
TECHNICAL REPORT
IGE–361

A PYNJOY-2012 TUTORIAL

A. Hébert and R. Chambon

Institut de génie nucléaire
Département de génie mécanique

École Polytechnique de Montréal
March 31, 2024

IGE–361 ii

Contents

Contents . ii
List of Figures . iii
1 Python script to generate DRAGLIB and ACELIB . 1

1.1 PyNjoy Script . 1
1.1.1 PyNjoy instance variables . 1

1.2 PyNjoy methods . 3
1.3 DRAGLIB Library Generation . 4

1.3.1 The modules and data recovery used in the process 4
1.3.2 Sequential calculations . 5

Main object instanciation . 5
Heavy water . 6
Zirconium . 6
Xe135 . 6
U235 . 7
Process burnup . 7

1.3.3 Parallel calculations . 8
Main object instanciation . 8
Thermal scattering . 9
Nominal isotopes . 10
Fissionable isotopes . 10
Fission products . 11
Isotopic DRAGLIB computation . 12
DRAGLIB concatenation . 13
Process burnup . 13

1.3.4 CPU cost . 13
1.4 ACELIB Library Generation . 13

1.4.1 Heavy water . 14
1.4.2 Zirconium . 14
1.4.3 Xe135 . 15
1.4.4 U235 . 15

2 Format convertion of Dragligs . 17

IGE–361 iii

List of Figures

1 Flow chart for generation of ACELIB and DRAGLIB formatted libraries 4
2 Lumping of isotopes A and C . 5

IGE–361 1

1 Python script to generate DRAGLIB and ACELIB

This chapter will describe the procedure for generation of cross section libraries in DRAGLIB format
and ACE format. DRAGLIB format libraries will be used for lattice analysis using the code DRAGON
and ACE formatted libraries will be used for the analysis using Monte Carlo code MCNP5. Both the sets
of libraries have been generated starting from the same evaluated datafiles, that were recommended by
the IAEA WIMS Library Update Project (WLUP). A total of 200 nuclides have been used for analysis
in this thesis. The libraries have been generated by using a Python script. Another interesting addition
to the script is to compare the generated ACELIB, with the PENDF tape generated by an alternate
procedure as recommended by IAEA. This involves regenaration of the PENDF file from the ACELIB
using a code package called acelst. Modules from PREPRO code system developed by Red Cullen
are subsequently used on the evaluated data files and PENDF tape is generated. The modules used
are linear, recent, sigma1. Subsequently one can do a comparison of the two PENDF files using
complot, which is another important module of PREPRO code system.

This chapter has three main sections. First section will give a general description of instance variables
and methods needed to generate the various libraries. The second section will describe the steps needed
to generate DRAGLIB. The third section will describe the generation of ACELIB and the final section
will describe verification of generated ACE libraries by procedure recommended by IAEA.

1.1 PyNjoy Script

The generation of libraries has been made simple by the use of Python script. A complete processing
of an evaluated datafile is done by invoking modules of NJOY through an object oriented Python script.
A unique class named PyNjoy contains the various instance variables and methods required to use NJOY
in sequential mode. Any modification of this model is possible in order to accommodate various process-
ing requirements. The original PyNjoy script is located on Version4 wc/Njoy99/python/PyNjoy.py.
A newer version of the script has been recently made to introduce parallel computing. This ver-
sion is available on webpage http://www.polymtl.ca/merlin/pynjoy2012.htm and is located on file
Njoy2012 EPM/python/PyNjoy.py. It is backward compatible with previous input files.

1.1.1 PyNjoy instance variables

Python parameters used in the input are described in this section.

self.evaluationName - Path of directory where you want to store the pendf, gendf, draglib and acelib
files. The path can be prefixed by /tmp/ to force the files to be created locally on the /tmp directory.
self.execDir - Path of directory where the executable of Njoy is found. Note that the path is relative
to the current directory.
self.legendre - Order of Legendre polynomials for neutrons (= 1 for linear anisotropy in LAB –
default).
self.legendregg - Order of Legendre polynomials for gamma particles (default: = 6).
self.legendrebe - Order of Legendre polynomials for electrons (default: = 6).
self.nstr - Option for a particular neutron group structure (= 22 for the XMAS 172–group structure).
self.gstr - Option for a particular gamma group structure (equal to zero by default)
self.estr - Option for a particular electron group structure (equal to zero by default)
self.iwt - Type of flux weighting in groupr (= 1 for user-defined spectra; = 3 for 1/E weighting; = 4
recommended/default).
self.wght - User-defined weighting spectra to be used if self.iwt = 1. Given as """–delimited string.
self.autolib - Three-component tuple containing the energy limits of the autolibs (must correspond to
energy-group limits) and the elementary lethargy width of the autolibs.
self.temperatures - Value of temperatures at which the cross sections are generated.
self.hmat - Material name that is included in the DRAGLIB – User dependent.

