of the GANLIB.
A LCM object containing a Macrolib is first created by importing its information from an existing ascii

file named Macrolib. Module UTL: is called with this read-only Macrolib as unique parameter:

#include <string.h>

#include "cle2000.h"

#define maxent 64 /* maximum number of module arguments */

main()

{

int_32 ganmod();

char hentry[maxent][13], hparam[maxent][73];

int_32 ier, nentry, ientry[maxent], jentry[maxent];

lcm * my_lcm, *kentry[maxent];

FILE *filein;

/* create the LCM object containing a Macrolib */

filein = fopen("Macrolib", "r");

lcmop_c(&my_lcm, "MACRO", 0, 1, 99);

lcmexp_c(&my_lcm, 99, filein, 2, 2);

fclose(filein);

/* create a file containing the UTL: data */

filein = fopen("UTLdata", "r");

/* construct the parameter */

nentry = 1 ;

strcpy(hentry[0], "MACRO"); strcpy(hparam[0], "MACRO"); ientry[0]=1; jentry[0]=2;

kentry[0]=my_lcm;

/* execute the module */

ier = clemod_c("UTL:", filein, nentry, hentry, ientry, jentry, kentry, hparam,

&ganmod);

lcmcl_c(&my_lcm, 1);

fclose(filein);

printf("end of execution; ier=%d\n", ier);

}

The ASCII file UTLdata contains the data for module UTL:. Here, it is defined as

DIR STEP UP GROUP

STEP AT 1 DIR STEP DOWN

STEP DOWN ;

4.3 Management of the last-in-first-out (lifo) stack

A last-in-first-out (lifo) stack manage the stored data so that the last data stored in the stack is the
first data removed from the stack. This means that a POP function retrieves the values most recently
stored with a PUSH function. CLE-2000 uses one lifo stack to manage information used within each

IGE–332 42

specific CLE-2000 procedure instance and one lifo stack as dummy parameter list each time a CLE-2000
procedure is called.

In case where a CLE-2000 procedure is called from a multi-physics environment, the parameter in-
formation is first integrated in a lifo stack before calling function cle2000 c(). After execution of the
procedure, output parameter information is recovered from the lifo stack. The lifo stack can contain
LCM (or XSM) objects, files and/or CLE-2000 variables. The lifo stack is constructed as a linked list of
nodes, each node containing a single parameter. Three important rules must be satisfied:

• LCM (or XSM) objects and files must be defined prior to CLE-2000 variables in the lifo stack used
as parameter information.

• LCM (or XSM) objects and files must be closed when included in the lifo stack.

• Output nodes are also included in the lifo stack before calling function cle2000 c(), but with
negative type component and without value component.

The specification of a lifo node is:

typedef struct LIFO_NODE { /* node in last-in-first-out (lifo) stack */

int_32 type; /* type of node: 3= lcm object; 4= xsm file; 5= seq binary;

6= seq ascii; 7= da binary; 8= hdf5 file; 11= integer value;

12= real value; 13= character string; 14= double precision value;

15= logical value */

int_32 access; /* 0=creation mode/1=modification mode/2=read-only mode */

int_32 lparam; /* record length for DA file objects */

union {

int_32 ival; /* integer or logical value */

float_32 fval; /* real value */

double dval; /* double precision value */

lcm *mylcm; /* handle towards a LCM object */

char hval[73]; /* character value */

hid_t myhdf5; /* handle towards a HDF5 file */

} value;

struct LIFO_NODE *daughter; /* address of the daughter node in stack */

char name[13]; /* name of node in the calling script */

char name_daughter[13]; /* name of node in the daughter script */

char OSname[73]; /* physical filename */

} lifo_node ;

IGE–332 43

life node components:
type int 32 type of data in node. = ±3: LCM object; = ±4: XSM file; = ±5:

sequential binary file; = ±6: sequential ascii file; = ±7: direct access
binary file; = ±8: HDF5 file; = ±11: integer CLE-2000 value; = ±12:
real CLE-2000 value; = ±13: character string (null-terminated); =
±14: double precision CLE-2000 value; = ±15: logical CLE-2000
value. A positive value indicates that an input value is provided;
a negative value indicates that no input value is provided so that
the node is empty. Empty nodes are defined to receive calculational
results.

access int 32 access state of data in node. = 0: creation mode; = 1: modification
mode; = 2: read-only mode. This information is used internally in
cle2000 c() function.

lparam int 32 record length (in bytes) for DA file objects. This data is given if and
only if |type| = 7.

value.ival int 32 integer or logical CLE-2000 value. This data is given or is available
at output if and only if type = 11 or = 15.

value.fval float 32 real CLE-2000 value. This data is given or is available at output if
and only if type = 12.

value.hval char[73] character string CLE-2000 value. This data is given or is available at
output if and only if type = 13.

value.dval double double precision CLE-2000 value. This data is given or is available
at output if and only if type = 14.

value.mylcm lcm* LCM object (memory-resident). This data is given or is available at
output if and only if type = 3. The LCM object is closed.

daughter lifo node* address of the daughter node in stack. This information is used by
the lifo utility to construct the linked list of nodes.

name char[13] name of node in the calling script.
name daughter char[13] name of node in the daughter script. This name is used internally in

cle2000 c() function.
OSname char[73] name of node as known by the operating system. In the case of a

LCM object, it is the name given to lcmop c() function. In the case
of a file, it is the operating system name of the file. The LCM object
or file is closed. This data is given if and only if |type| ≤ 10.

The following functions are used to manage the lifo stack.

4.3.1 cleopn

Create an empty lifo stack.

cleopn(my_lifo);

output parameter:
my lifo lifo** address of the empty lifo stack.

value of the function:
void

IGE–332 44

4.3.2 clepop

Remove the “last-in” node from the lifo stack.

clepop(my_lifo);

input parameter:
my lifo lifo** address of the lifo stack.

value of the function:
lifo node* node removed from the lifo stack

4.3.3 clepush

Add a new node in the lifo stack.

clepush(my_lifo, my_node);

input parameters:
my lifo lifo** address of the lifo stack.
my node lifo node* node to add to the lifo stack.

value of the function:
void

4.3.4 clecls

Delete an empty lifo stack.

clecls(my_lifo);

input parameter:
my lifo lifo** address of the empty lifo stack.

value of the function:
int 32 error code. = 0: successful; = −1: the lifo stack is not empty.

4.3.5 clenode

Return the node with name my name. The lifo stack is not modified.

clenode(my_lifo, my_name);

input parameters:
my lifo lifo** address of the lifo stack.
my name char* name of the node. The name is null-terminated.

value of the function:
lifo node* node of name my name or NULL if the node doesn’t exist.

IGE–332 45

4.3.6 clepos

Return the ipos–th node in the stack. The lifo stack is not modified.

clepos(my_lifo, ipos);

input parameters:
my lifo lifo** address of the lifo stack.
ipos int 32 position of the node in the stack.

value of the function:
lifo node* ipos–th node or NULL if the node doesn’t exist.

4.3.7 clelib

Print a table-of-content for the lifo stack.

clelib(my_lifo);

input parameter:
my lifo lifo** address of the lifo stack.

value of the function:
void

4.4 The free-format input reader

The free-format inpsut reader of CLE-2000 is implemented using four functions: redopn c(), redget c(),
redput c() and redcls c(). Only redget c() and redput c() are expected to be used in an application
software.

4.4.1 redopn c

Function redopn c() is called to open the input reader. The general specification of function redopn c()

is

redopn_c(iinp1, iout1, hout1, nrec);

input parameters:
iinp1 kdi file* KDI object containing the CLE-2000 input data, as computed by

clepil() and objpil() functions of CLE-2000.
iout1 FILE* sequential ascii file used to write execution messages. Can be set to

stdout.
hout1 char* name of the sequential ascii file used to write execution messages.
nrec int 32 record index where reading occurs. Can be set to zero at first call. Set

to the value returned by redcls c() at subsequent calls.

value of the function:
void

IGE–332 46

4.4.2 redget c

Function redget c() is called within modules of the application software to recover the module-
specific input data. The general specification of function redget c() is

redget_c(ityp, nitma, flott, text, dflot);

output parameters:
ityp int 32* type of the CLE-2000 variable. A negative value indicates that the vari-

able is to be computed by the application software and returned towards
CLE-2000 using a call to redput c. = ±1: integer type; = ±2: real
(single precision) type; = ±3: string type; = ±4: double precision type;
= ±5: logical type.

nitma int 32* integer input value when ityp = 1 or = 5; number of characters when
ityp = 3.

flott float 32* real input value when ityp = 2.
text char[73] character string input value when ityp = 3.
dflot double 64* double precision input value when ityp = 4.

value of the function:
void

4.4.3 redput c

Function redput c() is called within modules of the application software to make information com-
puted by the module available as CLE-2000 variables to the CLE-2000 procedure. The application
software must first call redget c() and obtain a negative value of ityp. A call to redput c() is next
performed with its first parameter set to −ityp (now, a positive value) and with the corresponding value
of the parameter. The general specification of function redput c() is

redput_c(ityp, nitma, flott, text, dflot);

input parameters:
ityp int 32* type of the CLE-2000 variable. = 1: integer type; = 2: real (single

precision) type; = 3: string type; = 4: double precision type; = 5:
logical type.

nitma int 32* integer output value when ityp = 1 or = 5; number of characters when
ityp = 3.

flott float 32* real output value when ityp = 2.
text char* character string output value when ityp = 3.
dflot double 64* double precision output value when ityp = 4.

value of the function:
void

IGE–332 47

4.4.4 redcls c

Function redcls c() is called to close the input reader. The general specification of function redcls c()

is

redcls_c(iinp1, iout1, hout1, nrec)

output parameters:
iinp1 kdi file** KDI object containing the CLE-2000 input data.
iout1 FILE** sequential ascii file used to write execution messages.
hout1 char[73] name of the sequential ascii file used to write execution messages.
nrec int 32* record index where reading occurs.

value of the function:
void

4.5 Defining built-in constants in CLE-2000

CLE-2000 has pre-defined built-in constants, either with mathematical meaning (e.g., π) or with
physical meaning. Currently, available physical constants are related to reactor physics. In future, one
may want to include more physical constants. Here is the specification of the function available inside
CLE-2000 to define these constants.

4.5.1 clecst

Function dumcst() is an external ANSI C function implementing pre-defined parametric constants.
A standard version is available in the GANLIB with name clecst(). It is specified as

clecst(cparm, ityp, nitma, flott, text, dflot);

input parameter:
cparm char* name of the parametric constant (name starting with $)

output parameters:
ityp int 32* type of the parametric constant (1 ≤ ityp ≤ 5)
nitma int 32* integer value of the parametric constant if ityp = 1; logical value (=1:

true/=-1: false) of the parametric constant if ityp = 5; number of
characters in the string if ityp = 3.

flott float 32* real value of the parametric constant if ityp = 2
text char* character string value of the parametric constant if ityp = 3
dflot double 64* double precision value of the parametric constant if ityp = 4

value of the function:
int 32 error code equal to zero if the execution of clecst() is successful. Equal

to the error code otherwise.

IGE–332 48

5 The ISO Fortran lcm API

The ISO Fortran lcm API is a set of Fortran-2003 wrapper subroutines or functions programmed
around the ANSI-C functions of the lcm API. This implementation is using the C interoperability
capabilities normalized by ISO and available in the Fortran-2003 compilers. All the subroutines and
functions presented in this section are ISO-standard and 64-bit clean.

Each LCM object has a root associative table from which the complete object is constructed.

Any subroutines or functions using the Fortran lcm API must include a USE statement of the form

USE GANLIB

The address of a LCM object is a TYPE(C PTR) variable declared as

TYPE(C_PTR) :: IPLIST

This intrinsic type is defined by the USE GANLIB statement. Very few operations are permitted on C PTR

variables. A C PTR variable can be nullified by writing

IPLIST=C_NULL_PTR

and a C PTR variable can be checked for association with actual data using

IF(C_ASSOCIATED(IPLIST)) THEN

5.1 Opening, closing and validation of LCM objects

5.1.1 LCMOP

Open an LCM object (either memory resident or persistent). Obtain the address of the LCM object
if it is created. Note that CLE-2000 is responsible to perform the calls to LCMOP for the LCM objects
that are used as parameters of a CLE-2000 module. The use of LCMOP is generally restricted to the use
of temporary LCM objects created within a CLE-2000 module.

