
TECHNICAL REPORT
IGE–374

DEVELOPMENT PROCEDURES FOR VERSION5 OF
REACTOR PHYSICS CODES

A. Hébert

Institut de génie nucléaire
Département de génie mécanique

École Polytechnique de Montréal
August 11, 2020

IGE–374 ii

SUMMARY

Version 5 is a new distribution of reactor physics codes developed at the Groupe d’Analyse Nucléaire
(GAN) of École Polytechnique de Montréal. This distribution is developed using modern software en-
gineering techniques that are likely to improve its quality and help the developers in their daily work.
Three aspects of development procedures are described in this report:

• version control of the project components

• issue tracking and spiral development management

• configuration management of the codes DRAGON, TRIVAC and DONJON.

We will discuss the implementation of the development procedures and their use by Version5’s devel-
opers. These procedures are often assimilated to a quality assurance (QA) plan (plan d’assurance qualité

particulier in french), although they are conceived to facilitate the evolution of Version5 rather than to
slow down its development.

IGE–374 1

1 Version5 basics

One of the main goal of Version5 is to encapsulate all reactor physics codes developed at GAN in a
unique and consistent software development project, and to maintain its consistency and quality during
its development. We want to avoid any duplication of code among software components and maintain
consistency in LCM object specifications and module specifications. In this system, DRAGON is consider
as a foundation code providing functionalities to the other codes in the system. Any LCM object or
module available in DRAGON and required by another code is simply accessed from DRAGON library
and is not duplicated as previously done in Version3.

Version5 is divided into software components, some of them producing only libraries and some pro-
ducing both libraries and executables. Version5 development is performed under the GNU Lesser General
Public License (LGPL).[1] The components are

UTILIB Set of numerical analysis Fortran subroutines compiled as a library.

GANLIB Set of C and Fortran subroutines implementing the computer science layers in Version5, in-
cluding memory management, LCM access routines, CLE-2000 macro-language[2] and utility mod-
ules. Both library and executable are produced.

TRIVAC Full-core finite element code (static and space-time kinetics).[3] Both library and executable
are produced.

DRAGON Lattice code.[4, 5] DRAGON produces a multi-parameter reactor database that can be used
as input in full-core calculations. Both library and executable are produced.

DONJON Full-core simulation of reactor operation.[6] Both library and executable are produced.

IGE–374 2

2 Version control of the project components

Version control is the art of managing changes to information. Although mainly used for software
development, its use can be extended to manage the production of any textual document involving many
contributors. A version control tool make possible the collaborative work of many developers on the
same project by implementing a systematic way of making modifications. Each modification bring to the
project is recorded and can be removed if required. Tools are available to manage the tedious situation
where many developers are working on the same project component.

Many tools are available to perform version control. We have chosen Subversion, an open-source
version control system that is free, powerful, well-accepted by computer scientists and widely available.[7]

Subversion is a widely-used system used to keep track of the historical evolution of software, procedures,
scripts non-regression tests and related documentation. We propose to use Subversion for the totality of
Version5 components. Subversion can be used from command line in a UNIX shell or from a graphical
user interface such as WorkBench.[8]

The basic principle behind version control is to keep the project information in a version control

database or repository and to record every operation performed on this repository. The repository
hierarchical structure is depicted in Fig. 1. The repository represents the eternity of the project. The
information in the repository is organized with a directory structure, as shown in Fig. 1. Each directory
contains a hidden sub-directory named .svn with version control information.

Version5

trunk

branches

tags

issues

readme

Utilib

Ganlib

Dragon

Donjon

Trivac

v5.0.1

v5.0.2

v5.0.3

v5.0.2

v5.0.3

issue000000

issue000001

issue000002

Version3

script

doc

Figure 1: Directory layout in the repository

2.1 Initial commit of the project

Some operations are required to start a project and to build the initial Subversion repository on a
server. These operations are done once so that most project developers never have to perform them.