http://www.polymtl.ca/merlin/pynjoy2012.htm

IGE–361 2

self.mat - mat number of nuclide under consideration.
self.hmatgg - Photo-atomic element name that is included in the DRAGLIB – User dependent.
self.hmatbe - Electro-atomic element name that is included in the DRAGLIB – User dependent.
self.matgg - Photo-atomic mat number of element under consideration.
self.matbe - Electro-atomic mat number of element under consideration.
self.zaid - ZA number, mainly required for generation of S(α, β) cross sections in acer.
self.scatName - Name of S(α, β) cross section identifier for inclusion in xsdir.
self.suff - The suffix to be attached to nuclide in ACELIB – User dependent.
self.evaluationFile - Path of the ENDF evaluated datafile.
self.relaxationFile - Path of the ENDF atomic relaxation datafile.
self.stoppingPowerFile - Path of the ENDF stopping power datafile.
self.scatteringLaw - Path of file having thermal scattering data (default = None).
self.scatteringMat - mat number in scattering data file.
self.thermal cutoff - thermal cutoff energy (in eV). This value is used in modules thermr, reskr,
dragr and acer. Default value is 4.0 eV.
self.reskEhi - upper energy (in eV) in the resolved energy domain where the resonant elastic scatter-

ing kernel (RESK) effect is taken into acccount. The lower energy is set to self.thermal cutoff. By
default, an asymptotic kernel is used.
self.fission - Choice for including delayed neutron fission data in groupr module.
self.Espectra - Gchi + 1 values of energy limits (eV) defining the energy-dependent fission spectra. If
this instance variable is not set, a unique fission spectrum is used. Recommended limits for fast-reactor
applications are (1.100028e-4, 1.831564e5, 4.978707e5, 1.353353e6, 1.964033e7).
self.ss - Two-component tuple containing energy limits in eV for the self-shielding domain.
self.potential - Value of the potential cross section used in the flux calculator of groupr.
self.dilutions Tuple containing the dilution values that need to be considered for calculation of reso-
nance integrals and probability tables.
self.dirName - Directory name to store data for independent verification of ACELIB.
self.tempace - Temperature at which ACELIB needs to be generated.
self.eFiss - Fission energy in MeV. Used in cases where this value is not available in the evaluation.
self.branchingNG - Radiative capture isomeric branching ratio (default = None). If you use this value,
don’t forget to reset it to None after the isotope is completed.
self.branchingN2N - N2N isomeric branching ratio (default = None). If you use this value, don’t forget
to reset it to None after the isotope is completed.
self.purr - Set to 1 to use purr module. By default, use unresr.
self.oldlib - Name of an existing DRAGLIB file that is modified by self.draglib(). The existing
DRAGLIB, in the same format (either ascii or binary), must be placed in the same directory where
the input Python file is found. This DRAGLIB is copied in the execution directory self.execDir and
updated by self.draglib().
self.unform - Set to 0 to use ascii format for the DRAGLIB, 1 for seq binary. Default value is 0.
WARNING, the seq binary is created with fortran 90 which includes delimitation markers. It is not
compatible with other language. Thus it has to be converted into ascii for use in DRAGON. However,
the gain of time calculation makes the process worth it.
self.groupboundaries - Arbitrary multigroup structure for groupr module. Default value is None.
self.concat - Set to 0 to use only one DRAGLIB that is updated for each new isotopes, 1 to compute
an independent DRAGLIB for each isotope (meaning that the complete DRAGLIB will be concatenated
after. Default value is 0.

The following instance variables are related to the production of a single Wimslib isotope using module
wimsr:
self.wmat - Identification of material for the WIMS library. This identification is a floating-point num-
ber.
self.sgref - Reference sigma zero. All isotopes are evaluated at dilution self.sgref in case where the
resonance tables are not used. This variable has a strong effect on the WIMSLIB values. Important:

IGE–361 3

self.sgref must be selected in tuple self.dilutions. The default value is self.sgref = 1.0 × 1010

barn, corresponding to infinite dilution.
self.jp1 - Number of components in the user-defined current weighting spectra (to be used for the
transport correction).
self.goldstein - Value if a Goldstein-Cohen parameter. It is assumed that all Goldstein-Cohen param-
eters are constant in the resonant-energy groups.
self.p1flx - User-defined current weighting spectra (to be used for the transport correction) if self.jp1
> 0. Given as """–delimited string.
self.iverw - = 4: Produce a WIMS-D4 formatted library; = 5: Produce a WIMS-E formatted library.
self.yields - User-defined burnup data for an isotope (cards 5 and 6 of wimsr module dataset). Given
as """–delimited string.
self.ifprod - Fission product flag. = 0: Not a fission product (default); = 1: Fission product, no
resonance tables; = 2: Fission product, with resonance tables.

The following instance variables are related to the production of an ACE file using module acer:
self.acesuff - Id suffix for zaid. Default value is “.00”.
self.acefname - ACE file name. Default value is “acecandu”.
self.acedirName - ACE directory name. Default value is None.

1.2 PyNjoy methods

self.pendf([eaf]) - To generate point ENDF file (to be used as starting point for all other data type
generations including DRAGLIB, ACE, WIMSD etc) using the modules moder, reconr, broadr, purr
(if dilutions present), thermr. If eaf=1, a eaf-compatible simplified processing is performed.
self.gendf([eaf]) - To generate group ENDF file using modules moder and groupr. If eaf=1, a
eaf-compatible simplified processing is performed.
self.gamma() - To generate photo-atomic (gamma) group GENDF file using modules moder, reconr
and gaminr.
self.electron() - To generate electro-atomic (electron) group GENDF file using modules moder, re-
conr and electr.
self.draglib([fp]) - To generate a DRAGLIB file using modules moder, dragr and add/update
the new isotopic data in the DRAGLIB file. If fp=1, the scattering information are stored as diagonal
matrices in the DRAGLIB.
self.draglibcat() - To concatenate two DRAGLIB files using module dragr. The coherence of the
energy meshes is verified. Both DRABLIB must be the same format (either ascii or seq binary)
self.draglibconv() - To convert a DRAGLIB file using module dragr. if self.unform is equal to 1,
a seq binary) DRAGLIB is transformed into a ascii file, for a value of 0, it is the oposite.
self.matxs() - To generate an ascii MATXS file using modules moder and matxsr.
self.makeFp() - call self.pendf(), self.gendf() and self.draglib(fp=1) for a single fission prod-
uct.
self.burnup() - Process burnup data for the complete library. An important file that is needed while
generating the burnup data is named as “chain(self)”. If self=candu then the file is named chaincandu.
This file contains the information of energy from all isotopes generated using single dragr runs. This
file is now generated automatically.
self.acer() - To generate ACELIB using modules moder, reconr, broadr, purr (if dilutions
present), thermr and acer.
self.wims() - To generate an ascii Wimslib file using modules moder and wimsr.