CALL LCMOP(IPLIST,NAMP,IMP,MEDIUM,IMPX)

input parameters:
IPLIST TYPE(C PTR) address of the LCM object if IMP=1 or imp=2. IPLIST corresponds

to the address of the root associative table.
NAMP CHARACTER*72 name of the LCM object if IMP=0.
IMP INTEGER =0 to create a new LCM object ; =1 to modify an existing LCM

object; =2 to access an existing LCM object in read-only mode.
MEDIUM INTEGER =1 to use a memory-resident LCM object; =2 to use an xsm file

to store the LCM object.
IMPX INTEGER print parameter. Equal to zero to suppress all printings.

output parameters:
IPLIST TYPE(C PTR) address of an LCM object if IMP=0.
NAMP CHARACTER*12 name of the LCM object if IMP=1 or IMP=2.

IGE–332 49

5.1.2 LCMCL

Close an LCM object (either memory resident or persistent). Note that CLE-2000 is responsible to
perform the calls to LCMCL for the LCM objects that are used as parameters of a CLE-2000 module. The
use of LCMCL is generally restricted to the use of temporary LCM objects created within a CLE-2000
module.

A LCM object can only be closed if IPLIST points towards its root directory.

CALL LCMCL(IPLIST,IACT)

input parameters:
IPLIST TYPE(C PTR) address of the LCM object (address of the root directory of the

LCM object).
IACT INTEGER =1 close the LCM object without destroying it; =2 and destroying

it; =3 erase and close the LCM object without destroying it.

output parameter:
IPLIST TYPE(C PTR) IPLIST=0 indicates that the LCM object is closed and destroyed.

A memory-resident LCM object keeps the same address during its
complete existence. A persistent LCM object is associated to an
XSM file and is represented by a different value of IPLIST each
time it is reopened.

5.1.3 LCMVAL

Subroutine to validate a single block of data in a LCM object or the totality of the LCM object,
starting from the address of an associative table. This function has no effect if the object is persistent.
The validation consists to verify the connections between the elements of the LCM object, to verify that
each element of the object is defined and to check for possible memory corruptions. If an error is detected,
the following message is issued:

LCMVAL: BLOCK xxx OF THE TABLE yyy HAS BEEN OVERWRITTEN.

This function is called as

CALL LCMVAL(IPLIST,NAMP)

input parameters:
IPLIST TYPE(C PTR) address of the associative table or of the heterogeneous list.
NAMP CHARACTER*12 name of the block to validate in the associative table. If NAMP=’ ’,

all the blocks in the associative table are verified in a recursive
way.

5.2 Interrogation of LCM objects

The data structures in an LCM object are self-described. It is therefore possible to interrogate them
in order to know their characteristics.

IGE–332 50

type of interrogation
father structure information block

father associative table LCMINF LCMLEN

LCMNXT

heterogeneous list LCMINF LCMLEL

5.2.1 LCMLEN

Subroutine used to recover the length and type of an information block stored in an associative table
(either memory-resident or persistent). The length is the number of elements in a daughter heterogeneous
list or the number of elements in an array of elementary type. If itylcm=3, the length is the number of
character*4 words. As an example, the length required to store an array of character*8 words is twice
its dimension.

CALL LCMLEN(IPLIST,NAMP,ILONG,ITYLCM)

input parameters:
IPLIST TYPE(C PTR) address of the associative table.
NAMP CHARACTER*12 name of the block.

output parameters:
ILONG INTEGER length of the block. =−1 for a daughter associative table; =N

for a daughter heterogeneous list containing N components; =0 if
the block does’t exist.

ITYLCM INTEGER type of information. =0 associative table; =1 32-bit integer; =2
32-bit real; =3 character*4 data; =4 64-bit real; =5 32-bit log-
ical; =6 64-bit complex; =10 heterogeneous list; =99 undefined
(99 is returned if the block does’t exist).

5.2.2 LCMINF

Subroutine used to recover general information about a LCM object.

CALL LCMINF(IPLIST,NAMLCM,NAMMY,EMPTY,ILONG,LCM)

input parameter:
IPLIST TYPE(C PTR) address of the associative table or of the heterogeneous list.

IGE–332 51

output parameters:
NAMLCM CHARACTER*72 name of the LCM object.
NAMMY CHARACTER*12 name of the associative table at address IPLIST. =’/’ if the asso-

ciative table is the root of the LCM object; =’ ’ if the associative
table is an heterogeneous list component.

EMPTY LOGICAL logical variable set to .true. if the associative table is empty or
set to .false. otherwise.

ILONG INTEGER = −1: IPLIST is an associative table; > 0: number of components
in the heterogeneous list IPLIST

LCM LOGICAL logical variable set to .true. if information is memory-resident
or set to .false. if information is persistent (stored in an XSM
file).

5.2.3 LCMNXT

Subroutine used to find the name of the next block of data in an associative table. Use of LCMNXT is
forbidden if the associative table is empty. The order of names is arbitrary. The search cycle indefinitely.

CALL LCMNXT(IPLIST,NAMP)

input parameters:
IPLIST TYPE(C PTR) address of the associative table.
NAMP CHARACTER*12 name of an existing block. NAMP=’ ’ can be used to obtain a first

name to initiate the search.

output parameter:
NAMP CHARACTER*12 name of the next block. A call to XABORT is performed if the

associative table is empty.

5.2.4 LCMLEL

Subroutine used to recover the length and type of an information block stored in an heterogeneous list
(either memory-resident or persistent). The length is the number of elements in a daughter heterogeneous
list or the number of elements in an array of elementary type. If itylcm=3, the length is the number of
character*4 words. As an example, the length required to store an array of character*8 words is twice
its dimension.

CALL LCMLEL(IPLIST,ISET,ILONG,ITYLCM)

input parameters:
IPLIST TYPE(C PTR) address of the heterogeneous list.
ISET INTEGER index of the block in the list. The first element of the list is located

at index 1.

IGE–332 52

output parameters:
ILONG INTEGER length of the block. =0 if the block does’t exist.
ITYLCM INTEGER type of information. =0 associative table; =1 32-bit integer; =2

32-bit real; =3 character*4 data; =4 64-bit real; =5 32-bit log-
ical; =6 64-bit complex; =10 heterogeneous list; =99 undefined
(99 is returned if the block does’t exist); =999 undefined (999 is
returned if index ISET is out of bounds).

5.3 Management of the array of elementary type

Management of the array of elementary type can be performed with copy of the data (LCMPUT, LCMGET,
LCMPDL or LCMGDL) or without copy (LCMPPD, LCMGPD, LCMPPL or LCMGPL).

type of operation
put get

father associative table LCMPUT LCMGET

LCMPPD LCMGPD

heterogeneous list LCMPDL LCMGDL

LCMPPL LCMGPL

5.3.1 LCMGET

Subroutine used to recover an information block (array of elementary type) from an associative table
and to copy this data into memory.

CALL LCMGET(IPLIST,NAMP,DATA)

input parameters:
IPLIST TYPE(C PTR) address of the associative table.
NAMP CHARACTER*12 name of the block to recover. A call to XABORT is performed if the

block does’t exist.

output parameter:
DATA CLASS(*) array of dimension ≥ ILONG in which the block is copied.

Subroutine LCMGET can be used to recover character-string information available in a block of the
LCM object. It is also possible to use subroutine LCMGCD presented in Section 5.7.1. In the following
example, a block is stored in an associative table located at address IPLIST. The block has a name NAMP
and a length equivalent to 5 32-bit words. The information is recovered into the integer array IDATA and
transformed into a character*20 variable named HNAME using an internal WRITE statement:

USE GANLIB

...

CHARACTER NAMP*12,HNAME*20

INTEGER IDATA(5)

TYPE(C_PTR) IPLIST

...

IPLIST=...

NAMP=...

IGE–332 53

CALL LCMGET(IPLIST,NAMP,IDATA)

WRITE(HNAME,’(5A4)’) (IDATA(I),I=1,5)

5.3.2 LCMPUT

Subroutine used to store a block of data (array of elementary type) into an associative table. The
information is copied from memory towards the LCM object. If the block already exists, it is replaced;
otherwise, it is created. This operation cannot be performed into a LCM object open in read-onlymode.

CALL LCMPUT(IPLIST,NAMP,ILONG,ITYLCM,DATA)

input parameters:
IPLIST TYPE(C PTR) address of the associative table.
NAMP CHARACTER*12 name of the block.
ILONG INTEGER length of the block. If the array contains N character*8 words,

ilong must be set to 2×N .
ITYLCM INTEGER type of information. =1 32-bit integer; =2 32-bit real; =3

character*4 data; =4 64-bit real; =5 32-bit logical; =6 64-bit
complex; =99 undefined.

DATA CLASS(*) array of dimension ≥ ILONG to be copied into the LCM object.
Array elements DATA must be initialized before the call to LCMPUT.

Subroutine LCMPUT can be used to store character-string information in an associative table of a LCM
object. It is also possible to use function LCMPCD presented in Section 5.7.2. In the following example, a
character string HNAME is first transformed into an integer array IDATA using an internal READ statement.
This array (block of data) is stored into the LCM object located at address IPLIST, using LCMPUT. The
block has a name NAMP, a length equivalent to 5 32-bit words, and a type equal to 3.

USE GANLIB

...

CHARACTER NAMP*12,HNAME*20

INTEGER IDATA(5)

TYPE(C_PTR) IPLIST

...

IPLIST=...

NAMP=...

READ(HNAME,’(5A4)’) (IDATA(I),I=1,5)

CALL LCMPUT(IPLIST,NAMP,5,3,IDATA)

5.3.3 LCMGPD

Subroutine used to recover the TYPE(C PTR) address of an information block (array of elementary
type) from an associative table, without making a copy of the information. Use of this subroutine must
respect the following rules:

• If the information is modified after the call to LCMGPD, a call to LCMPPD must be performed to
acknowledge the modification.

• The block pointed by IOFSET should never be released using a deallocation function such as RLSARA,
deallocate, etc.

IGE–332 54

• The variable IOFSET must never be copied into another variable.

Non respect of these rules may cause execution failure (core dump, segmentation fault, etc) without
possibility to throw an exception.

Subroutine LCMGPD implements direct pinning on LCM data structures. It represents an advanced
capability of the lcm API and should only be used in situations where the economy of computer resources
is a critical issue. The C PTR address is the ANSI C pointer of a block of information made available into
a Fortran program. If IOFSET is a C PTR address, the useful information is accessed in a Fortran variable
IDATA set using

USE GANLIB

...

TYPE(C_PTR) :: IOFSET

INTEGER, POINTER, DIMENSION(:) :: IDATA

...

CALL LCMGPD(IPLIST,NAMP,IOFSET)

CALL C_F_POINTER(IOFSET,IDATA, (/ ILONG /))

The useful information is therefore accessed in memory locations IDATA(1) to IDATA(ILONG).

A call to LCMGPD doesn’t cause any modification to the LCM object.

CALL LCMGPD(IPLIST,NAMP,IOFSET)

input parameters:
IPLIST TYPE(C PTR) address of the associative table.
NAMP CHARACTER*12 name of the block to recover. A call to XABORT is performed if the

block does’t exist.

output parameter:
IOFSET TYPE(C PTR) C PTR address of the information.

5.3.4 LCMPPD

Subroutine used to store a block of data (array of elementary type) into an associative table without
making a copy of the information. If the block already exists, it is replaced; otherwise, it is created. This
operation cannot be performed into a LCM object open in read-only mode.

If a block named NAMP already exists in the associative table, the address associated with NAMP is
replaced by the new address and the information pointed by the old address is deallocated.

Subroutine LCMPPD implements direct pinning on LCM data structures. It represents an advanced
capability of the lcm API and should only be used in situations where the economy of computer resources
is a critical issue. The memory block stored by LCMPPD must be previously allocated by a call to LCMARA

of the form

IOFSET=LCMARA(JLONG)

where JLONG is the number of 32-bit words required to store the memory block. JLONG is generally equal
to ILONG except if ITYLCM=4 or ITYLCM=6 where JLONG=2*ILONG.

If ITYLCM=1, the useful information is accessed in a Fortran variable IDATA set using a C F POINTER

function:

IGE–332 55

USE GANLIB

...

TYPE(C_PTR) :: IOFSET

INTEGER, POINTER, DIMENSION(:) :: IDATA

...

IOFSET = LCMARA(ILONG)

CALL C_F_POINTER(IOFSET,IDATA, (/ ILONG /))

...

CALL LCMPPD(IPLIST,NAMP,ILONG,ITYLCM,IOFSET)

The useful information is therefore accessed in memory locations IDATA(1) to IDATA(ILONG). There
is no need to declare LCMARA as an external function; this declaration is included in the module set by
the USE GANLIB statement.

CALL LCMPPD(IPLIST,NAMP,ILONG,ITYLCM,IOFSET)

input parameters:
IPLIST TYPE(C PTR) address of the associative table.
NAMP CHARACTER*12 name of the block.
ILONG INTEGER length of the block.
ITYLCM INTEGER type of information. =1 32-bit integer; =2 32-bit real; =3

character*4 data; =4 64-bit real; =5 32-bit logical; =6 64-bit
complex; =99 undefined.