In version control terminology, a commit (aka check-in) is an operation where a developer input
some information in the repository and recover a corresponding revision identifier. Note that a commit
operation can never be undo, the information written in the repository is written forever. However, it is
always possible to perform a subsequent commit operation to annihilate the effect of a previous commit,
without erasing any information. In a version control system, it is always possible to recover the state of
a system at any revision identifier.

IGE–374 3

The first step consists to create the repository on the server. This operator is done by the system
administrator in charge of your network. The operations are following:

svnadmin create --fs-type fsfs /usr/local/Version5_beta

chgrp -R admin /usr/local/Version5_beta/

chmod -R g+rwx /usr/local/Version5_beta/

chmod -R o+rx /usr/local/Version5_beta/

where admin is the name of the UNIX group allowed to modify the repository. The system administrator
can also start the remote server for the repository:

svnserve -d -r /usr/local/Version5_beta/ &

ps aux | grep svn

All these operations must be performed as root.
Next, the initial commit of the project can be performed by a developer of the project. An image of

the project layout, named trunk and similar to Fig. 2, is created and is used to fill the repository. After
creation of the repository, the image trunk is destroyed.

svn mkdir file:///usr/local/Version5_beta -m ’create Version5 directory’

svn mkdir file:///usr/local/Version5_beta/issues -m ’create issues directory’

cp trunk/script/*-commit /usr/local/Version5_beta/hooks/

svn import trunk file:///usr/local/Version5_beta/trunk \

-m ’issue000000: Initial import of Version5’

rm -r -f trunk

Note the third line used to install the pre-commit and post-commit scripts in the repository. The use of
these scripts will become clear in Section 3.

trunk

readme

Utilib

Ganlib

Dragon

Donjon

Trivac

script

doc

Figure 2: trunk layout

A working copy of the project is next created (check-out) using

svn checkout file:///usr/local/Version5_beta/trunk/ Version5_wc

Here, the working copy is named Version5 wc, although another name could be used. It is created
without the trunk intermediate directory. The working copy is also different from the initial image as it
contains the hidden directories .svn.

There is a subroutine in Ganlib named KDRVER.f that is used to print the tag identifier of each
frozen version of the project (such as v5.0.1). This subroutine automatically recover the corresponding
Subversion revision identifier, provided that keyword expansion is enabled for this subroutine. This is
done with the following two lines:

svn propset svn:keywords "Date Revision" Version5_wc/Ganlib/src/KDRVER.f

svn commit -m ’issue000000: Put keyword expansion’ Version5_wc

Finally, the issue tracking information is recovered (check-out) using

svn checkout file:///usr/local/Version5_beta/issues/ issues_wc

This information is recovered as a directory named issues wc containing a set of card-indexs, each of
them representing a development issue. Their use will become clear in Section 3. At this point, only the
card-index relative to the activation of keyword expansion (named issue000000) exists.

IGE–374 4

2.2 Daily operations on the repository

During the life of the project, selected developers are allowed to perform read and/or write operations
on the repository. We will cover the more frequent cases. More information can be found in Ref. 7.

A developer recover the most recent development version of the project and create its own working

copy using

svn checkout file:///usr/local/Version5_beta/trunk/ Version5_wc

A developer recover the frozen version v5.0.1 of the project using

svn checkout file:///usr/local/Version5_beta/tags/v5.0.1 Version5_wc

A developer A has already checkout a development version of the project some time ago, and want to
update it to the most recent development version:

cd Version5_wc

svn update .

The update operation does not destroy the modifications already made by developer A in its working
copy; the modifications committed by other users are automatically merged to developer’s A modifica-
tions. A conflict may occurs if developer A has modified a line also modified and committed by another
developer. In this case, the commit operation write a C before the conflicting file. In the following
message,

alainhebert$ cd Version5_wc

alainhebert$ svn update .

C readme

Updated to revision 9.

the message indicates that file readme has a conflicting modification and needs further attention from
developer A. The file readme was modified in such a way to highlight the conflict:

#

Instructions for configuring Version5 of Dragon/Donjon.