IGE–361 4

1.3 DRAGLIB Library Generation

1.3.1 The modules and data recovery used in the process

The modules that will be used in the generation of DRAGLIB are moder, reconr, broadr, purr
(if dilutions present), thermr, groupr and DRAGR. Figure 1 gives the flow chart for generation of
DRAGLIB formatted library. It is important to identify the nuclides that are needed to be included as
part of library and corresponding evaluated datafiles from respective data centres need to be compiled in a
particular directory. This will help in cross verification and assessment at any stage of library generation.

ENDF/B

GROUPR

DRAGR

ACER

PENDF

DRAGLIB

ACELIB GENDF

RECONR

BROADR

PURR
THERMR

self.pendf()

self.gendf()

self.dragr()

self.acer()

Figure 1: Flow chart for generation of ACELIB and DRAGLIB formatted libraries

In this section specific examples of elements will be provided to understand the nuances of DRAGLIB
library generation. The examples will be such that all the reactor type materials will be chosen. They
are scattering material (heavy water), structural material (Zirconium), fission product (Xe135), Ac-
tinide (U-235). A special example for burnup dependent data will also be provided. For isotopes that
have resonances and whose presence in fuel can alter the flux in the energy region between 2.76792
eV and 1.66156e4 eV, cross sections are generated at specific dilution values. The value for poten-
tial scattering cross section is obtained using the Fortran code getmf2.f which is provided by IAEA.
Using this code, and the evaluated datafile for the particular element, one can obtain the value for
self.potential. After each “self.dragr()” run, one will obtain a file “out draglib elementname”.
Energy information is recovered from this ascii file by method self.burnup() and is collected in a file
named ’chain’ + self.evaluationName (stored on directory self.evaluationName). Sometimes, it
is likely that fission energy is not provided in the tape. In that case one obtains “????????” in the
“out draglib elementname” file. In that case, one has to obtain the energy value from some other
source (typically, from another evaluation) and provide it using the self.eFiss instance variable, even
if one doesnot use the tape for generation of multigroup data.

File 8 of ENDF evaluation contains half-lives, decay modes, decay energies, and radiation spectra
for most isotopes. Information concerning the decay of the reaction products is also given in this file.

IGE–361 5

In addition, fission product yield data (MT=454 and 459) for fissionable materials and spontaneous
radioactive decay data (MT=457) for the nucleus are included.

File 8 information is processed by module dragr. A large number of fission products are included
in the evaluated file for each element capable of undergoing fission. For example, in the fission product
yield data file included in ENDF/B-VI rel. 8, one can notice that there are information of 1232 fission
products for 0.0253 eV fission of 233U, 1247 fission products for 0.0253 eV fission of 235U etc. But the
evaluations are not available for all the nuclides, as most of them have very short half-lives and in the
reactor context, can be considered insignificant. They are subsequently lumped by a procedure that is
built in dragr and depicted in Fig. 2. If there are nuclides with long half lives, but are not available as
evaluated files, a warning is provided before lumping the corresponding element. The dragr user has
the complete control over the lumping process. dragr currently has no capability to produce pseudo
fission product, i.e., custom library isotopes made from the combination of many minor ENDF fission
products. All the isotopes missing in the ’chain’ + self.evaluationName file are tested against a
lumping criterion and are lumped. The criterion for lumping a depleting isotope is a half life less than
thirty days and a fission yield less than 0.01%. If this criterion is not met, this isotope is lumped and a
warning message is issued.

(n,f)

U-235

λ3

λ1

Y2

Y1

A B

C D

λ2
(n,γ)

E
f

Eλ1
Eλ2

Eγ

(n,f)

U-235

Y1

B

D

λ2
(n,γ)

E
f
+Y1Eλ1

Eλ2

+Y2

Eλ3Eγ+

before lumping after lumping

Figure 2: Lumping of isotopes A and C

Information on energies for various reaction types like (n, γ), (n, f), (n, 2n), (n, 3n), (n, 4n), (n, α), (n,
p), (n, 2α), (n, np), (n, d), (n, t) are recovered from earlier dragr single-isotope calculations and used for
inclusion in relevant depletion data in DRAGLIB format. The fission energy (n, f) is obtained from MF1
MT458 and the energy from delayed betas and gammas are subtracted from it. Information regarding
energies for other reactions are derived by dragr from MF3. The corresponding MT numbers for the
above mentioned reactions (other than (n, f)) are 102, 16, 17, 37, 107, 103, 108, 28, 104, 105 respectively.
The complete information required to do the depletion calculations is provided in ten specific records of
the DRAGLIB file.