IOFSET TYPE(C PTR) C PTR address of the information. Data elements pointed by
IOFSET must be initialized before the call to LCMPPD.

output parameter:
IOFSET TYPE(C PTR) IOFSET=C NULL PTR to indicate that the information previously

pointed by IOFSET is now managed by LCM.

5.3.5 LCMDEL

Subroutine used to erase an information block or a daughter heterogeneous list stored in a memory-
resident associative table. Subroutine LCMDEL cannot be used with persistent LCM objects.

CALL LCMDEL(IPLIST,NAMP)

input parameters:
IPLIST TYPE(C PTR) address of the associative table.
NAMP CHARACTER*12 name of the block to erase.

5.3.6 LCMGDL

Subroutine used to recover an information block (array of elementary type) from an heterogeneous
list and to copy this data into memory.

CALL LCMGDL(IPLIST,ISET,DATA)

IGE–332 56

input parameters:
IPLIST TYPE(C PTR) address of the heterogeneous list.
ISET INTEGER index of the block in the heterogeneous list. A call to XABORT is

performed if the block does’t exist. The first element of the list is
located at index 1.

output parameter:
DATA CLASS(*) array of dimension ≥ ILONG in which the block is copied.

Subroutine LCMGDL can be used to recover character-string information available in a block of the
LCM object. It is also possible to use subroutine LCMGCL presented in Section 5.7.3. In the following
example, a block is stored in an heterogeneous list located at address IPLIST. The block is located at the
ISET–th position of the heterogeneous list and has a length equivalent to 5 32-bit words. The information
is recovered into the integer array IDATA and transformed into a character*20 variable named HNAME

using an internal WRITE statement:

USE GANLIB

...

CHARACTER HNAME*20

INTEGER IDATA(5)

TYPE(C_PTR) IPLIST

...

IPLIST=...

ISET=...

CALL LCMGDL(IPLIST,ISET,IDATA)

WRITE(HNAME,’(5A4)’) (IDATA(I),I=1,5)

5.3.7 LCMPDL

Subroutine used to store a block of data (array of elementary type) into an heterogeneous list. The
information is copied from memory towards the LCM object. If the block already exists, it is replaced;
otherwise, it is created. This operation cannot be performed into a LCM object open in read-onlymode.

CALL LCMPDL(IPLIST,ISET,ILONG,ITYLCM,DATA)

input parameters:
IPLIST TYPE(C PTR) address of the heterogeneous list.
ISET INTEGER index of the block in the list. The first element of the list is located

at index 1.
ILONG INTEGER length of the block. If the array contains N character*8 words,

ILONG must be set to 2×N
ITYLCM INTEGER type of information. =1 32-bit integer; =2 32-bit real; =3

character*4 data; =4 64-bit real; =5 32-bit logical; =6 64-bit
complex; =99 undefined.

DATA CLASS(*) array of dimension ≥ ILONG to be copied into the LCM object.
Array elements DATA must be initialized before the call to LCMPDL.

Subroutine LCMPDL can be used to store character-string information into an heterogeneous list of a
LCM object. In the following example, a character string HNAME is first transformed into an integer array

IGE–332 57

IDATA using an internal READ statement. This array (block of data) is stored into the LCM object located
at address IPLIST, using LCMPDL . The block is located at the ISET–th position of the heterogeneous list,
has a length equivalent to 5 32-bit words, and a type equal to 3.

USE GANLIB

...

CHARACTER HNAME*20

INTEGER IDATA(5)

TYPE(C_PTR) IPLIST

...

IPLIST=...

ISET=...

READ(HNAME,’(5A4)’) (IDATA(I),I=1,5)

CALL LCMPDL(IPLIST,ISET,5,3,IDATA)

5.3.8 LCMGPL

Subroutine used to recover the TYPE(C PTR) address of an information block (array of elementary
type) from an heterogeneous list, without making a copy of the information. Use of this subroutine must
respect the following rules:

• If the information is modified after the call to LCMGPL, a call to LCMPPL must be performed to
acknowledge the modification.

• The block pointed by IOFSET should never be released using a deallocation function such as RLSARA,
deallocate, etc.

• The variable IOFSET must never be copied into another variable.

Non respect of these rules may cause execution failure (core dump, segmentation fault, etc) without
possibility to throw an exception.

Subroutine LCMGPL implements direct pinning on LCM data structures. It represents an advanced
capability of the lcm API and should only be used in situations where the economy of computer resources
is a critical issue. The C PTR address is the ANSI C pointer of a block of information made available into
a Fortran program. If IOFSET is a C PTR address, the useful information is accessed in a Fortran variable
IDATA set using

USE GANLIB

...

TYPE(C_PTR) :: IOFSET

INTEGER, POINTER, DIMENSION(:) :: IDATA

...

CALL LCMGPL(IPLIST,ISET,IOFSET)

CALL C_F_POINTER(IOFSET,IDATA, (/ ILONG /))

The useful information is therefore accessed in memory locations IDATA(1) to IDATA(ILONG).

A call to LCMGPL doesn’t cause any modification to the LCM object.

CALL LCMGPL(IPLIST,ISET,IOFSET)

IGE–332 58

input parameters:
IPLIST TYPE(C PTR) address of the heterogeneous list.
ISET INTEGER index of the block in the list. A call to XABORT is performed if the

block does’t exist. The first element of the list is located at index
1.

output parameter:
IOFSET TYPE(C PTR) C PTR address of the information.

5.3.9 LCMPPL

Subroutine used to store a block of data (array of elementary type) into an heterogeneous list without
making a copy of the information. If the block already exists, it is replaced; otherwise, it is created. This
operation cannot be performed into a LCM object open in read-only mode.

If the ISET-th component of the heterogeneous list already exists, the address associated with this
component is replaced by the new address and the information pointed by the old address is deallocated.

Subroutine LCMPPL implements direct pinning on LCM data structures. It represents an advanced
capability of the lcm API and should only be used in situations where the economy of computer resources
is a critical issue. The memory block stored by LCMPPL must be previously allocated by a call to LCMARA

of the form

IOFSET=LCMARA(JLONG)

where JLONG is the number of 32-bit words required to store the memory block. JLONG is generally equal
to ILONG except if ITYLCM=4 or ITYLCM=6 where JLONG=2*ILONG.

If ITYLCM=1, the useful information is accessed in a Fortran variable IDATA set using a C F POINTER

function:

USE GANLIB

...

TYPE(C_PTR) :: IOFSET

INTEGER, POINTER, DIMENSION(:) :: IDATA

...

IOFSET = LCMARA(ILONG)

CALL C_F_POINTER(IOFSET,IDATA, (/ ILONG /))

...

CALL LCMPPL(IPLIST,ISET,ILONG,ITYLCM,IOFSET)

The useful information is therefore accessed in memory locations IDATA(1) to IDATA(ILONG). There
is no need to declare LCMARA as an external function; this declaration is included in the module set by
the USE GANLIB statement.

CALL LCMPPL(IPLIST,ISET,ILONG,ITYLCM,IOFSET)

IGE–332 59

input parameters:
IPLIST TYPE(C PTR) address of the heterogeneous list.
ISET INTEGER index of the block in the list. The first element of the list is located

at index 1.
ILONG INTEGER length of the block.
ITYLCM INTEGER type of information. =1 32-bit integer; =2 32-bit real; =3

character*4 data; =4 64-bit real; =5 32-bit logical; =6 64-bit
complex; =99 undefined.

IOFSET TYPE(C PTR) C PTR address of the information. Data elements pointed by
IOFSET must be initialized before the call to LCMPPL.

output parameter:
IOFSET INTEGER IOFSET=C NULL PTR to indicate that the information previously

pointed by IOFSET is now managed by LCM.

5.4 Management of the associative tables and of the heterogeneous lists

These functions permit to create (LCMSIX, LCMDID, LCMDIL, LCMLID, LCMLIL) or to access (LCMSIX,
LCMGID, LCMGIL) daughter associative tables or daughter heterogeneous lists. There is no need to declare
these functions as external functions; this declaration is included in the module set by the USE GANLIB

statement. Use of these functions is summarized in the following table:

daughter
associative table heterogeneous list

father associative table LCMDID LCMLID

LCMGID LCMGID

heterogeneous list LCMDIL LCMLIL

LCMGIL LCMGIL

5.4.1 LCMDID

Function used to create or access a daughter associative table included into a father associative table.
This operation cannot be performed in a LCM object open in read-only mode.

The daughter associative table is created if it doesn’t already exist. Otherwise, the existing daughter
associative table is accessed. In the latter case, it is recommended to use function LCMGID which is faster
for a simple access and which can be used with LCM object open in read-only mode.

JPLIST=LCMDID(IPLIST,NAMP)

input parameters:
IPLIST TYPE(C PTR) address of the father associative table.
NAMP CHARACTER*12 name of the daughter associative table.

output parameter:
JPLIST TYPE(C PTR) address of the daughter associative table.

IGE–332 60

5.4.2 LCMLID

Function used to create or access a daughter heterogeneous list included into a father associative table.
This operation cannot be performed in a LCM object open in read-only mode.

In the following example, a daughter heterogeneous list is created as a block LIST into a father
associative table. The heterogeneous list contains 5 components. A block of data is stored in each
component of the heterogeneous list using LCMPDL:

USE GANLIB

...

TYPE(C_PTR) :: IPLIST, JPLIST

...

JPLIST=LCMLID(IPLIST,’LIST’,5)

DO I=1,5

CALL LCMPDL(JPLIST,I,...

...

ENDDO

The heterogeneous list capability is implemented through calls to function LCMLID. Such a call permit
the following possibilities:

• the heterogeneous list is created if it doesn’t already exist.

• the heterogeneous list is accessed if it already exists and if its length is unchanged. In this case, it
is recommended to use function LCMGID which is faster for a simple access and which can be used
with LCM object open in read-only mode.

• the heterogeneous list is enlarged (components are added) if it already exists and if the new length
is larger than the preceding one.

JPLIST=LCMLID(IPLIST,NAMP,ILONG)

input parameters:
IPLIST TYPE(C PTR) address of the father associative table.
NAMP CHARACTER*12 name of the daughter heterogeneous list.
ILONG INTEGER number of components in the daughter heterogeneous list.

output parameter:
JPLIST INTEGER address of the daughter heterogeneous list named NAMP.

5.4.3 LCMLIL

Function used to create or access a daughter heterogeneous list included into a father heterogeneous
list. This operation cannot be performed in a LCM object open in read-only mode.

In the following example, a daughter heterogeneous list is created as 77-th component of a father
heterogeneous list. The heterogeneous list contains 5 components. A block of data is stored in each
component of the heterogeneous list using LCMPDL:

USE GANLIB

...

IGE–332 61

TYPE(C_PTR) :: IPLIST, JPLIST

...

JPLIST=LCMLIL(IPLIST,77,5)

DO I=1,5

CALL LCMPDL(JPLIST,I,...

...

ENDDO

The heterogeneous list capability is implemented through calls to function LCMLIL. Such a call permit
the following possibilities:

• the heterogeneous list is created if it doesn’t already exist.

• the heterogeneous list is accessed if it already exists and if its length is unchanged. In this case, it
is recommended to use function LCMGIL which is faster for a simple access and which can be used
with LCM object open in read-only mode.

• the heterogeneous list is enlarged (components are added) if it already exists and if the new length
is larger than the preceding one.

JPLIST=LCMLIL(IPLIST,ISET,ILONG)

input parameters:
IPLIST TYPE(C PTR) address of the father heterogeneous list.
ISET INTEGER index of the daughter heterogeneous list in the father heteroge-

neous list. The first element of the list is located at index 1.
ILONG INTEGER number of components in the daughter heterogeneous list.

output parameter:
JPLIST TYPE(C PTR) address of the daughter heterogeneous list.

5.4.4 LCMDIL

Function used to create or access a daughter associative table included into a father heterogeneous
list. This operation cannot be performed in a LCM object open in read-only mode.

The daughter associative table is created if it doesn’t already exist. Otherwise, the existing daughter
associative table is accessed. In the latter case, it is recommended to use function LCMGIL which is faster
for a simple access and which can be used with LCM object open in read-only mode.

It is a good programming practice to replace a set of N distinct associative tables by a list made of
N associative tables, as depicted in Figure 2.

In the example of Figure 3, a set of 5 associative tables, created by LCMDID:

USE GANLIB

...

TYPE(C_PTR) :: IPLIST, JPLIST

CHARACTER HDIR*12

...