<<<<<<< .mine

test pas allo

=======

test allo

>>>>>>> .r9

#

The revert operation is more radical than update as it destroy developer A modifications and revert
its working copy to the official revision of the repository:

cd Version5_wc

svn revert -R .

A developer want to delete file Version5 wc/Dragon/abcd from its working copy:

cd Version5_wc/Dragon/

svn delete abcd

Note that abcd will not be deleted from the official revision of the repository until a commit operation is
performed. Even when the deletion is committed, it is always possible to recover this file by asking for a
previous repository revision. Nothing is never lost.

A developer want to add file efgh in directory Version5 wc/Dragon/ of its working copy:

cd Version5_wc/Dragon/

svn add efgh

IGE–374 5

Here, file efgh is now a candidate for inclusion in the repository at the next commit operation. Any file
present in the working copy but not added with svn add will not be committed in the repository. This
feature will be useful for performing configuration management. Although possible, we highly recommend

to avoid adding binary files with the svn add operation. Binary files may be created in the working copy
due to configuration management, but should not be committed.

Finally, a developer may want to commit (aka check-in) its modifications to the repository. Before
committing anything, it is a good idea to check the status of the working copy using

cd Version5_wc/

svn status .

The commit operation is next performed using

cd Version5_wc/

svn commit -m ’issue000023: Introduction of hexagonal SPN capabilities’ .

The commit operationmust be performed with a commit message starting with the issue identifier, a string
of the form issuennnnnn:. The number nnnnnn is a six-digit integer, with leading zeros, representing
the issue associated to the commit. Its meaning will become clear in Section 3. Its value is equal to an
existing value or equal to the maximum existing value plus one.

Committing modifications from a working copy is an important operation as it cannot be reverted. A
developer committing information for the first time should always be accompanied by an experimented
developer and should have obtained permission from the code-keeper of the sub-project affected by the
commit operation.

Each commit operation will increase the revision index of the repository by two, as a second commit
is automatically performed by a post-commit script to update the issue-tracking information.

If a developer want to modify the issue-tracking information, the commit message must be a twelve-
character string of the form

’issuennnnnn:’

in order to avoid the second automatic commit. A developer may want to add information to the
issue000023 card-index present in the issues wc working copy and commit this information using

cd issues_wc/

svn commit -m ’issue000023:’ issue000023

Finally, we consider the operations related to the production of a frozen version:

1. Modify the REV= line of Version5 wc/Ganlib/src/KDRVER.f subroutine to reflect the tag identifier

(5.0.1 in this example) of the new frozen version:

*DECK KDRVER

SUBROUTINE KDRVER(REV,DATE)

*

*---

*

*Purpose:

* To extract CVS or SVN version and production date.

*

*Copyright:

* Copyright (C) 2006 Ecole Polytechnique de Montreal

*

*Author(s): A. Hebert

*

*Parameters: output

* REV revision character identification

* DATE revision character date

*

IGE–374 6

*---

*

CHARACTER REV*48,DATE*64

*

REV=’Version 5.0.2 ($Revision: 509 $)’

DATE=’$Date: 2016-02-01 13:19:26 -0500 (Tue, 02 Feb 2016) $’

IF(REV(22:).EQ.’ion$)’) THEN

* CVS or SVN keyword expansion not performed

REV=’Version 5.0.6’

DATE=’February 2, 2016

ENDIF

RETURN

END

2. Copy the trunk version to the tags directory:

cd Version5_wc

svn commit -m ’issue000049: Commiting KDRVER.f’ .

/usr/bin/svn copy . file:///usr/local/Version5_beta/tags/v5.0.2 \

-m ’issue000049: Tagging the 5.0.2 release of Version5

Note that a commit operation is performed inside the copy operation. The Subversion copy does
not duplicate information inside the repository; only file increments are stored.