1.3.2 Sequential calculations

Up to early 2019, DRAGLIB could be only computed in a sequential way, one isotope at the time,
adding data to a formatted ASCII file. Examples of input file are provided with the distribution in the
’python’ subfolder for different evaluations and energy structures. In this section, the main aspects of
these files are illustrated.

IGE–361 6

Main object instanciation

The Python dataset starts with the instanciation of an object (named candu in the following examples)
and with the definition of a few instance variables that are common to many isotopes. In this example,
the PyNjoy script is supposed to be in the same folder as the script used to generate the DRAGLIB.

#!/usr/local/bin/python

from PyNjoy import *

from os import uname

candu = PyNjoy()

candu.evaluationName = "/tmp/endfb7r0"

candu.execDir = "../" + uname()[0]

candu.nstr = 22

candu.iwt = 4

candu.autolib = (2.76792, 677.2873, 0.00125)

candu.legendre = 1

candu.Espectra = None

Heavy water

Heavy water is used in CANDU reactors as moderator and coolant. So it is important to generate
consistent data for efficient analysis of CANDU lattices. The instance variables and methods that will
be used are

candu.hmat = "H2_D2O"

candu.temperatures = (293.6, 323.6, 573.6,)

candu.mat = 128

candu.evaluationFile = "/home/develop/Tripoli4/JEF2/eval/jef2.neutron.H2.bcd"

candu.scatteringLaw = "/home/develop/Tripoli4/JEF2/eval/jef2.neutron.D_D2O.bcd.therm"

candu.scatteringMat = 11

candu.fission = None

candu.dilutions = None

candu.pendf()

candu.gendf()

candu.draglib()

Zirconium

Zirconium is used in CANDU reactors as cladding material and also for pressure tube and calandria
tube. Zirconium has some resonances and as a result of this it is important to generate the cross sections
of zirconium for certain dilution values. The instance variables and methods that will be used are

candu.hmat = "Zr0"

candu.temperatures = (293.6, 323.6, 573.6,)

candu.mat = 4000

candu.evaluationFile = "/home/karam/Njoy99/evaluations/database/jendl306.asc"

candu.fission = None

candu.ss = (2.76792, 1.66156e4)

candu.potential = 6.5144

candu.dilutions = (1.e10, 10000.0, 3549.18335, 1259.67004, 447.079956, 158.676849, \

56.3173141, 19.9880447, 7.09412289, 2.51783395)

candu.pendf()

candu.gendf()

candu.draglib()

IGE–361 7

Xe135

Xenon is a very important fission product in nuclear reactors. It is very important to estimate the
number density of this nuclide as a function of burnup. This will help in estimating reactivity variations
due to change in concentration of the nuclide. By using makeFp option, we avoid generating scattering
matrices in (NG X NG) format, where NG is number of groups. We instead generate only the scattering
matrices along the diagonal.

candu.hmat = "Xe135"

candu.temperatures = (293.6, 323.6, 573.6,)

candu.scatteringLaw = None

candu.legendre = 0

candu.fission = None

candu.dilutions = None

candu.mat = 5458

candu.evaluationFile = "/home/karam/Njoy99/evaluations/database/jendl310.asc"

candu.makeFp()

U235

U-235 is one of the most prevalently used fissile material for energy production. In case of CANDU
reactors, natural uranium is used as fuel, where weight (%) of U-235 is 0.711. Note that in an earlier
version, the number of dilutions was limited to 10 for one computation. Thus, two calls were needed, as
shown in the example below. However, this restriction does not exist anymore. Thus, in the example
below, the user could replace the two dilution arrays by a longer one, and make only one call to the
different modules.

candu.hmat = "U235"

candu.temperatures = (293.6, 323.6, 573.6,)

candu.mat = 9228

candu.evaluationFile = "/home/karam/Njoy99/evaluations/database/U-235"

candu.fission = 2

candu.ss = (2.76792, 1.22773e5)

candu.potential = 11.6070

candu.dilutions = (1.e10, 94.5317612, 56.3173141, 33.5510521, 19.9880447, \

11.9078817, 7.09412289, 4.22632504, 2.51783395, 1.5)

candu.pendf()

candu.gendf()

candu.draglib()

candu.dilutions = (1.e10, 10000.0, 5957.50244, 3549.18335, 2114.42676, 1259.67004, \

750.448669, 447.079956, 266.347961, 158.676849)

candu.pendf()

candu.gendf()

candu.draglib()

Process burnup

It is important to identify the tapes provided by evaluators which contains information on fission
yields and decay chains. These files are provided as mentioned below, along with the chain(self) file
mentioned already.

candu.fissionFile = "/home/karam/Njoy99/evaluations/database/TAPE.107" \\

candu.decayFile = "/home/karam/Njoy99/evaluations/database/TAPE.106" \\

candu.burnup()

IGE–361 8

1.3.3 Parallel calculations

Early 2019, parallel computing was introduced in the DRAGLIB generation as an initiative of J.
Ortensi and reprogrammed by R. Chambon to make it user friendly and backward compatible with
sequential input files. Now, calculations for all isotopes can be performed separately, and a final concate-
nation is performed for one isotope at the time, adding data to a formatted ASCII file or an unformatted
seq BINARY file. Examples of input file are provided with the distribution in the ’python’ subfolder for
different evaluations and energy structures, their name ends with ’ pl’. In this section, the main aspects
of these files are illustrated. The general idea is to set the calculations options and data for all isotopes,
which define a ’job’ for each isotope, and to store them all in an array. Then, all jobs are independent,
and thus can be executed on several CPU if available.