DO I=1,5

WRITE(HDIR,’(5HGROUP,I3,4H/ 5)’) I

JPLIST=LCMDID(IPLIST,HDIR)

IGE–332 62

'SIGNATURE'

'GROUP 1/ 5'

'GROUP 2/ 5'

'GROUP 3/ 5'

'GROUP 4/ 5'

'GROUP 5/ 5'

'K-EFFECTIVE'

'SIGNATURE'

'K-EFFECTIVE'

'GROUP' (5)

Set of associative tables List of associative tables

Figure 3: A list of associative tables.

CALL LCMPUT(JPLIST,...

...

ENDDO

are replaced by a list of 5 associative tables, created by LCMLID and LCMDIL:

USE GANLIB

...

TYPE(C_PTR) :: IPLIST, JPLIST, KPLIST

...

JPLIST=LCMLID(IPLIST,’GROUP’,5)

DO I=1,5

KPLIST=LCMDIL(JPLIST,I)

CALL LCMPUT(KPLIST,...

...

ENDDO

The capability to include associative tables into an heterogeneous list is implemented using the LCMDIL
function:

JPLIST=LCMDIL(IPLIST,ISET)

input parameters:
IPLIST TYPE(C PTR) address of the father heterogeneous list.
ISET INTEGER index of the daughter associative table in the father heterogeneous

list. The first element of the list is located at index 1.

output parameter:
JPLIST TYPE(C PTR) address of the daughter associative table.

5.4.5 LCMGID

Function used to access a daughter associative table or heterogeneous list included into a father
associative table.

IGE–332 63

JPLIST=LCMGID(IPLIST,NAMP)

input parameters:
IPLIST TYPE(C PTR) address of the father associative table.
NAMP CHARACTER*12 name of the daughter associative table or heterogeneous list.

output parameter:
JPLIST TYPE(C PTR) address of the daughter associative table or heterogeneous list. A

call to XABORT is performed if this daughter doesn’t extst.

5.4.6 LCMGIL

Function used to access a daughter associative table or heterogeneous list included into a father
heterogeneous list.

JPLIST=LCMGIL(IPLIST,ISET)

input parameters:
IPLIST TYPE(C PTR) address of the father heterogeneous list.
ISET INTEGER index of the daughter associative table or heterogeneous list in the

father heterogeneous list. The first element of the list is located
at index 1.

output parameter:
JPLIST TYPE(C PTR) address of the daughter associative table or heterogeneous list. A

call to XABORT is performed if this daughter doesn’t extst.

5.4.7 LCMSIX

Function used to move across the hierarchical structure of a LCM object made of associative tables.
Using this function, there is no need to remember the names of the father (grand-father, etc.) associative
tables. If a daughter associative table doesn’t exist and if the LCM object is open on creation or
modification mode, the daughter associative table is created. A daughter associative table cannot be
created if the LCM object is open in read-only mode.

Function LCMSIX is deprecated, as LCMDID offers a more elegant way to perform the same operation.
However, LCMSIX is kept available in the lcm API for historical reasons.

CALL LCMSIX(IPLIST,NAMP,IACT)

input parameters:
IPLIST TYPE(C PTR) address of the associative table before the call to LCMSIX.
NAMP CHARACTER*12 name of the daughter associative table if iact=1. This parameter

is not used if iact=0 or iact=2.
IACT INTEGER type of move: =0 return towards the root directory of the LCM

object; =1 move towards the daughter associative table (create it
if it doesn’t exist); =2 return towards the father associative table.

IGE–332 64

output parameter:
IPLIST TYPE(C PTR) address of the associative table after the call to LCMSIX.

5.5 LCM utility functions

5.5.1 LCMLIB

Function used to print (towards stdout) the content of the active directory of an associative table or
heterogeneous list.

CALL LCMLIB(IPLIST)

input parameter:
IPLIST TYPE(C PTR) address of the associative table or of the heterogeneous list.

5.5.2 LCMEQU

Function used to perform a deep-copy of the information contained in an associative table (address
IPLIS1) towards another associative table (address IPLIS2). Note that the second associative table
(address IPLIS2) is modified but not created by LCMEQU.

CALL LCMEQU(IPLIS1,IPLIS2)

input parameter:
IPLIS1 TYPE(C PTR) address of the existing associative table or of the heterogeneous

list (accessed in read-only mode).

output parameter:
IPLIS2 TYPE(C PTR) address of the associative table or of the heterogeneous list, mod-

ified by LCMEQU.

5.5.3 LCMEXP

Function used to export (or import) the content of an associative table towards (or from) a sequential
file. The sequential file can be in binary or ascii format.

The export of information starts from the active directoty. Note that LCMEQU is basically a serial-
ization algorithm based on the contour algorithm.

CALL LCMEXP(IPLIST,IMPX,NUNIT,IMODE,IDIR)

IGE–332 65

input parameters:
IPLIST TYPE(C PTR) address of the associative table or of the heterogeneous list to be

exported (or imported).
IMPX INTEGER print parameter (equal to 0 for no print).
NUNIT INTEGER unit number of the sequential file.
IMODE INTEGER =1 binary sequential file; =2 ascii sequential file.
IDIR INTEGER =1 to export; =2 to import.

5.6 Using fixed-length character arrays

The following subroutines are implemented using the LCM Fortran API of the preceding sections.
They permit the use of fixed-length character arrays. They reproduce an existing capability of the
GANLIB4 API.

type of operation
put get

father associative table LCMPTC LCMGTC

heterogeneous list LCMPLC LCMGLC

5.6.1 LCMGTC

Subroutine used to recover a character array from a block of data stored in an associative table.

CALL LCMGTC(IPLIST,NAMP,LENG,NLIN,HDATA)

input parameters:
IPLIST TYPE(C PTR) address of the associative table.
NAMP CHARACTER*12 name of the character array to recover. A call to XABORT is per-

formed if the block does’t exist.
LENG INTEGER length of each character variable in the array HDATA.
NLIN INTEGER dimension of array HDATA.

output parameter:
HDATA CHARACTER*(*)(*) character array of dimension ≥ NLIN in which the character

information is to be copied

5.6.2 LCMPTC

Subroutine used to store a character array into a block of data stored in an associative table. If the
block of data already exists, it is updated; otherwise, it is created. This operation cannot be performed
in a LCM object open in read-only mode.

CALL LCMPTC(IPLIST,NAMP,LENG,NLIN,HDATA)

IGE–332 66

input parameters:
IPLIST TYPE(C PTR) address of the associative table.
NAMP CHARACTER*12 name of the character array to store.
LENG INTEGER length of each character variable in the array HDATA.
NLIN INTEGER dimension of array HDATA.
HDATA CHARACTER*(*)(*) character array of dimension ≥ NLIN from which the character

information is recovered.

Example:

USE GANLIB

...

TYPE(C_PTR) :: IPLIST

PARAMETER (ILONG=5)

CHARACTER*8 HDATA1(ILONG),HDATA2(ILONG)

*

CALL LCMOP(IPLIST,’mon_dict’,0,1,2)

*

* STORE THE INFORMATION.

HDATA1(1)=’string1’

HDATA1(2)=’string2’

HDATA1(3)=’string3’

HDATA1(4)=’string4’

HDATA1(5)=’string5’

CALL LCMPTC(IPLIST,’node1’,8,ILONG,HDATA1)

*

* RECOVER THE INFORMATION.

CALL LCMGTC(IPLIST,’node1’,8,ILONG,HDATA2)

DO I=1,ILONG

PRINT *,’I=’,I,’ RECOVER HDATA2 -->’,HDATA2(I),’<--’

ENDDO

*

CALL LCMCL(IPLIST,2)

5.6.3 LCMGLC

Subroutine used to recover a character array from a block of data stored in an heterogeneous list.

CALL LCMGLC(IPLIST,ISET,LENG,NLIN,HDATA)

input parameters:
IPLIST TYPE(C PTR) address of the associative table.
ISET INTEGER index of the block in the list. The first element of the list is located

at index 1.
LENG INTEGER length of each character variable in the array HDATA.
NLIN INTEGER dimension of array HDATA.

output parameter:
HDATA CHARACTER*(*)(*) character array of dimension ≥ NLIN in which the character

information is to be copied

IGE–332 67

5.6.4 LCMPLC

Subroutine used to store a character array into a block of data stored in an heterogeneous list. If the
block of data already exists, it is updated; otherwise, it is created. This operation cannot be performed
in a LCM object open in read-only mode.

CALL LCMPLC(IPLIST,USET,LENG,NLIN,HDATA)

input parameters:
IPLIST TYPE(C PTR) address of the associative table.
ISET INTEGER index of the block in the list. The first element of the list is

located at index 1.
LENG INTEGER length of each character variable in the array HDATA.
NLIN INTEGER dimension of array HDATA.
HDATA CHARACTER*(*)(*) character array of dimension ≥ NLIN from which the character

information is recovered.

Example:

USE GANLIB

...

TYPE(C_PTR) :: IPLIST

PARAMETER (ILONG=5)

CHARACTER*8 HDATA1(ILONG),HDATA2(ILONG)

*

CALL LCMOP(IPLIST,’mon_dict’,0,1,2)

*

* STORE THE INFORMATION.

HDATA1(1)=’string1’

HDATA1(2)=’string2’

HDATA1(3)=’string3’

HDATA1(4)=’string4’

HDATA1(5)=’string5’

CALL LCMPLC(IPLIST,1,8,ILONG,HDATA1)

*

* RECOVER THE INFORMATION.

CALL LCMGLC(IPLIST,1,8,ILONG,HDATA2)

DO I=1,ILONG

PRINT *,’I=’,I,’ RECOVER HDATA2 -->’,HDATA2(I),’<--’

ENDDO

*

CALL LCMCL(IPLIST,2)

5.7 Using variable-length character arrays

The following subroutines are implemented using the LCM Fortran API of the preceding sections.
They permit the use of variable-length character arrays. They represent a new capability of the GANLIB5
API.

type of operation
put get

father associative table LCMPCD LCMGCD

heterogeneous list LCMPCL LCMGCL

IGE–332 68

5.7.1 LCMGCD

Function used to recover a character array from a block of data stored in an associative table.

CALL LCMGCD(IPLIST,NAMP,ILONG,HDATA)

input parameters:
IPLIST TYPE(C PTR) address of the associative table.
NAMP CHARACTER*12 name of the character array to recover. A call to XABORT is per-

formed if the block does’t exist.
ILONG INTEGER number of components in the character array.

output parameter:
HDATA CHARACTER*(*)(*) character array of dimension ≥ ILONG in which the character

information is to be copied

5.7.2 LCMPCD

Subroutine used to store a character array into a block of data stored in an associative table. If the
block of data already exists, it is updated; otherwise, it is created. This operation cannot be performed
in a LCM object open in read-only mode.

CALL LCMPCD(IPLIST,NAMP,ILONG,HDATA)

input parameters:
IPLIST TYPE(C PTR) address of the associative table.
NAMP CHARACTER*12 name of the character array to store.
ILONG INTEGER number of components in the character array.
HDATA CHARACTER*(*)(*) character array of dimension ≥ ILONG from which the character

information is recovered.

Example:

USE GANLIB

...

TYPE(C_PTR) :: IPLIST

PARAMETER (ILONG=5)

CHARACTER*16 HDATA1(ILONG),HDATA2(ILONG)

*

CALL LCMOP(IPLIST,’mon_dict’,0,1,2)

*

* STORE THE INFORMATION.

HDATA1(1)=’string1’

HDATA1(2)=’ string2’

HDATA1(3)=’ string3’

HDATA1(4)=’ string4’

HDATA1(5)=’ string5’

CALL LCMPCD(IPLIST,’node1’,ILONG,HDATA1)

*

IGE–332 69

* RECOVER THE INFORMATION.

CALL LCMGCD(IPLIST,’node1’,ILONG,HDATA2)

DO I=1,ILONG

PRINT *,’I=’,I,’ RECOVER HDATA2 -->’,HDATA2(I),’<--’

ENDDO

*

CALL LCMCL(IPLIST,2)

5.7.3 LCMGCL

Subroutine used to recover a character array from a block of data stored in an heterogeneous list.

CALL LCMGCL(IPLIST,ISET,ILONG,HDATA)

input parameters:
IPLIST TYPE(C PTR) address of the heterogeneous list.
ISET INTEGER index of the character array in the heterogeneous list. A call to

XABORT is performed if the component doesn’t exist. The first
element of the list is located at index 1.

ILONG INTEGER number of components in the character array.

output parameter:
HDATA CHARACTER*(*)(*) character array of dimension ≥ ILONG in which the character

information is to be copied

5.7.4 LCMPCL

Subroutine used to store a character array into a block of data stored in an heterogeneous list. If the
block of data already exists, it is updated; otherwise, it is created. This operation cannot be performed
in a LCM object open in read-only mode.

