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1 Introduction

This technical report describes the theory and user guide of Brisingr[1], a solution technique of the
neutron diffusion equation integrated in the Version5 code system.[2] Brisingr is an implementation of
the nodal expansion method[3] (NEM) and of the analytic nodal method[4] (ANM), used to integrate
the coupling equations between the homogeneous nodes of the finite difference diffusion operator with
centered meshes and to solve the flux equations. This presentation is limited to a regular 1D/2D/3D
Cartesian domain made of parallelepipeds.
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2 The nodal expansion method

The principle of this method is to consider the shape of the neutron flux in each node as a superposition
of basic shapes and not as a linear function such as those appearing in the classic finite difference approach.
In order to avoid solving a too complex problem in which the coefficients of the basic shapes would be
the unknowns, the problem is split into two:

• A finite difference problem in which the coupling coefficients are modified so as to produce currents
with surfaces identical to those which would have been obtained if the flux had a nonlinear shape
in the node;

• A nodal problem proper in which the coefficients of the basic shapes are determined.

The solution of the first problem, carried out globally on the whole domain, gives the average flux per
node (data of the second problem). The solution of the second problem, carried out independently by
pairs of nodes, gives the corrections to the coupling coefficients (data of the first problem). During the
convergence process, the currents on each of the interfaces of the core nodes are re-evaluated and used to
make a correction to the “finite difference” type diffusion operator. When the current is stabilized and
the finite difference iteration is converged, the process is stopped.

We first consider a Cartesian one-dimensional (1D) traverse made from the assembly of many infinite
slabs with parabolic transverse leakage. The 1D heterogeneous configuration corresponds to the case
where the neutron flux is a function of a unique spatial variable. These cases can be solved analytically,
whatever the type of conditions imposed at boundaries. Introduction of a transverse leakage term Ly

g(x)+
Lz
g(x) (unit: n/(cm

3·s)) is required to generalize the NEM to 2D and 3D cases.

Introducing transverse integrated leakage terms, Eq. (5.12) of Ref. 7 simplifies to a 1D equation where
the nuclear properties of the reactor are only a function of the independent variable x. This transverse
integrated equation is written

d

dx
Jg(x) + Σr,g(x)φg(x) + Ly

g(x) + Lz
g(x) = Q⋄g(x) (2.1)

with the current defined as

Jg(x) = −Dg(x)
dφg
dx

(2.2)

and the source defined as

Q⋄g(x) =

G
∑

h=1

h6=g

Σs,g←h(x)φh(x) +
χg(x)

Keff

G
∑

h=1

νΣf,h(x)φh(x). (2.3)

The boundary conditions are either a zero-flux condition (φg(x) = 0) or an albedo condition written

∓Dg(x)
dφg
dx

+
1

2

1− βg(x)

1 + βg(x)
φg(x) = 0 (2.4)

where the sign “−” or “+” is used for a left (x = x1/2) or a right boundary (x = xI+1/2), respectively.

Each slab is assumed to be homogeneous, so that the corresponding nuclear properties Dg(x), Σr,g(x),
Σs,g←h(x), χg(x) and νΣf,h(x) are piecewise continuous. As shown in Fig. 1, the reactor domain is divided
into I nodes of indices 1 ≤ i ≤ I, in such a way that the nuclear properties in node i are constant and
equal to Di,g, Σr,i,g, Σs,i,g←h, χi,g and νΣf,i,h.

Using this geometric representation, the transverse integrated leakage terms are written

Ly
g(x) = −

1

∆yj∆zk

∫ yj+1/2

yj−1/2

dy

∫ zk+1/2

zk−1/2

dz Dg(x, y, z)
∂2

∂y2
φg(x, y, z)

= −
Di,j,k,g

∆yj

[

∂

∂y
φg(xi, yj+1/2, zk)−

∂

∂y
φg(xi, yj−1/2, zk)

]

=
1

∆yj

[

Jg(xi, yj+1/2, zk)− Jg(xi, yj−1/2, zk)
]

(2.5)
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Figure 1: Spatial discretization.

and

Lz
g(x) = −

1

∆yj∆zk

∫ yj+1/2

yj−1/2

dy

∫ zk+1/2

zk−1/2

dz Dg(x, y, z)
∂2

∂z2
φg(x, y, z)

= −
Di,j,k,g

∆zk

[

∂

∂z
φg(xi, yj , zk+1/2)−

∂

∂y
φg(xi, yj, zk−1/2)

]

=
1

∆zk

[

Jg(xi, yj, zk+1/2)− Jg(xi, yj, zk−1/2)
]

. (2.6)

Smith introduced a quadratic leakage approximation in the nodal schemes leading to the version

that is now currently used in legacy codes
[4]
. Smith proposed to use polynomial coefficients preserving

the average leakage terms over three adjacent nodes. Such an approximation can be constructed for
node (i, j), in the X–direction, using L̄y

i−1,g, L̄
y
i,g and L̄y

i+1,g. First consider the transverse leakage term
Ly
g(x) along the X-axis for the leakage in the Y direction. Assuming C2 continuity of Ly

g(x) over three
consecutive nodes, this approximation is written

Ly
g(x) =

2
∑

i=0

bi x
i (2.7)

where coefficients bi are obtained so that

1

∆xi−1

∫ xi−1/2

xi−3/2

dxLy
g(x) = L̄y

i−1,g ,
1

∆xi

∫ xi+1/2

xi−1/2

dxLy
g(x) = L̄y

i,g

and
1

∆xi+1

∫ xi+3/2

xi+1/2

dxLy
g(x) = L̄y

i+1,g , (2.8)

and where L̄y
i,g is the nodal averaged transverse leakage recovered from the previous nodal update itera-

tion. The detailed processing of transverse leakage terms will be described in Sect. 2.2.