2.3 How it works

The pre- and post-commit scripts have been added to the repository to validate commit operations
and to automatically perform the second automatic issue-tracking commit. Both scripts are written in
Python and are based on the pysvn api.[8]

The pre-commit script reads

#!/usr/bin/python

"""

Subversion pre-commit hook which currently checks that the card-index

information is consistent and correctly given.

"""

#Author: Alain Hebert, Ecole Polytechnique, 2006.

import os, sys, pysvn

def main(repos, txn):

Recover the transaction data:

t = pysvn.Transaction(repos, txn)

all_props = t.revproplist()

message = t.revproplist()[’svn:log’]

#

Validate the commit message:

if message[:5] != ’issue’:

sys.stderr.write ("Please begin your commit message with ’issue’ characters. message=%s...\n"% \

message[:15])

sys.exit(1)

try:

cardIndexNumber = int(message[5:11])

except:

sys.stderr.write ("Please begin your commit message with ’issue’ characters followed" \

+" by a six-digit index. message=%s...\n"%message[:15])

sys.exit(1)

fileName = message[:11]

#

IGE–374 7

List of card-index

client = pysvn.Client()

myls = client.ls(’file://’+repos+’/’+’/issues/’)

maxIssue = -1

for k in range(len(myls)):

maxIssue=max(maxIssue, int(myls[k][’name’].split(’/’)[-1][5:]))

if int(fileName[5:]) > maxIssue+1:

sys.stderr.write ("The six-digit index (%d) must be <= %d. message=%s...\n"% \

(int(fileName[5:]), maxIssue+1, message[:15]))

sys.exit(1)

sys.exit(0)

if __name__ == ’__main__’:

if len(sys.argv) < 3:

sys.stderr.write("Usage: %s repos txn\n" % (sys.argv[0]))

else:

main(sys.argv[1], sys.argv[2])

The post-commit script reads

#!/usr/bin/python

"""

Subversion post-commit hook which copy (append) the issue-tracking information

to a new (or existing) card-index in the /issues/ directory. A commit of this

information is performed.

"""

#Author: Alain Hebert, Ecole Polytechnique, 2006.

import os, sys, pysvn, time

def main(repos, rev):

Recover the revision data:

client = pysvn.Client()

log_message=client.log(’file://’ + repos + ’’, discover_changed_paths=True, \

revision_end=pysvn.Revision(pysvn.opt_revision_kind.number, rev))

message = str(log_message[0][’message’])

if message[11:] != ’: Issue-tracking commit’ and message[11:] != ’:’:

Recover the existing card-index

fileName = str(log_message[0][’message’])[:11]

if os.path.isdir(’/tmp/post-issues’):

os.system("chmod -R 777 /tmp/post-issues/")

os.system("rm -r /tmp/post-issues/")

myls = client.ls(’file://’+repos+’/’+’/issues/’)

myls2 = []

for k in range(len(myls)):

myls2.append(str(myls[k][’name’]).split(’/’)[-1])

client.checkout(’file://’+repos+’/’+’/issues/’,’/tmp/post-issues/’,recurse=False)

if fileName in myls2:

Recover the existing card-index and open it

f = open(’/tmp/post-issues/’+fileName, ’a’)

else:

Create a new card-index

f = open(’/tmp/post-issues/’+fileName, ’w’)

f.write(’Card-index: ’+fileName+’\n’)

f.write(’---\n’)

client.add(’/tmp/post-issues/’+fileName)

f.write(str(log_message[0][’author’])+’\n’)

f.write(time.ctime(log_message[0][’date’])+’\n’)

f.write(’subversion revision=%d\n’%log_message[0][’revision’].number)

f.write(message+’\n’)

for cpath in log_message[0][’changed_paths’]:

IGE–374 8

f.write(cpath[’action’]+’ ’+cpath[’path’]+’\n’)

f.write(’---\n’)

f.close()

#committing the issue-tracking card-index to the repository

client.cleanup(’/tmp/post-issues/’)

client.checkin([’/tmp/post-issues/’], fileName+’: Issue-tracking commit’)

os.system("rm -r -f /tmp/post-issues/")

if __name__ == ’__main__’:

if len(sys.argv) < 3:

sys.stderr.write("Usage: %s repos rev\n" % (sys.argv[0]))

else:

main(sys.argv[1], sys.argv[2])

Note the first line of these scripts indicating the position of the Python interpreter. On some system,
the interpreter is located at /usr/local/python, so that the first line should be modified.