CALL LCMPCL(IPLIST,ISET,ILONG,HDATA)

input parameters:
IPLIST TYPE(C PTR) address of the heterogeneous list.
ISET INTEGER index of the character array in the heterogeneous list. The first

element of the list is located at index 1.
ILONG INTEGER number of components in the character array .
HDATA CHARACTER*(*)(*) character array of dimension ≥ ILONG from which the character

information is recovered.

Example:

USE GANLIB

...

TYPE(C_PTR) :: IPLIST, JPLIST

PARAMETER (ILONG=5)

CHARACTER*16 HDATA1(ILONG),HDATA2(ILONG)

IGE–332 70

*

CALL LCMOP(IPLIST,’mon_dict’,0,1,2)

*

* CREATE THE LIST.

JPLIST=LCMLID(IPLIST,’node2’,77)

*

* STORE THE INFORMATION.

HDATA1(1)=’string1’

HDATA1(2)=’ string2’

HDATA1(3)=’ string3’

HDATA1(4)=’ string4’

HDATA1(5)=’ string5’

CALL LCMPCL(JPLIST,1,ILONG,HDATA1)

*

* RECOVER THE INFORMATION.

CALL LCMGCL(JPLIST,1,ILONG,HDATA2)

DO I=1,ILONG

PRINT *,’I=’,I,’ RECOVER HDATA2 -->’,HDATA2(I),’<--’

ENDDO

*

CALL LCMCL(IPLIST,2)

5.8 Dynamic allocation of an elementary blocks of data in ANSI C

A function LCMARA() and a subroutine LCMDRD() are available as wrappers to memory allocator
setara c and memory deallocator rlsara c introduced in Sects. 2.8.1 and 2.8.2. LCLARA() and LCMDRD()

offer an alternative to the Fortran-90 ALLOCATE and DEALLOCATE capabilities for exceptional situations
involving pinning towards LCM internal data. Use of LCLARA() and LCMDRD() is 64-bit clean and Fortran-
2003 compliant, but its use must be avoided as much as possible. A setara address is a malloc pointer,
as defined in ANSI-C.

5.8.1 LCMARA

LCMARA() is a Fortran-2003 wrapper for the ANSI-C function setara c introduced in Sect. 2.8.1. This
function perform a memory allocation and returns a TYPE(C PTR) pointer variable.

IDATA_PTR=LCMARA(ILONG)

input parameter:
ILONG INTEGER length of the data array (in single-precision words).

output parameter:
IDATA PTR TYPE(C PTR) setara address of the data array.

5.8.2 LCMDRD

LCMDRD() is a Fortran-2003 wrapper for the ANSI-C function rlsara c introduced in Sect. 2.8.2. This
subroutine deallocate the memory corresponding to a TYPE(C PTR) pointer variable.

IGE–332 71

CALL LCMDRD(IDATA_PTR)

input parameter:
IDATA PTR TYPE(C PTR) setara address of the data array.

Example:

USE GANLIB

...

TYPE(C_PTR) :: IDATA_PTR

INTEGER, POINTER, DIMENSION(:) :: IDATA

...

IDATA_PTR=LCMARA(50)

CALL C_F_POINTER(IDATA_PTR,IDATA,(/ 50 /))

DO I=1,50

IDATA(I)=...

ENDDO

...

CALL LCMDRD(IDATA_PTR)

5.9 Abnormal termination of the execution

5.9.1 XABORT

Subroutine used to cause the program termination. A message describing the conditions of the
termination is printed.

It is important to use this subroutine to abort a program instead of using the STOP statement of
Fortran. The XABORT subroutine can be used to implement exception treatment in situations where the
application software is driven by a multi-physics system.

If an abnormal termination occurs, the XABORT subroutine is called as

CALL XABORT(’SUB001: EXECUTION FAILURE.’)

CALL XABORT(HSMG)

input parameter:
HSMG CHARACTER*(*) message describing the conditions of the abnormal termination.

value of the function:
void

IGE–332 72

6 The ISO Fortran hdf5 API

The ISO Fortran hdf5 API is a set of Fortran-2003 wrapper subroutines or functions programmed
around the ANSI-C functions of the hdf5 API presented in Sect. 3. This implementation is using the
C interoperability capabilities normalized by ISO and available in the Fortran-2003 compilers. All the
subroutines and functions presented in this section are ISO-standard and 64-bit clean.

Any subroutines or functions using the Fortran hdf5 API must include a USE statement of the form

use hdf5_wrap

The address of a HDF5 file is a TYPE(C PTR) variable declared as

type(c_ptr) :: ifile

6.1 Opening and closing of HDF5 files

6.1.1 hdf5 open file

Open a HDF5 file.

call hdf5_open_file(fname, ifile, rdonly)

input parameters:
fname character*1023 name of the HDF5 file.
rdonly logical =.true. to access an existing HDF5 file in read-only mode. Op-

tional argument. By default, the HDF5 file is accessed in read-
write mode.

output parameters:
ifile type(c ptr) address of the HDF5 file.

6.1.2 hdf5 close file

Close a HDF5 file.

call hdf5_close_file(ifile)

input parameters:
ifile type(c ptr) address of the HDF5 file.

6.2 Interrogation of HDF5 files

The data structures in a HDF5 file are self-described. It is therefore possible to interrogate them in
order to know their characteristics.

IGE–332 73

6.2.1 hdf5 list

List the root table of contents of a group on the standard output. The name of a group can include
one or many path separators (character /) to list different hierarchical levels.

call hdf5_list(ifile, name)

input parameters:
ifile type(c ptr) address of the HDF5 file.
name character*1023 name of a group.

6.2.2 hdf5 info

Find dataset information.

call hdf5_info(ifile, name, rank, type, nbyte, dimsr)

input parameters:
ifile type(c ptr) address of the HDF5 file.
name character*1023 name of a dataset.

output parameters:
rank integer rank (number of dimensions) of dataset.
type integer type of dataset: =1 32-bit integer; =2 32-bit real; =3 character

data; =4 64-bit real.
nbyte integer number of bytes in each component of the dataset.
dimsr integer(*) integer array containing the dimension of dataset. rank values are

provided.

6.2.3 hdf5 get dimensions

Find the rank (number of dimensions) of a dataset.

rank=hdf5_get_dimensions(ifile, name)

input parameters:
ifile type(c ptr) address of the HDF5 file.
name character*1023 name of a dataset.

output parameters:
rank integer rank of the dataset.

6.2.4 hdf5 get shape

Find the shape (dimension array) of a dataset.

IGE–332 74

call hdf5_get_shape(ifile, name, dimsr)

input parameters:
ifile type(c ptr) address of the HDF5 file.
name character*1023 name of a dataset.

output parameters:
dimsr integer(*) integer array containing the dimension of dataset. rank values are

provided.

6.2.5 hdf5 list datasets

Allocate a character array of the correct size and recover character daughter dataset names in a group.

call hdf5_list_datasets(ifile, name, dsets)

input parameters:
ifile type(c ptr) address of the HDF5 file.
name character*1023 name of a dataset.

output parameters:
idata character*1023(:),allocatable list of character names of each daughter dataset.

Example:

use hdf5_wrap

type(c_ptr) :: ifile

character(len=100), allocatable :: list(:)

...

call hdf5_list_datasets(ifile, ’/’, list)

write(*,*) ’dataset table of contents:’

do i = 1, size(list)

write(*,*) trim(list(i))

enddo

deallocate(list)

6.2.6 hdf5 list groups

Allocate a character array of the correct size and recover character daughter group names in a group.

call hdf5_list_groups(ifile, name, dsets)

input parameters:
ifile type(c ptr) address of the HDF5 file.
name character*1023 name of a dataset.

IGE–332 75

output parameters:
idata character*1023(:),allocatable list of character names of each daughter group.

Example:

use hdf5_wrap

type(c_ptr) :: ifile

character(len=100), allocatable :: list(:)

...

call hdf5_list_groups(ifile, ’/’, list)

write(*,*) ’group table of contents:’

do i = 1, size(list)

write(*,*) trim(list(i))

enddo

deallocate(list)

6.2.7 hdf5 group exists

Test for existence of a group.

ierr=hdf5_group_exists(ifile, name)

input parameters:
ifile type(c ptr) address of the HDF5 file.
name character*1023 name of a group.

output parameter:
ierr logical existence flag: =.true. if the group exists.

6.3 Management of groups and datatypes

6.3.1 hdf5 create group

Create a group.

call hdf5_create_group(ifile, name)

input parameters:
ifile type(c ptr) address of the HDF5 file.
name character*1023 name of the group to create.

6.3.2 hdf5 delete

Delete a group or a dataset.

IGE–332 76

call hdf5_delete(ifile, name)

input parameters:
ifile type(c ptr) address of the HDF5 file.
name character*1023 name of the group or dataset to delete.

6.3.3 hdf5 copy

Copy a group or a dataset from one location to another. The source and destination need not be in
the same file.

call hdf5_copy(ifile_s, name_s, ifile_d, name_d)

input parameters:
ifile s type(c ptr) address of the HDF5 source file.
name s character*1023 name of the source group or dataset to copy.

output parameters:
ifile d type(c ptr) address of the HDF5 destination file.
name d character*1023 name of the destination group or dataset to delete.

6.3.4 hdf5 read data

Allocate an array of the correct type and size and copy a dataset from HDF5 file into memory.

call hdf5_read_data(ifile, name, data)

input parameters:
ifile type(c ptr) address of the HDF5 file.
name character*1023 name of a dataset.

output parameters:
data class(:),allocatable array. Note: if the array is replaced by a single integer, real or

characcter variable, this variable has not the allocatable status.

The generic class(:),allocatable data type is selected among the following options:

IGE–332 77

integer :: data

integer, allocatable, dimension(:) :: data

integer, allocatable, dimension(:,:) :: data

real(4) :: data

real(4), allocatable, dimension(:) :: data

real(4), allocatable, dimension(:,:) :: data

real(4), allocatable, dimension(:,:,:) :: data

real(4), allocatable, dimension(:,:,:,:) :: data

real(8) :: data

real(8), allocatable, dimension(:) :: data

real(8), allocatable, dimension(:,:) :: data

real(8), allocatable, dimension(:,:,:) :: data

real(8), allocatable, dimension(:,:,:,:) :: data

character(len=*) :: data

character(len=*), allocatable, dimension(:) :: data

Example 1:

use hdf5_wrap

type(c_ptr) :: ifile

integer :: ncalc

...

call hdf5_read_data(ifile,"NCALS",ncalc)

write(*,*) ’ncalc=’,ncalc

Example 2:

use hdf5_wrap

type(c_ptr) :: ifile

character(len=8), allocatable, dimension(:) :: isoname

...

call hdf5_read_data(ifile,"/explicit/ISONAME",isoname)

write(*,*) ’isotope names:’

do i = 1, size(isoname)

write(*,*) trim(isoname(i))

enddo

deallocate(isoname)

Example 3:

use hdf5_wrap

type(c_ptr) :: ifile

real(8), allocatable, dimension(:,:) :: yields_matrix

...

call hdf5_read_data(ifile,"/physconst/FYIELDS",yields_matrix)

no_fiss=size(yields_matrix,1)

no_fp=size(yields_matrix,2)

write(*,*) ’no_fiss=’,no_fiss,’ no_fp=’,no_fp

deallocate(yields_matrix)

6.3.5 hdf5 write data

Copy an array from memory into a HDF5 dataset

IGE–332 78

call hdf5_write_data(ifile, name, idata)

input parameters:
ifile type(c ptr) address of the HDF5 file.
name character*1023 name of a dataset.
data class(*) array.

The generic class(*) data type is selected among the following options:

integer,intent(in) :: data

integer,dimension(:) :: data

integer,dimension(:,:) :: data

real(4) :: data

real(4),dimension(:) :: data

real(4),dimension(:,:) :: data

real(4),dimension(:,:,:) :: data

real(4),dimension(:,:,:,:) :: data

real(8) :: data

real(8),dimension(:) :: data

real(8),dimension(:,:) :: data

real(8),dimension(:,:,:) :: data

real(8),dimension(:,:,:,:) :: data

character(len=*) :: data

character(len=*), dimension(:) :: data

Example:

use hdf5_wrap

type(c_ptr) :: ifile

integer, allocatable, dimension(:) :: nitmaV1

...

allocate(nitmaV1(10))

nitmaV1(:10)=100

call hdf5_write_data(ifile, ’my_dummy_record’, nitmaV1)

deallocate(nitmaV1)

IGE–332 79

7 The ISO Fortran CLE-2000 API

7.1 Management of Fortran files outside CLE-2000

The KDROPN utility is a general system for managing Fortran files in a software application.