A unique class named PyNjoy mp contains the various instance variables and methods required to
use NJOY in multiprocessing mode. The dispatching of the work is managed by a Python class named
’multiprocessing’ and its subclass ’Pool’ (see 1). The structure of the input file is as follows:

1 Main instanciation

1a Declare all common options

1b Create a reference job

2 Create a job for each isotope as a modified copy of the reference job. Similar ones are grouped
together:

2a Isotopes with thermal evaluations: no dilution, scaterring law

2b Nominal isotopes: no dilution

2c Fissionable isotopes: dilution, fission energy, ...

2d Fission product: scattering matrix reduced to its diagonal. First without dilution (most of
them), then with dilution

3 Run all jobs

4 Concatenate all individual DRAGLIB

5 Add depletion data

Main object instanciation

This section corresponds to step 1. The Python dataset starts the declaration of the common option
such as computation folder, NJOY execution file path, evaluation files path,... and with the instanciation
of an object (named job ref in the following examples) with the definition of a few instance variables
that are common to many isotopes. In this example, the PyNjoy mp script is supposed to be in the same
folder as the script used to generate the DRAGLIB.

#!/usr/bin/env python

from PyNjoy_mp import *

from os import uname

import os, sys, time

import copy

from collections import OrderedDict

parallel distribution of the library generation

Author: Richard Chambon - Ecole Polytechnique

based on a modified version by Javier Ortensi - Idaho National laboratory

1https://docs.python.org/2/library/multiprocessing.html

https://docs.python.org/2/library/multiprocessing.html

IGE–361 9

of the workflow endfb7r1_shem361.py developed by EPM

###

file locations & options

###

folder name where computations are performed

evalName = "/tmp/shem361_endfb7r1_epm"

if not os.path.isdir(evalName): os.mkdir(evalName)

relative path to the ’xnjox’ code from current folder

execDir = "../" + uname()[0]

evaluation folder paths

evalDir = "$HOME/evaluations/ENDFB7r1/neutrons/"

scatLawDir = "$HOME/evaluations/ENDFB7r1/thermal_scatt/"

#ncpu = 2

ncpu = mp.cpu_count()

job_ref = lib_base(evalName, execDir, evalDir, scatLawDir)

General options

job_ref.nstr = 31 # SHEM-361 group structure

job_ref.eaf = 0

job_ref.temperatures = (293., 550., 900., 1200., 2000.)

job_ref.fission = None

job_ref.dilutions = None

Specifics for output library format

job_ref.Espectra = None

job_ref.autolib = (22.53556, 1.11377e4, 0.0005)

job_ref.fp = 0

job_ref.concat = 1

njoy_jobs = VectPyNjoy()

njoy_jobs.setncpu()

Thermal scattering

This section corresponds to step 2a. An additional reference job (’job ref tsl’) is defined to set options
common to all isotopes with scattering law. Only the light and heavy water are presented in the example
below.

###

Thermal scattering

###

job_ref_tsl = copy.deepcopy(job_ref)

General options

Specifics for output library format

this_job = copy.deepcopy(job_ref_tsl)

this_job.legendre = 3

this_job.hmat = "H1_H2O"

this_job.mat = 125

this_job.evaluationFile = this_job.evaluationDir + "n-001_H_001.endf"

this_job.scatteringLaw = this_job.ScatteringLawDir + "tsl-HinH2O.endf"

this_job.scatteringMat = 1

IGE–361 10

this_job.temperatures = (293.6, 350.0, 400.0, 450.0, 500.0, 600.0)

njoy_jobs.append(this_job)

this_job = copy.deepcopy(job_ref_tsl)

this_job.hmat = "H2_D2O"

this_job.mat = 128

this_job.evaluationFile = this_job.evaluationDir + "n-001_H_002.endf"

this_job.scatteringLaw = this_job.ScatteringLawDir + "tsl-DinD2O.endf"

this_job.scatteringMat = 11

this_job.temperatures = (293.6, 350.0, 400.0, 450.0, 500.0, 600.0)

njoy_jobs.append(this_job)

print(’Number of jobs from isotopes with thermal scattering: ’+ str(len(njoy_jobs)))

Nominal isotopes

This section corresponds to step 2b. An additional reference job (’job ref nom’) is defined to set
options common to all nominal isotopes. Since only the ID and the evaluation file name change from an
isotope to the other, a dictionary is used as shown below (only a part of it in this example) to define
options. Then, the corresponding jobs are defined from it.

###

nominal isotopes

###

c1 = len(njoy_jobs)

job_ref_nom = copy.deepcopy(job_ref)

General options

Specifics for output library format

iso_dict = OrderedDict()

iso_dict["H1"] = (125, "n-001_H_001.endf")

iso_dict["H2"] = (128, "n-001_H_002.endf")

iso_dict["H3"] = (131, "n-001_H_003.endf")

for iso_name, tup in iso_dict.items():

this_job = copy.deepcopy(job_ref_nom)

this_job.hmat = iso_name

this_job.mat = tup[0]

this_job.evaluationFile = this_job.evaluationDir + tup[1]

njoy_jobs.append(this_job)

print(’Number of jobs from nominal isotopes: ’+ str(len(njoy_jobs) - c1))

Fissionable isotopes

This section corresponds to step 2c. An additional reference job (’job ref fiss’) is defined to set options
common to all fissionable isotopes. Only U235 and U238 are presented in the example below.