IGE–374 9

3 Issue tracking and spiral development management

As most software projects, Version5 is evolving with the spiral cycle development model shown in
Fig. 3. The spiral development model consists of developing the product as a sequence of cycles; each of
them devoted to the development of a single modification (called project increment) to any of the project
components. Each cycle is tagged with a issue identifier of the form issuennnnnn used as reference
through the development cycle. The traceability of the actions made by the developers is made possible
by the introduction of this issue identifier.

specification

conception

implementation

verification

validation

commit
(evolution)

Figure 3: Spiral cycle development model

A cycle consists of the following steps:

1. A development cycle is always initiated by a developer at its own initiative or after receiving an
issue submission form similar to the example shown in Fig. 4. Initiation of a new cycle always

involve the assignment of an issue identifier of the form issuennnnnn where nnnnnn is equal to the
maximum existing value plus one. This rule is followed whatever the type of project increment,
and whatever the deliverable component to modify (including the scripts, non-regression tests, or
documentation). Although a developer doesn’t need to fill an issue submission form to start a cycle,
it is a good practice to fill one if the increment involves more than a few days of work.

A development cycle may be initiated by a user (or by a developer) sending an issue submission
form. An issue submission form can be rejected by the developer in charge of the sub-project or
can be accepted. If the project increment is accepted, the issue identifier is assigned and emailed
to the user (or developer). Next, the issue identifier and core message of the issue submission form
are copied to a file named issuennnnnn located in the issues wc working copy. If the user sent
attached files, a directory named issuennnnnn dir can be created in the issues wc working copy
to hold these files. However, you should avoid to put huge amount of information in the issues

directory. Finally, the issues wc working copy is committed as

cd issues_wc/

svn commit -m ’issuennnnnn:’ .

File issuennnnnn is the card-index (fiche d’intervention in french) characterizing the cycle. It is
automatically updated at each commit made during the development cycle. At any time during
the cycle, the card-index can be updated by the developer in charge of the issue using

IGE–374 10

Figure 4: Example of an issue submission form.

cd issues_wc/

svn update issuennnnnn

modified and re-committed. The issue card-index trace the progress of the work made by the
developer(s) to solve the issue. If the issue involve large programming efforts, it is also important
to document the closing or final commit at the end of the evolution step (see Fig. 3).

2. The second step include the specification and conception work related to the issue. Here, the
amount of work is highly issue-dependent. Some issues (such as assistance request) may not even
require any specification and/or conception work; others may take years to complete. This step
may involve proposed modifications in documentation (LCM object specifications and user’s guide
of the modules) and proposed unitary tests. This information is copied in the developer’s working
copy and can optionally be committed.

3. The third step is the programmation of the increment and its introduction in the developer’s working
copy. At the end of this step, the developer perform an update operation on its working copy to
make sure that no conflicts with other developers exist.

4. The fourth step is the validation of the project increment and its commit in the repository. A
set of selected non-regression tests are performed with the developer’s working copy. If these tests
are conclusive, the issue is closed and an issue closing report is written, appended to the card-
index named issuennnnnn and emailed to the project user group. References to the issue-related
documentation are also added to the card-index. A failure of the non-regression tests may require
to come back to step 3 (or even to step 2 if a specification/conception error is detected). In case of
success, both the card-index and the developer’s working copy are committed to the repository.

IGE–374 11

4 Configuration management

Configuration management is the art of assembling the project components, available in the repository,
in order to build the end product of the project. In case of Version5, the end-product is a set of executables
for codes DRAGON, TRIVAC and DONJON on different UNIX-like operating systems (including PCs
under Cygwin[9]) and a set of PDF reports.