7.1.1 KDROPN

Function used to open a file and allocate its unit number. Allocate a unit number to file name. If
unit is already opened, returns its address. Sequential (formatted or not) and direct access (DA) files are
permitted.

IFILE=KDROPN(CUNAME,IACTIO,IUTYPE,LRDA)

input parameters:
CUNAME CHARACTER*(*) file name. If cuname=’ ’, use a default name.
IACTIO INTEGER action on file. = 0: to allocate a new file; = 1: to access and

modify an existing file; = 2: to access an existing file in read-only

mode.
IUTYPE INTEGER file type. = 1: (not used); = 2: sequential unformatted; = 3:

sequential formatted; = 4: direct access (DA) unformatted file.
LRDA INTEGER number of words in a DA record (used if IUTYPE = 4).

output parameter:
IFILE INTEGER unit number of the allocated file. Equal to the error code if the

allocation failed.

7.1.2 KDRCLS

Function used to close a file and release its unit number.

IER=KDRCLS(IFILE,IACTIO)

input parameters:
IFILE INTEGER unit number of the allocated file (as returned by KDROPN).
IACTIO INTEGER action on file. = 1: to keep the file; = 2: to delete the file.

output parameter:
IER INTEGER error code. Equal to zero if the close is successful.

IGE–332 80

7.2 Management of word-addressable (KDI) files outside CLE-2000

The KDIOP utility is a general system for managing word-addressable (KDI) files in a software appli-
cation.

7.2.1 KDIOP

Function used to open a KDI file and allocate its header.

MY_FILE=KDIOP(CUNAME,IACTIO)

input parameters:
CUNAME CHARACTER*(*) file name.
IACTIO INTEGER action on file. = 0: to allocate a new file; = 1: to access and

modify an existing file; = 2: to access an existing file in read-only

mode.

output parameter:
MY FILE TYPE(C PTR) address of the allocated file. Equal to C NULL PTR if the allocation

failed.

7.2.2 KDIGET

Subroutine used to read a data array from a KDI file at offset IOFSET.

CALL KDIGET(MY_FILE, IDATA, IOFSET, LENGTH)

input parameters:
MY FILE TYPE(C PTR) address of the allocated file (as returned by KDIOP).
IOFSET INTEGER offset of the information in the KDI file.
LENGTH INTEGER length of the array of information, in unit of 32-bit words.

output parameter:
IDATA INTEGER array of information.

7.2.3 KDIPUT

Subroutine used to store a data array in a KDI file at offset IOFSET.

CALL KDIPUT(MY_FILE, IDATA, IOFSET, LENGTH)

input parameters:
MY FILE TYPE(C PTR) address of the allocated file (as returned by KDIOP).
IDATA INTEGER array of information.
IOFSET INTEGER offset of the information in the KDI file.
LENGTH INTEGER length of the array of information, in unit of 32-bit words.

IGE–332 81

7.2.4 KDICL

Function used to close a KDI file.

IER=KDICL(MY_FILE,IACTIO)

input parameters:
MY FILE TYPE(C PTR) address of the allocated file (as returned by KDIOP).
IACTIO INTEGER action on file. = 1: to keep the file; = 2: to delete the file.

output parameter:
IER INTEGER error code. Equal to zero if the close is successful.

7.3 Management of Fortran and KDI files used as CLE-2000 parameters

CLE-2000 allows a module of the application software to exchange information using LCM objects
and files. If the application software is programmed in Fortran, the CLE-2000 driver expects all these
parameters to be TYPE(C PTR) variables. The ISO Fortran CLE-2000 API defines a collection of four
functions to wrap the KDROPN utility in such a way that Fortran files are referred by TYPE(C PTR) variables.

7.3.1 FILOPN

Function used to open a file and allocate its unit number. Allocate a unit number to file name. If
unit is already opened, returns its address. Word addressable (KDI), sequential (formatted or not) and
direct access (DA) files are permitted. This function is a GANLIB wrapper for the KDROPN and KDIOP

utilities.

IFILE=FILOPN(CUNAME,IACTIO,IUTYPE,LRDA)

input parameters:
CUNAME CHARACTER*(*) file name. If cuname=’ ’, use a default name.
IACTIO INTEGER action on file. = 0: to allocate a new file; = 1: to access and

modify an existing file; = 2: to access an existing file in read-only

mode.
IUTYPE INTEGER file type. = 1: KDI word addressable file; = 2: sequential un-

formatted; = 3: sequential formatted; = 4: direct access (DA)
unformatted file.

LRDA INTEGER number of words in a DA record (used if IUTYPE = 4).

output parameter:
IFILE TYPE(FIL file) handle to the allocated file. Equal to C NULL PTR if the allocation

failed.

7.3.2 FILCLS

Function used to close a file and release its unit number. This function is a GANLIB wrapper for the
KDRCLS and KDICL utilities.

IGE–332 82

IER=FILCLS(MY_FILE,IACTIO)

input parameters:
MY FILE TYPE(FIL file) handle to the allocated file (as returned by FILOPN).
IACTIO INTEGER action on file. = 1: to keep the file; = 2: to delete the file.

output parameter:
IER INTEGER error code. Equal to zero if the close is successful.

7.3.3 FILUNIT

Function used to recover the Fortran file unit number

IUNIT=FILUNIT(FILE_PT)

input parameter:
FILE PT TYPE(C PTR) address of the allocated file (c loc(MY FILE), as returned by

FILOPN).

output parameter:
IUNIT INTEGER file unit number. Equal to −1 in case of error.

7.3.4 FILKDI

Function used to recover the address of the KDI file.

KDI_PT=FILKDI(FILE_PT)

input parameter:
FILE PT TYPE(C PTR) address of the allocated file (c loc(MY FILE), as returned by

FILOPN).

output parameter:
KDI PT TYPE(C PTR) address of the KDI file. Equal to C NULL PTR if case of error.

7.4 The main entry point for CLE-2000

Function KERNEL is a Fortran wrapper around function cle2000 c() to serve as the main entry point
for CLE-2000. Function KERNEL is specialized to the case where the application software is executed
in stand-alone mode. It is therefore limited to the simple case where a CLE-2000 procedure has no
parameters and no in-out CLE-2000 variables. Moreover, the main CLE-2000 procedure is recovered
from the standard unit (i.e., from unit 5) and is assumed to have a .x2m suffix. This limitation is making
sense as no multi-physics system is currently programmed in Fortran.

7.4.1 KERNEL

The general specification of function KERNEL is

IGE–332 83

IER=KERNEL(DUMMOD,IPRINT)

input parameters:
DUMMOD EXTERNAL external C-interoperable Fortran-2003 function responsible for dis-

patching the execution among calculation modules.
IPRINT INTEGER print parameter (set to zero for no print).

output parameter:
IER INTEGER error code. Equal to zero if the execution of KERNEL is successful.

7.4.2 DUMMOD

Function KERNEL has one of its arguments that is a developer-defined external function. Function
DUMMOD is a C-interoperable Fortran-2003 function responsible for dispatching the execution among cal-
culation modules. An instance of function DUMMOD is implemented for each Fortran application software
using the GANLIB.

A stand-alone GANLIB application can be set by using the following implementation of GANMOD

!

!---

!

!Purpose:

! Dispatch to a calculation module in GANLIB. ANSI-C interoperable.

!

!Copyright:

! Copyright (C) 2009 Ecole Polytechnique de Montreal

! This library is free software; you can redistribute it and/or

! modify it under the terms of the GNU Lesser General Public

! License as published by the Free Software Foundation; either

! version 2.1 of the License, or (at your option) any later version.

!

!Author(s): A. Hebert

!

!---

!

integer(c_int) function GANMOD(cmodul, nentry, hentry, ientry, jentry, &

kentry, hparam_c) bind(c)

!

use GANLIB

implicit none

!----

! subroutine arguments

!----

character(kind=c_char), dimension(*) :: cmodul

integer(c_int), value :: nentry

character(kind=c_char), dimension(13,*) :: hentry

integer(c_int), dimension(nentry) :: ientry, jentry

type(c_ptr), dimension(nentry) :: kentry

character(kind=c_char), dimension(73,*) :: hparam_c

IGE–332 84

!----

! local variables

!----

integer :: i, ier

character :: hmodul*12, hsmg*131, hparam*72

character(len=12), allocatable :: hentry_f(:)

type(c_ptr) :: my_file

integer, external :: GANDRV

!

allocate(hentry_f(nentry))

call STRFIL(hmodul, cmodul)

do i=1,nentry

call STRFIL(hentry_f(i), hentry(1,i))

if(ientry(i) >= 3) then

! open a Fortran file.

call STRFIL(hparam, hparam_c(1,i))

my_file=FILOPN(hparam,jentry(i),ientry(i)-1,0)

if(.not.c_associated(my_file)) then

write(hsmg,’(29hGANMOD: unable to open file ’’,a12,2h’’.)’) hentry_f(i)

call XABORT(hsmg)

endif

kentry(i)=my_file

endif

enddo

! --

GANMOD=GANDRV(hmodul,nentry,hentry_f,ientry,jentry,kentry)

! --

do i=1,nentry

if(ientry(i) >= 3) then

! close a Fortran file.

ier=FILCLS(kentry(i),1)

if(ier < 0) then

write(hsmg,’(30hGANMOD: unable to close file ’’,a12,2h’’.)’) hentry_f(i)

call XABORT(hsmg)

endif

endif

enddo

deallocate(hentry_f)

flush(6)

return

end function GANMOD

with function GANDRV implemented as

integer function GANDRV(hmodul,nentry,hentry,ientry,jentry,kentry)

!

!---

!

!Purpose:

! standard utility operator driver for Ganlib.

!

!Copyright:

! Copyright (C) 2002 Ecole Polytechnique de Montreal

! This library is free software; you can redistribute it and/or

IGE–332 85

! modify it under the terms of the GNU Lesser General Public

! License as published by the Free Software Foundation; either

! version 2.1 of the License, or (at your option) any later version

!

!Author(s): A. Hebert

!

!Parameters: input/output

! hmodul name of the operator.

! nentry number of LCM objects or files used by the operator.

! hentry name of each LCM object or file.

! ientry type of each LCM object or file:

! =1 LCM memory object; =2 XSM file; =3 sequential binary file;

! =4 sequential ascii file.

! jentry access of each LCM object or file:

! =0 the LCM object or file is created;

! =1 the LCM object or file is open for modifications;

! =2 the LCM object or file is open in read-only mode.

! kentry LCM object address or file unit number.

!

!Parameters: output

! kdrstd completion flag (=0: operator hmodul exists; =1: does not exists).

!

!---

!

!----

! subroutine arguments

!----

use GANLIB

integer nentry

character hmodul*(*),hentry(nentry)*12

integer ientry(nentry),jentry(nentry)

type(c_ptr) kentry(nentry)

!

GANDRV=0

if(hmodul == ’EQU:’)then

! standard equality module.

call DRVEQU(nentry,hentry,ientry,jentry,kentry)

else if(hmodul == ’GREP:’) then

! standard grep module.

call DRVGRP(nentry,hentry,ientry,jentry,kentry)

else if(hmodul == ’UTL:’) then

! standard LCM/XSM utility module.

call DRVUTL(nentry,hentry,ientry,jentry,kentry)

else if(hmodul == ’ADD:’) then

! standard addition module.

call DRVADD(nentry,hentry,ientry,jentry,kentry)

else if(hmodul == ’MPX:’) then

! standard multiplication module.

call DRVMPX(nentry,hentry,ientry,jentry,kentry)

else if(hmodul == ’STAT:’) then

! standard compare module.

call DRVSTA(nentry,hentry,ientry,jentry,kentry)

else if(hmodul == ’BACKUP:’) then

IGE–332 86

! standard backup module.

call DRVBAC(nentry,hentry,ientry,jentry,kentry)

else if(hmodul == ’RECOVER:’) then

! standard recovery module.

call DRVREC(nentry,hentry,ientry,jentry,kentry)

else if(hmodul == ’FIND0:’) then

! standard module to find zero of a continuous function.

call DRV000(nentry,hentry,ientry,jentry,kentry)

else if(hmodul == ’MSTR:’) then

! manage user-defined structures.

call MSTR(nentry,hentry,ientry,jentry,kentry)

else if(hmodul == ’MODUL1:’) then

! user-defined module.

call DRVMO1(nentry,hentry,ientry,jentry,kentry)

else if(hmodul == ’ABORT:’) then

! requested abort.

call XABORT(’GANDRV: requested abort.’)

else

GANDRV=1

endif

return

end function GANDRV

7.5 The free-format input reader

Subroutines REDOPN, REDGET, REDPUT and REDCLS are Fortran wrappers around ANSI C functions
redopn c(), redget c(), redput c() and redcls c(). Only REDGET and REDPUT are expected to be
used in an application software.