###

fissionable isotopes

###

c1 = len(njoy_jobs)

IGE–361 11

job_ref_fiss = copy.deepcopy(job_ref)

General options

Specifics for output library format

job_ref_fiss.ss = (22.53556, 3.206464e5)

this_job = copy.deepcopy(job_ref_fiss)

this_job.hmat = "U235"

this_job.mat = 9228

this_job.evaluationFile = this_job.evaluationDir + "n-092_U_235.endf"

this_job.fission = 2 # fission with delayed neutrons

#this_job.ss = (22.53556, 3.206464e5)

this_job.potential = 11.6070

this_job.dilutions = (1.e10, 10000.0, 5957.50244, 3549.18335, 2114.42676, \

1259.67004, 750.448669, 447.079956, 266.347961, 158.676849, 94.5317612, \

56.3173141, 33.5510521, 19.9880447, 11.9078817, 7.09412289, 4.22632504, \

2.51783395, 1.5)

njoy_jobs.append(this_job)

this_job = copy.deepcopy(job_ref_fiss)

this_job.hmat = "U238"

this_job.mat = 9237

this_job.evaluationFile = this_job.evaluationDir + "n-092_U_238.endf"

this_job.fission = 2 # fission with delayed neutrons

#this_job.ss = (22.53556, 3.206464e5)

this_job.potential = 11.17103

this_job.dilutions = (1.e10, 10000.0, 5957.50244, 3549.18335, 2114.42676, \

1259.67004, 750.448669, 447.079956, 266.347961, 158.676849, 94.5317612, \

56.3173141, 33.5510521, 19.9880447, 11.9078817, 7.09412289, 4.22632504, \

2.51783395, 1.5)

njoy_jobs.append(this_job)

print(’Number of jobs from fissionable isotopes: ’+ str(len(njoy_jobs) - c1))

Fission products

This section corresponds to step 2d. An additional reference job (’job ref fiss’) is defined to set
options common to all fission product isotopes. Only few fission products without dilution and one
with dilutions are presented in the example below. For fission isotopes without dilution, as for nominal
isotopes, a dictionary is used to define the required data. Note that some isotopes without dilutions
require additional data. In that case, they are defined independently as those with dilution; one is
presented in the input below.

###

fission products

###

c1 = len(njoy_jobs)

job_ref_fp = copy.deepcopy(job_ref)

General options

job_ref_fp.legendre = 0

Specifics for output library format

job_ref_fp.fp = 1

iso_dict = OrderedDict()

IGE–361 12

iso_dict["Ge72"] = (3231, "n-032_Ge_072.endf")

iso_dict["Ge73"] = (3234, "n-032_Ge_073.endf")

iso_dict["Ge74"] = (3237, "n-032_Ge_074.endf")

for iso_name, tup in iso_dict.items():

this_job = copy.deepcopy(job_ref_fp)

this_job.hmat = iso_name

this_job.mat = tup[0]

this_job.evaluationFile = this_job.evaluationDir + tup[1]

njoy_jobs.append(this_job)

fission product without dilution but additional options

this_job = copy.deepcopy(job_ref_fp)

this_job.hmat = "Cd114"

this_job.mat = 4849

this_job.evaluationFile = this_job.evaluationDir + "n-048_Cd_114.endf"

this_job.branchingNG = 0.079383

njoy_jobs.append(this_job)

fp with dilution

job_ref_fp.ss = (22.53556, 1.858471e4)

this_job = copy.deepcopy(job_ref_fp)

this_job.hmat = "Zr90"

this_job.mat = 4025

this_job.evaluationFile = this_job.evaluationDir + "n-040_Zr_090.endf"

this_job.potential = 6.8813

this_job.dilutions = (1.e10, 10000.0, 3866.97, 1495.35, 578.2475, 223.6068, \

86.4682, 33.4370, 12.9300, 5.0)

this_job.autolib = (4.632489, 3.481068e3, 0.0005)

njoy_jobs.append(this_job)

print(’Number of jobs from fission product isotopes: ’+ str(len(njoy_jobs) - c1))

Isotopic DRAGLIB computation

This section corresponds to step 3. Before computations are performed, a test is performed to make
sure that all required evaluation files are properly identified and present. In order to make the input
files as much general as possible, the part where the standard NJOY output (pendf and gendf files) are
computed is separated from the DRAGLIB computation. This way, if a user would like to produce library
on an other format, only the last step need to be adapted.

The standard NJOY calculation is as follows:

###

check file locations

###

for this_job in njoy_jobs:

if not os.path.isfile(os.path.expandvars(this_job.evaluationFile)):

raise PyNjoyError("evaluation file " + this_job.evaluationFile + " not found")

if this_job.scatteringLaw != None:

if not os.path.isfile(os.path.expandvars(this_job.scatteringLaw)):

raise PyNjoyError("scatteringLaw file " + this_job.scatteringLaw + " not found")

IGE–361 13

njoy_jobs.pendf()

njoy_jobs.gendf()

Then comes the DRAGLIB specific instructions:

njoy_jobs.dendf()

njoy_jobs.dconcat()

DRAGLIB concatenation

This section corresponds to step 4. All individual DRAGLIB are concatenate one after the other.
The corresponding input is presented in the previous section (last line).