Version5 configuration management uses the simplest existing approach as it requires relatively simple
compiler technologies. In fact, the Version5 sources can be compiled with ISO Fortran–2003 and ANSI
C compilers and its documentation can be compiled with LATEX2ǫ. Version 5 configuration uses nothing
more sophisticated than the technologies available in usual Unix distributions.

libraries

Version5

b_endian

l_endian

Dragon

Utilib

Ganlib

doc

script

readme

rdragon

bin

lib

src

data

Trivac

Working Copy

install

IGE369

install

IGE369.pdf

Makefile

Figure 5: Result of configuration management.

The basic principle of Version5 configuration management consists to executing install and/or make
scripts (gmake is used) within the user’s or developer’s working copy, as described in Fig. 5. Binary files
(libraries, executables, PDF files) will be created but will not be managed by the version control system
(we must avoid committing any binary information). A commit operation can still be performed
on the working copy (without committing any binary information) if no add operation is done on this
binary information.

IGE–374 12

For example, an executable of code DRAGON v5.0.1 with its documentation can be constructed using

svn checkout file:///usr/local/Version5_beta/tags/v5.0.1 Version5_wc

build the DRAGON executable

cd Version5_wc/Dragon

make

cd ../..

#

build the DRAGON documentation

cd Version5_wc/doc/IGE335

./install

cd ../../..

The installation of DRAGON5 include the installation of GANLIB5 and TRIVAC5. Similarly, the in-
stallation of DONJON5 include the installation of DRAGON5. Note that a generic install script is
also available as Version5 wc/script/install to compile the Fortran sources. Each documentation
directory has its own install script.

A test-case present in Version5 wc/Dragon/data/ can then be executed using

cd Version5_wc/Dragon

./rdragon iaea2d.x2m

The directory Version5 wc/Dragon/data/ is containing non-regression test cases, as shown in Fig. 5.
They can be executed using the makefile:

cd Version5_wc/Dragon

make tests

Many of these testcases require the presence of the libraries directory. The user is responsible for
setting this directory.

More detailed information is available in file Version5 wc/readme.

IGE–374 13

References

[1] See http://www.gnu.org/copyleft/lgpl.html.

[2] R. Roy, The CLE-2000 Tool-Box, Report IGE–163, Institut de Génie Nucléaire, École Polytechnique
de Montréal, Montréal, Québec (1999).

[3] A. Hébert, “TRIVAC, A Modular Diffusion Code for Fuel Management and Design Applications”,
Nucl. J. of Canada, Vol. 1, No. 4, 325-331 (1987).

[4] G. Marleau, A. Hébert and R. Roy, “New Computational Methods Used in the Lattice Code Dragon,”
Int. Top. Mtg. on Advances in Reactor Physics, Charleston, USA, March 8-11, 1992.

[5] G. Marleau, A. Hébert and R. Roy, “A User Guide for DRAGON Version5”, Report IGE-335, École
Polytechnique de Montréal, Institut de Génie Nucléaire (2020).

[6] A. Hébert, J. Sekki and R. Chambon, “A User’s Guide for DONJON Version5,” Technical Report
IGE-344, École Polytechnique de Montréal, Institut de Génie Nucléaire (2020).

[7] B. Collins-Sussman, B. W. Fitzpatrick and C. Michael Pilato, “Version Control with Subversion,”
O’Reilly Media Inc., USA, June 2004. See http://subversion.tigris.org.

[8] See http://pysvn.tigris.org.

[9] See http://www.cygwin.com.

http://www.gnu.org/copyleft/lgpl.html
http://subversion.tigris.org
http://pysvn.tigris.org
http://www.cygwin.com

	Version5 basics
	Version control of the project components
	Initial commit of the project
	Daily operations on the repository
	How it works

	Issue tracking and spiral development management
	Configuration management
	References