7.5.1 REDOPN

Subroutine REDOPN is called to open the input reader. The general specification of function REDOPN is

CALL REDOPN(IINP1,IOUT1,NREC)

input parameters:
IINP1 TYPE(C PTR) KDI object containing the CLE-2000 input data.
IOUT1 INTEGER unit number of the sequential ascii file used to write execution mes-

sages. Can be set to 6 for standard output.
NREC INTEGER record index where reading occurs. Can be set to zero at first call.

Set to the value returned by REDCLS at subsequent calls.

7.5.2 REDGET

Subroutine REDGET is called within modules of the application software to recover the module-specific
input data. The general specification of function REDGET is

IGE–332 87

CALL REDGET(ITYP,NITMA,FLOTT,TEXT,DFLOT)

output parameters:
ITYP INTEGER type of the CLE-2000 variable. A negative value indicates that

the variable is to be computed by the application software and
returned towards CLE-2000 using a call to redput c. = ±1: in-
teger type; = ±2: real (single precision) type; = ±3: string type;
= ±4: double precision type; = ±5: logical type.

NITMA INTEGER integer input value when ITYP = 1 or = 5; number of characters
when ITYP = 3.

FLOTT REAL real input value when ITYP = 2.
TEXT CHARACTER*(*) character string input value when ITYP = 3.
DFLOT DOUBLE PRECI-

SION
double precision input value when ITYP = 4.

7.5.3 REDPUT

Subroutine REDPUT is called within modules of the application software to make information computed
by the module available as CLE-2000 variables to the CLE-2000 procedure. The application software
must first call REDGET and obtain a negative value of ITYP. A call to REDPUT is next performed with its
first parameter set to −ITYP (now, a positive value) and with the corresponding value of the parameter.
The general specification of function REDPUT is

CALL REDPUT(ITYP,NITMA,FLOTT,TEXT,DFLOT)

input parameters:
ITYP INTEGER type of the CLE-2000 variable. = 1: integer type; = 2: real (single

precision) type; = 3: string type; = 4: double precision type; = 5:
logical type.

NITMA INTEGER integer output value when ITYP = 1 or = 5; number of characters
when ITYP = 3.

FLOTT REAL real output value when ITYP = 2.
TEXT CHARACTER*(*) character string output value when ITYP = 3.
DFLOT DOUBLE PRECI-

SION
double precision output value when ITYP = 4.

7.5.4 REDCLS

Subroutine REDCLS is called to close the input reader. The general specification of function REDCLS is

CALL REDCLS(IINP1,IOUT1,NREC)

IGE–332 88

output parameters:
IINP1 TYPE(C PTR) KDI object containing the CLE-2000 input data.
IOUT1 INTEGER unit number of the sequential ascii file used to write execution mes-

sages.
NREC INTEGER record index where reading occurs.

IGE–332 89

8 The Python3 lcm API

The Python3 lcm API, or Pylcm API, is a component of the PyGan library, available in the Version5
distribution. PyGan is a Python3 library made of three classes, as depicted in Fig. 4, so as to encapsulate
Ganlib5 capabilities. The extension module lcm contains a class providing in-out support of hererogeneous
lists and associative tables, as implemented in the lcm API of Sect. 2, to Python3 users.

0..1

lcm

cle2000

lifo

0..*

0..*

Figure 4: The PyGan class model.

Associative tables in Ganlib5 are similar to Python dictionaries and can be handled as such in the
Python3 dataset. Each element of an associative table is associated with a string. Hererogeneous lists
in Ganlib5 are similar to Python lists and therefore are an ordered set of elements. Each list element is
identified by an index and contains an information block. As for the information blocks, they are either

strings, or NumPy arrays.
[7]

A PyLCM object can physically be, either in memory or located on a xsm

file.

LCM Python bindings allow Python to use the API lcm transparently. Associative tables and het-
erogeneous lists are represented as Python dictionaries and Python lists, respectively. The information
blocks in integer and floating point lcm or xsm arrays are automatically transformed into numpy arrays.
Methods of the lcm API have been adapted to manage the use of files.

The compilation and link edition of the API require the definition of a UNIX environment variable
FORTRANPATH pointing towards the libgfortran.a library compatible with your operating system. On
a OSX operating system, this variable may be set as

export FORTRANPATH=/usr/local/lib/gcc/11/ # contains libgfortran.a

On a Linux operating system, the environment variable is set as

export FORTRANPATH=/usr/lib/gcc/x86_64-redhat-linux/4.8.5/ # contains libgfortran.so

8.1 Structures

Associative tables An associative table is equivalent to a Python dictionary. Each element of a table
is an association between a string of 12 characters and an information block (scalar value or vector
of a given type). Associative tables can contain lists or other tables associative and thus form a
tree structure.

Heterogeneous lists A list is an ordered set of elements of heterogeneous types. Each element is
accessed by an integer index and contains an information block. Lists can contain scalar values or
elementary information blocks, as written in the next section. Lists can also contain child lists or
other associative tables.

IGE–332 90

Elementary information blocks An elementary information block constitutes a set of values whose
Dragon5/Donjon5 module needs to perform the calculation. Unlike tables or lists which only allow
you to order information, the elementary information block is the useful data to be used in a
calculation. A block of information is either strings of characters, either numerical arrays (array)
with one dimension (similar to numpy arrays). The elementary blocks of information belong to one
of the following types:

Int array An item of the associative table can correspond to an array of 32-bit integers
(type l from NumPy).

Float32 array An item of the associative table can correspond to an array of 32-bit reals
(type f from NumPy).

Character array An item of the associative table can correspond to an array of of characters
(array of type Char from Python).

Float64 array An item of the associative table can correspond to an array of 64-bit reals
(type d from NumPy)

Logical32 array An item of the associative table can correspond to an array of 32-bit integers
(type i from NumPy containing 1/0 to denote true/false).

Complex32 array An associative table item can correspond to an array of of 64-bit complex
variables (type F from NumPy).

8.2 LCM object Python API

The lcm module, accessible from Python3, is imported by the command

import lcm

It has one constructor: lcm.new(), used to create an object instance o.

8.2.1 Attribute Variables

A PyLCM object o contains six attribute variables. The first five are read-only; o. impx has read-write
access.

o. name Python (len=72) name of the PyLCM object containing the root

o. directory Name (len=12) of the current directory. = ’/’ for the root directory. This attribute
variable is undefined for lists and for files created by lcm.file().

o. long = −1: associative table; ≥ 1: heterogeneous list of length o. long.

o. type Type of the object. = 1: LCM object in memory (similar to a Python dictionary); = 2:
persistent LCM object (of type xsm file); = 3: binary sequential file; = 4: sequential ascii file; =
5: direct access file; = 6: HDF5 file.

o. access Access mode of the object. = 0: closed object (i.e., not accessible); = 1: object in modification
mode; = 2: object in read mode (read-only).

o. impx Edition index for the object (= 0 for minimum printouts).

8.2.2 lcm.new()

This method is used to create a PyLCM object made up of an associative table or of a file. A lcm

object is a memory-resident structure implemented with the lcm API of Sect. 2. A xsm object store

IGE–332 91

similar information in a direct access file and is implemented with the same API. This object occupies
very little memory space and can be used to store very large objects whose maximum dimension is not
limited only by the available disk space. In general, we can always replace a “memory” PyLCM object by
a persistent PyLCM object (at the cost of a certain increase in CPU time). A persistent PyLCM object
can also be used as archiving medium for a “memory” PyLCM object.

This new constructor is used to perform the following actions:

• for creating a new empty PyLCM object;

• for retrieving a file made by a Dragon5/Donjon5 module or to transfer a file to a Dragon5/Donjon5
module. At the end of this call, the variable attribute o. access is equal to 1 or 2. The PyLCM
object thus created does not have the directory and long attributes. It does not own the keys(),
lib(), rep(), lis() and copy() methods;

• to create a PyLCM object containing a memory or persistent LCM object from the serialized
information contained in a sequential file (import action);

• to serialize the content of an existing PyLCM object containing a memory or persistent LCM object
into a sequential file (export action);

• to perform a deep copy of an existing PyLCM object containing a memory or persistent LCM object
into another.

o = lcm.new(type, [name], [iact], [pyobj], [lrda], [impx])

input parameter:
type string type of the PyLCM object that will be created. = LCM object lcm in mem-

ory; = XSM persistent object of type xsm; = BINARY binary sequential file;
= ASCII; sequential file ascii; = DA; direct access file; = HDF5; HDF5 file;
= LCM IMP object lcm in memory built from the file ” ”+ name containing
a serialized PyLCM object or from a deep copy of object pyobj; = XSM INP

persistent object of type xsm built from the file ” ”+ name containing a
serialized PyLCM object or from a deep copy of object pyobj.

name string name (len=72) of the PyLCM object that will be created. By default, a
name is generated automatically from the address of the PyLCM object or
from the name of object pyobj.

iact int access mode. = 0: a new object is created (default); = 1: existing object
content open in read/write mode =2: existing object content open in read-
only mode.

pyobj LCM existing PyLCM object containing a memory or persistent LCM object.
lrda int number of words in a direct-access record (only used if type = DA). By

default, lrda = 128.
impx int edition index for the object (= 0 for minimum printouts).

output parameter:
o LCM PyLCM object created.

8.2.3 o.keys()

This method allows you to create a Python list containing the key names of the associative table
(memory or xsm file). This method is not available for FILE objects.

IGE–332 92

o2 = o.keys()

output parameter:
o2 list Python list containing the keys of the associative table.

8.2.4 o.lib()

This method allows you to print the table-of-contents of a PyLCM object (memory or xsm file). This
method is not available for FILE objects.

8.2.5 o.val()

This method allows you to validate the content of a PyLCM object (memory or xsm file). This
method is not available for FILE objects.

8.2.6 o.close()

This method allows you to close a PyLCM object (memory or xsm file) without erasing its contents.
This method is not available for FILE objects.

8.2.7 o.erase()

This method allows you to erase the contents of a PyLCM object (memory or xsm file).

8.2.8 o.len()

This method returns the lenght of the active directory in a PyLCM object (memory or xsm file). This
method is not available for FILE objects.

length = o.len()

output parameter:
lenght int length of the heterogeneous list; equal to −1 if the active directory is an

associative table.

IGE–332 93

8.2.9 o.rep()

This method allows you to create an daughter associative table in the associative table (dictionary)
or the list o. This method is not available for FILE objects.

[o2 =] o.rep({key | iset})

input parameters:
key string if o is a table; compulsory string (len = 12) corresponding to the key of the

daughter associative table
iset int if o is a list; index in the list o where we find the daughter associative table.

output parameter:
o2 LCM daughter associative table.

8.2.10 o.lis()

This method allows you to create a nested child list in the associative table (dictionary) or the o list.
The first element of the child list is located at index [0]. This method is not available for FILE objects.

[o2 =] o.lis({key | iset}, ilong)

input parameters:
key string if o is a table; compulsory string (len = 12) corresponding to the key from

the daughter list.
iset int if o is a list; index in the list o where we find the list daughter list.
ilong int positive integer (required) which gives the length of the list daughter list.

output parameter:
o2 LCM daughter list.

IGE–332 94

9 The Python3 CLE-2000 API

The Python3 CLE-2000 API is a component of the PyGAN library, available in the Version5 distri-
bution. It contains two extension modules, each of them containing a class: lifo and cle2000, both
implemented using the CLE-2000 API of Sect. 4.

9.1 The lifo class

The lifo extension module allows in-out access to the lifo objects (”last in first out” stack) used by
CLE-2000.

The lifo module, accessible from Python3, is imported by the command

import lifo

It has one constructor: lifo.new(), used to create an object instance o.

9.1.1 Attribute Variables

A lifo object o contains one read-write attribute variable:

o. impx Edition index for the object (= 0 for minimum printouts).

9.1.2 lifo.new()

This method is used to create a lifo object made up of an empty stack. A lifo stack is a memory-
resident structure implemented with the CLE-2000 API of Sect. 4.

o = lifo.new([impx])

input parameter:
impx int edition index for the object (= 0 for minimum printouts).

output parameter:
o LIFO lifo object created.

9.1.3 o.lib()

This method allows you to print the table-of-contents of a lifo object.

o.lib()

IGE–332 95

9.1.4 o.push()

This method is used to push a new node into the lifo object. The new node is a Python3 object of
specific type. Empty nodes have defined names and types but no assigned value. The number of nodes
stored in the lifo object is increased by one.

o.push(data)

input parameter:
data object Python3 object to push in the stack. The following Python3 types are al-

lowed: integer variable (int), character string (str), double-precision variable
(float), logical variable (bool), PyLCM object, empty variable of type int,
str, float or bool.