Process burnup

For this step 5, it is important to identify the tapes provided by evaluators which contains information
on fission yields and decay chains. These files are provided as mentioned below, along with the chain(self)
file mentioned already.

this_job = copy.deepcopy(job_ref)

this_job.fissionFile = "$HOME/evaluations/ENDFB7r1/nfy/"

this_job.decayFile = "$HOME/evaluations/ENDFB7r1/decay/"

this_job.burnup()

1.3.4 CPU cost

To illustrate the usefulness of the multithread computing, a comparison is presented below for ENDF-
B7.1 with the SHEM361 group structure and 321 nuclides. Table 1 presents the CPU time cost on a 24
processors computer (Intel(R) Xeon(R) CPU X5650 @ 2.67GHz).

Table 1: Complete DRAGLIB computation time

Parallel Sequential
24 CPUs 1 CPU
2.34 h 33.2 h

details
General options setting 0.1 s
All jobs definition 0.06 s
All pendf and gendf 4261 s
All draglib 4134 s
All draglib concatenated 4 s 119424s
Depletion 18.6 s 110.2 s

1.4 ACELIB Library Generation

The modules that will be used in the generation of ACELIB are moder, reconr, broadr, purr(if
dilutions present), thermr and acer. Figure 1 gives the flow chart for generation of ACE formatted
library. In this section specific examples of elements will be provided to understand the nuances of
ACELIB library generation. The examples will be along the same lines as that for DRAGLIB library

IGE–361 14

generation, i.e scattering material (heavy water), structural material (Zirconium), fission product (Xe135),
Actinide (U-235). The prsent script is such that the ACELIBs are appended in a single file named
“acecandu” and is available in the same directory as the DRAGLIB file. The other important file that
is generated is the “acexsdir”, which contains the information about the nuclides for which the cross
sections are generated and the temperature at which the ACELIB is generated. A small code has been
written-“append.f”, which will read the file acecandu and acexsdir and create the file “myxsdir”. This
file has to be appended to existing xsdir file provided with MCNP5 data. It is important to provide suffix
values “self.suff” for different temperatures. This will be automatically appended to the ZA value and
written in main ACELIB and xsdir file. Care should be taken not to repeat the “.suff” value already
used in xsdir file for other evaluations. For each temperature provide different “self.dirName” so that
all the required data for comparison with PENDF tape generated using PREPRO code is made possible.
The example provided here helps in generating ACELIB alone. In case a DRAGLIB file also is to be
generated, please refer to Figure 2.

1.4.1 Heavy water

candu.hmat = "H2_D2O"

candu.temperatures = (293.6, 323.6, 573.6,)

candu.mat = 128

candu.za = 1002

candu.scatName = "hwtr"

candu.evaluationFile = "/home/develop/Tripoli4/JEF2/eval/jef2.neutron.H2.bcd"

candu.scatteringLaw = "/home/develop/Tripoli4/JEF2/eval/jef2.neutron.D_D2O.bcd.therm"

candu.scatteringMat = 11

candu.fission = None

candu.dilutions = None

candu.pendf()

candu.dirName = "D2O-1"

candu.tempace = (293.6,)

candu.suff=0.20

candu.acer()

candu.dirName = "D2O-2"

candu.tempace = (323.6,)

candu.suff=0.21

candu.acer()

candu.dirName = "D2O-3"

candu.tempace = (573.6,)

candu.suff=0.22

candu.acer()

1.4.2 Zirconium

candu.hmat = "Zr0"

candu.temperatures = (293.6, 323.6, 573.6,)

candu.mat = 4000

candu.za = 40000

candu.evaluationFile = "/home/karam/Njoy99/evaluations/database/jendl306.asc"

candu.fission = None

candu.dilutions = (1.e10, 10000.0, 3549.18335, 1259.67004, 447.079956, \

158.676849, 56.3173141, 19.9880447, 7.09412289, 2.51783395)

candu.pendf()

IGE–361 15

candu.dirName = "Zr-1"

candu.tempace = (293.6,)

candu.suff=0.20

candu.acer()

candu.dirName = "Zr-2"

candu.tempace = (323.6,)

candu.suff=0.21

candu.acer()

candu.dirName = "Zr-3"

candu.tempace = (573.6,)

candu.suff=0.22

candu.acer()

1.4.3 Xe135

candu.hmat = "Xe135"

candu.temperatures = (293.6, 323.6, 573.6,)

candu.scatteringLaw = None

candu.legendre = 0

candu.fission = None

candu.dilutions = None

candu.mat = 5458

candu.za = 54135

candu.evaluationFile = "/home/karam/Njoy99/evaluations/database/jendl310.asc"

candu.makeFp()

candu.dirName = "Xe135-1"

candu.tempace = (293.6,)

candu.suff=0.20

candu.acer()

candu.dirName = "Xe135-2"

candu.tempace = (323.6,)

candu.suff=0.21

candu.acer()

candu.dirName = "Xe135-3"

candu.tempace = (573.6,)

candu.suff=0.22

candu.acer()

1.4.4 U235

candu.hmat = "U235"

candu.temperatures = (293.6, 323.6, 573.6,)

candu.mat = 9228

candu.za = 92235

candu.scatteringLaw = None

candu.legendre = 0

candu.evaluationFile = "/home/karam/Njoy99/evaluations/database/U-235"

candu.fission = 2

candu.dilutions = (1.e10, 10000.0, 5957.50244, 3549.18335, 2114.42676, \

1259.67004, 750.448669, 447.079956, 266.347961, 158.676849)

IGE–361 16

candu.dirName = "U235-1"

candu.tempace = (293.6,)

candu.suff=0.20

candu.acer()

candu.dirName = "U235-2"

candu.tempace = (323.6,)

candu.suff=0.21

candu.acer()

candu.dirName = "U235-3"

candu.tempace = (573.6,)

candu.suff=0.22

candu.acer()

IGE–361 17

2 Format convertion of Dragligs

The early version of the PyNjoy.py script presented above could produce only an ascii-formatted (80-
column) Draglib file in LCM/XSM export format. The current version can also produce binary. Dragon
is expecting binary Draglibs, either in little– or big–endian direct–access XSM format. Since binary
cannot be edited to look at values, both types may be useful. Using the Ganlib capabilities of Dragon,
user can easily perform the required conversions.