9.1.5 o.pushEmpty()

This method is used to push an empty node into the lifo object. Empty nodes have defined names
and types but no assigned value. The number of nodes stored in the lifo object is increased by one.

o.pushEmpty(name, [type])

input parameter:
name string character (len=72) name of the empty node. Used to name the PyLCM

object.
type string character type of the empty object to push in the stack. The following

character types are allowed: “I”: integer variable, “S”: character string,
“D”: double precision variable, “B”: logical variable, “LCM”: PyLCM object
of type lcm, “XSM”: PyLCM object of type xsm, “BINARY”: PyLCM object
containing a sequential binary file, “ASCII”: PyLCM object containing a
sqquential ascii file, “DA”: PyLCM object containing a direct access file,
“HDF5”: PyLCM object containing a HDF5 file. By default, type = “LCM”.

9.1.6 o.pop()

This method is used to pop a node from the lifo object. The number of nodes stored in the lifo

object is decreased by one.

[obj =] o.pop()

output parameter:
obj object Python3 object contained in the node.

9.1.7 o.node()

This method is used to recover a node from the lifo object without changing its content. The number
of nodes stored in the lifo object is left unchanged.

IGE–332 96

obj = o.node({ ipos | name })

input parameter:
ipos int position of the node in the stack (the first node is at position 0).
name string name (len=72) of the node in the stack.

output parameter:
obj object Python3 object contained in the node.

9.1.8 o.getMax()

This method returns the number of nodes in a lifo object.

length = o.getMax()

output parameter:
lenght int number of nodes in the lifo object.

9.1.9 o.OSname()

This method returns the name of a node.

name = o.OSname(ipos)

input parameter:
ipos int position of the node in the stack (the first node is at position 0).

output parameter:
name string name (len=72) of the node.

9.2 The cle2000 class

The cle2000 extension module allows to encapsulate Ganlib5, Trivac5, Dragon5 or Donjon5 and to
execute a CLE-2000 procedure, itself calling modules of these codes or sub-CLE-2000 procedures. This
extension module is based on the CLE-2000 API of Sect. 4.

The cle2000 module, accessible from Python3, is imported by the command

import cle2000

It has one constructor: cle2000.new(), used to create an object instance o.

9.2.1 Attribute Variables

A cle2000 object o contains one read-write attribute variable:

IGE–332 97

o. impx Edition index for the object (= 0 for minimum printouts).

9.2.2 cle2000.new()

This method is used to create a cle2000 object including an exec()method for executing a CLE-2000
specific procedure.

o = cle2000.new(procname, olifo, [impx])

input parameter:
procname string name (len=12) of the CLE-2000 procedure. The OS filename of the proce-

dure is procname + “.c2m”
olifo LIFO lifo object containing the procedure parameters. The lifo object can be

empty at construction time and can be filled before the call to the exec()

method.
impx int edition index for the object (= 0 for minimum printouts).

output parameter:
o CLE2000 cle2000 object created.

9.2.3 o.exec()

This method execute the procedure.

o.exec()

9.2.4 o.getLifo()

This method returns the lifo stack containing the procedure parameters.

olifo = o.getLifo()

output parameter:
olifo LIFO lifo object.

9.2.5 o.putLifo()

This method put a new lifo stack in the procedure.

o.putLifo(olifo)

input parameter:
olifo LIFO lifo object.

IGE–332 98

References

[1] R. Roy, The CLE-2000 Tool-Box, Report IGE–163, Institut de génie nucléaire, École Polytechnique
de Montréal, Montréal, Québec (1999).

[2] A. Hébert, LCM – Guide du programmeur, Rapport IGE–296, Institut de génie nucléaire, École
Polytechnique de Montréal, Montréal, Québec (2002).

[3] B. W. Kernighan and D. M. Ritchie, The C programming language, second edition, Prentice Hall,
Englewood Cliffs, New Jersey (1988).

[4] M. Metcalf, J. Reid and M. Cohen, Fortran 95/2003 explained, Oxford University Press, Oxford,
U. K. (2004).

[5] A. Hébert and R. Roy, “A Programmer’s Guide for the GAN Generalized Driver, FORTRAN-77
version”, Report IGE-158, Institut de Génie Nucléaire, École Polytechnique de Montréal, December
1994.

[6] A. Hébert, “Coarse-Grain Parallelism Using Remote Method Invocation”, paper submitted at the
International Conference on Supercomputing in Nuclear Applications, Paris, France, September 22
– 24 (2003).

[7] T. E. Oliphant, “Guide to NumPy”, Brigham Young University, Provo, UT, 2006. See the home
page at https://numpy.org.

[8] The HDF Group, https://www.hdfgroup.org.

https://numpy.org
https://www.hdfgroup.org

IGE–332 99

Index

attribute variables, 90, 94

cle2000 c, 34
clecls, 44
clecst, 47
clelib, 45
clemod c, 40
clenode, 44
cleopn, 43
clepop, 44
clepos, 45
clepush, 44

DUMMOD, 83
dummod, 34

FILCLS, 81
FILKDI, 82
FILOPN, 81
FILUNIT, 82

hdf5CloseFile, 72
hdf5Copy, 76
hdf5CreateGroup, 75
hdf5Delete, 75
hdf5GetDimensions, 73
hdf5GetShape, 73
hdf5GroupExists, 75
hdf5Info, 73
hdf5List, 73
hdf5ListDatasets, 74
hdf5ListGroups, 74
hdf5OpenFile, 72
hdf5ReadData, 76
hdf5WriteData, 77

KDICL, 81
KDIGET, 80
KDIOP, 80
KDIPUT, 80
KDRCLS, 79
KDROPN, 79
KERNEL, 82

LCMARA, 70
LCMCL, 49
lcmcl c, 5
LCMDEL, 55
lcmdel c, 12
LCMDID, 59
lcmdid c, 15
LCMDIL, 61

lcmdil c, 17
LCMDRD, 70
LCMEQU, 64
lcmequ c, 20
LCMEXP, 64
lcmexp c, 21
LCMGCD, 68
lcmgcd c, 21
LCMGCL, 69
lcmgcl c, 23
LCMGDL, 55
lcmgdl c, 12
LCMGET, 52
lcmget c, 8
LCMGID, 62
lcmgid c, 19
LCMGIL, 63
lcmgil c, 19
LCMGLC, 66
LCMGPD, 53
lcmgpd c, 10
LCMGPL, 57
lcmgpl c, 14
LCMGTC, 65
LCMINF, 50
lcminf c, 7
LCMLEL, 51
lcmlel c, 8
LCMLEN, 50
lcmlen c, 6
LCMLIB, 64
lcmlib c, 20
LCMLID, 60
lcmlid c, 16
LCMLIL, 60
lcmlil c, 16
LCMNXT, 51
lcmnxt c, 7
LCMOP, 48
lcmop c, 4
LCMPCD, 68
lcmpcd c, 22
LCMPCL, 69
lcmpcl c, 23
LCMPDL, 56
lcmpdl c, 13
LCMPLC, 67
LCMPPD, 54
lcmppd c, 11
LCMPPL, 58
lcmppl c, 14

IGE–332 100

LCMPTC, 65
LCMPUT, 53
lcmput c, 9
LCMSIX, 63
lcmsix c, 19
LCMVAL, 49
lcmval c, 6
lifo, 41

REDCLS, 87
redcls c, 47
REDGET, 86
redget c, 46
REDOPN, 86
redopn c, 45
REDPUT, 87
redput c, 46
rlsara c, 24

setara c, 24
strcut c, 4
strfil c, 4

	Contents
	The GANLIB Version 5 architecture
	From Versions 3 or 4 to Version 5

	The ANSI C lcm API
	General utility functions
	strcut_c
	strfil_c

	Opening, closing and validation of LCM objects
	lcmop_c
	lcmcl_c
	lcmval_c

	Interrogation of LCM objects
	lcmlen_c
	lcminf_c
	lcmnxt_c
	lcmlel_c

	Management of the array of elementary type
	lcmget_c
	lcmput_c
	lcmgpd_c
	lcmppd_c
	lcmdel_c
	lcmgdl_c
	lcmpdl_c
	lcmgpl_c
	lcmppl_c

	Management of the associative tables and of the heterogeneous lists
	lcmdid_c
	lcmlid_c
	lcmlil_c
	lcmdil_c
	lcmgid_c
	lcmgil_c
	lcmsix_c

	LCM utility functions
	lcmlib_c
	lcmequ_c
	lcmexp_c

	Using variable-length string arrays
	lcmgcd_c
	lcmpcd_c
	lcmgcl_c
	lcmpcl_c

	Dynamic allocation of the elementary blocks of data
	setara_c
	rlsara_c

	Abnormal termination of the execution
	xabort_c

	The ANSI C hdf5 API
	Opening and closing of HDF5 files
	hdf5_open_file_c
	hdf5_close_file_c

	Interrogation of HDF5 files
	hdf5_list_c
	hdf5_get_dimensions_c
	hdf5_get_num_group_c
	hdf5_list_datasets_c
	hdf5_list_groups_c
	hdf5_info_c
	hdf5_group_exists_c

	Management of groups and datatypes
	hdf5_create_group_c
	hdf5_delete_c
	hdf5_copy_c
	hdf5_read_data_int_c
	hdf5_read_data_real4_c
	hdf5_read_data_real8_c
	hdf5_read_data_string_c
	hdf5_write_data_int_c
	hdf5_write_data_real4_c
	hdf5_write_data_real8_c
	hdf5_write_data_string_c

	The ANSI C CLE-2000 API
	The main entry point for CLE-2000
	cle2000_c
	dummod
	Calling a main CLE-2000 procedure
	Calling a parametrized CLE-2000 procedure
	Calling a CLE-2000 procedure with in-out CLE-2000 variables

	Calling a calculation module without a CLE-2000 procedure
	clemod_c

	Management of the last-in-first-out (lifo) stack
	cleopn
	clepop
	clepush
	clecls
	clenode
	clepos
	clelib

	The free-format input reader
	redopn_c
	redget_c
	redput_c
	redcls_c

	Defining built-in constants in CLE-2000
	clecst

	The ISO Fortran lcm API
	Opening, closing and validation of LCM objects
	LCMOP
	LCMCL
	LCMVAL

	Interrogation of LCM objects
	LCMLEN
	LCMINF
	LCMNXT
	LCMLEL

	Management of the array of elementary type
	LCMGET
	LCMPUT
	LCMGPD
	LCMPPD
	LCMDEL
	LCMGDL
	LCMPDL
	LCMGPL
	LCMPPL

	Management of the associative tables and of the heterogeneous lists
	LCMDID
	LCMLID
	LCMLIL
	LCMDIL
	LCMGID
	LCMGIL
	LCMSIX

	LCM utility functions
	LCMLIB
	LCMEQU
	LCMEXP

	Using fixed-length character arrays
	LCMGTC
	LCMPTC
	LCMGLC
	LCMPLC

	Using variable-length character arrays
	LCMGCD
	LCMPCD
	LCMGCL
	LCMPCL

	Dynamic allocation of an elementary blocks of data in ANSI C
	LCMARA
	LCMDRD

	Abnormal termination of the execution
	XABORT

	The ISO Fortran hdf5 API
	Opening and closing of HDF5 files
	hdf5_open_file
	hdf5_close_file

	Interrogation of HDF5 files
	hdf5_list
	hdf5_info
	hdf5_get_dimensions
	hdf5_get_shape
	hdf5_list_datasets
	hdf5_list_groups
	hdf5_group_exists

	Management of groups and datatypes
	hdf5_create_group
	hdf5_delete
	hdf5_copy
	hdf5_read_data
	hdf5_write_data

	The ISO Fortran CLE-2000 API
	Management of Fortran files outside CLE-2000
	KDROPN
	KDRCLS

	Management of word-addressable (KDI) files outside CLE-2000
	KDIOP
	KDIGET
	KDIPUT
	KDICL

	Management of Fortran and KDI files used as CLE-2000 parameters
	FILOPN
	FILCLS
	FILUNIT
	FILKDI

	The main entry point for CLE-2000
	KERNEL
	DUMMOD

	The free-format input reader
	REDOPN
	REDGET
	REDPUT
	REDCLS

	The Python3 lcm API
	Structures
	LCM object Python API
	Attribute Variables
	lcm.new()
	o.keys()
	o.lib()
	o.val()
	o.close()
	o.erase()
	o.len()
	o.rep()
	o.lis()

	The Python3 CLE-2000 API
	The lifo class
	Attribute Variables
	lifo.new()
	o.lib()
	o.push()
	o.pushEmpty()
	o.pop()
	o.node()
	o.getMax()
	o.OSname()

	The cle2000 class
	Attribute Variables
	cle2000.new()
	o.exec()
	o.getLifo()
	o.putLifo()

	References
	Index