The conversion from ascii-formatted to binary is presented below. The other way around can easily
be programmed inspired by the example below.

Three files, present in Version4 wc/Dragon/data/, can be adapted to perform the conversion. These
files are:

a2b drglib.access: This Bourne–shell script is used to specify the location of the ascii-formatted Draglib
produced by Njoy.

#!/bin/sh

#

ACCESS FILE OF CONVERSION DATA SET a2b_drglib.x2m

#

if [$# = 0]

then

echo "usage: a2b_drglib.access directory" 1>&2

exit 1

fi

echo access a2b_drglib.access

ln -s "$1"/../Njoy99/python/Jeff3.1/draglibJeff3.1 EXPORT

ls -l

a2b drglib.x2m: This CLE-2000 Dragon input data file invokes the equality module of Ganlib to per-
form the conversion.

*----

* Draglib conversion, from ascii export to xsm binary

*----

XSM_FILE DRGLIB ;

SEQ_ASCII EXPORT ;

MODULE UTL: END: ;

*

DRGLIB := EXPORT :: EDIT 10 ;

UTL: DRGLIB :: DIR ;

END: ;

a2b drglib.save: This Bourne–shell script is used to specify the location of the binary-formatted Draglib
produced by the equality module of Ganlib. If the conversion is performed on a little-endian
computer (Intel, OSF1), the Draglib is little-endian.

#!/bin/sh

#

SAVE FILE OF CONVERSION DATA SET a2b_drglib.x2m

#

if [$# = 0]

then

echo "usage: a2b_drglib.save directory" 1>&2

IGE–361 18

exit 1

fi

echo access a2b_drglib.save

MACH=‘uname -s‘

Sysx="‘echo $MACH | cut -b -6‘"

if [$Sysx = "CYGWIN"]; then

MACH=‘uname -o‘

elif [$Sysx = "Darwin"]; then

MACH=‘uname -sm‘

elif [$Sysx = "SunOS"]; then

MACH=‘uname -sm‘

fi

if ["$MACH" = "Linux" -o "$MACH" = "OSF1" -o "$MACH" = "Cygwin" -o "$MACH" = "SunOS i86pc" \

-o "$MACH" = "Darwin i386" -o "$MACH" = "Darwin x86_64"]

then

echo ’use little endian libraries’

pos=$1/../../libraries/l_endian

else

echo ’use big endian libraries’

pos=$1/../../libraries/b_endian

fi

mv DRGLIB $pos/draglibJeff3.1

ls -l

Once a Draglib has been converted in direct-access binary format, it is still possible to inspect its
contents using the UTL: utility module. Here is an example where the list of available isotopes in the
library and where the tabulated temperatures and non-infinite dilutions of U235 are printed.

*----

* Draglib inspection (xsm direct-access binary format)

*----

XSM_FILE DLIB_J2 ;

MODULE UTL: END: ;

*

* list of isotopes:

UTL: DLIB_J2 :: DIR ;

*

* temperatures of U235:

UTL: DLIB_J2 :: STEP UP U235 DIR IMPR TEMPERATURE * ;

*

* non-infinite dilutions of U235 at 293 K:

UTL: DLIB_J2 :: STEP UP U235 STEP UP SUBTMP0001 DIR IMPR DILUTION * ;

END: ;

together with the access script file

#!/bin/sh

#

Access Draglib in XSM DA binary format for look_drglib.x2m

#

if [$# = 0]

then

echo "usage: look_drglib.access directory" 1>&2

exit 1

IGE–361 19

fi

echo access look_drglib.access

MACH=‘uname -s‘

if [$MACH = "Linux" -o $MACH = "OSF1"]

then

echo ’use little endian libraries’

pos=$1/../../libraries/l_endian

else

echo ’use big endian libraries’

pos=$1/../../libraries/b_endian

fi

if [-f "$pos"/draglibJef2p2]

then

ln -s "$pos"/draglibJef2p2 DLIB_J2

fi

ls -l

echo "look_drglib access script terminated"

	Contents
	List of Figures
	Python script to generate DRAGLIB and ACELIB
	PyNjoy Script
	PyNjoy instance variables

	PyNjoy methods
	DRAGLIB Library Generation
	The modules and data recovery used in the process
	Sequential calculations
	 Main object instanciation
	 Heavy water
	 Zirconium
	 Xe135
	 U235
	 Process burnup
	Parallel calculations
	 Main object instanciation
	 Thermal scattering
	 Nominal isotopes
	 Fissionable isotopes
	 Fission products
	 Isotopic DRAGLIB computation
	 DRAGLIB concatenation
	 Process burnup
	CPU cost

	ACELIB Library Generation
	Heavy water
	Zirconium
	Xe135
	U235

	Format convertion of Dragligs