Equation (2.1) can be written in such a way as to be valid in node i:

d

dx
Jg(x) + Σr,i,g φg(x) + Ly

g(x) + Lz
g(x) = Q⋄g(x) =

G
∑

h=1

h6=g

Σs,i,g←h φh(x) +
χi,g

Keff

G
∑

h=1

νΣf,i,h φh(x)

if xi−1/2 < x < xi+1/2 (2.9)

with

Jg(x) = −Di,g
d

dx
φg(x). (2.10)

Integrating Eq. (2.9) over node i, we obtain

Ji+1/2,g − Ji−1/2,g
∆xi

+Σr,i,g φ̄i,g + L̄yz
i,g = Q̄⋄i,g (2.11)

where Ji±1/2,g ≡ Jg(xi±1/2) and

L̄yz
i,g =

1

∆xi

∫ xi+1/2

xi−1/2

dx
[

Ly
g(x) + Lz

g(x)
]

. (2.12)
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Neutron currents can be broken down into 2 parts by showing the usual finite difference component
and the difference between the real current and its finite difference approximation. For the left right
boundary, we write

Ji+1/2,g =

{

−D+
i,g

(

φ̄i+1,g − φ̄i,g
)

− D̃+
i,g

(

φ̄i+1,g + φ̄i,g
)

if i < I

D+
i,gφ̄i,g − D̃+

i,gφ̄i,g if i = I
(2.13)

and for the left node boundary:

Ji−1/2,g =

{

−D−i,g
(

φ̄i,g − φ̄i−1,g
)

− D̃−i,g
(

φ̄i,g + φ̄i−1,g
)

if i > 1

−D−i,gφ̄i,g − D̃−i,gφ̄i,g if i = 1
(2.14)

where D̃±i,g is a drift coefficient that will be obtained from the nodal update procedure of Sect. 2.5 and
where

D+
i,g =

2Di,gDi+1,g

Di,g∆xi+1 +Di+1,g∆xi

D−i,g =
2Di−1,gDi,g

Di−1,g∆xi +Di,g∆xi−1
. (2.15)

Both coefficients D±i,g and D̃±i,g are non-dimensional quantities.

In case where abscissa xi±1/2 is located on the boundary of the domain, we write

D±i,g =











2Di,g

∆xi
for a zero flux BC

2Di,gΛi,g

2Di,g + Λi,g∆xi
for an albedo BC

(2.16)

where Λi,g is the albedo function defined as

Λ =
1

2

1− β

1 + β
. (2.17)

Eqs. (2.15) and (2.16) are identical to mesh centered finite difference (MCFD) coefficients of Sect.
5.2.2 in Ref. 7. Values D±i,g and D̃±i,g are stored in variables FDMNCC and CNCC of Brisingr, respectively.

Values φ̄i,g are stored in variables CMFD sol.

The system of equations thus obtained depends only on the average flux in the node. Its resolution
can be carried out using the method with two iteration levels (internal and external) conventionally used
in finite difference calculation codes. The internal iteration calculates the flux in equilibrium with a given
source, while the external iteration determines the source created by the flux.

The re-evaluation of the neutron currents is made by solving, for each interface separating 2 ad-
jacent nodes, a one-dimensional diffusion equation. This equation is obtained by integrating the three-
dimensional equation on the directions transverse to the direction of reevaluation of the currents, assuming
that the currents obey Fick’s law. For example, for the case of an interface between nodes i and i + 1,
and for each of the nodes, these equations are

For the left node (xi−1/2 < x < xi+1/2):

−Di,g
d2

dx2
φi,g(x) + Σr,g(x)φi,g(x) + Ly

i,g(x) + Lz
i,g(x) = Q⋄i,g(x), (2.18)

For the right node (xi+1/2 < x < xi+3/2):

−Di+1,g
d2

dx2
φi+1,g(x) + Σr,g(x)φi+1,g(x) + Ly

i+1,g(x) + Lz
i+1,g(x) = Q⋄i+1,g(x). (2.19)
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The flux continuity relation is written

f+
i,g φi,g(xi+1/2) = f−i+1,g φi+1,g(xi+1/2) (2.20)

where f+
i,g and f−i+1,g are the flux discontinuity factors for nodes i and i+ 1 at xi+1/2.

The current continuity relation

J(xi+1/2) = −Di,g
d

dx
φi,g(xi+1/2) = −Di+1,g

d

dx
φi+1,g(xi+1/2) (2.21)

complete the system of equations.

2.1 Solution of the nodal expansion equations over a 1D traverse

The nodal expansion method is based on an expansion of φi,g(x) of the form

φi,g(u) =
4

∑

ℓ=0

aℓ,i,g pℓ(u) (2.22)

and an expansion of the transverse leakage terms Lyz
i,g(u) of the form

Lyz
i,g(u) = L̄yz

i,g + ρyzi,g,1 p1(u) + ρyzi,g,2 p2(u) (2.23)

where the trial function are defined as[5]

p0(u) = 1

p1(u) = u

p2(u) = 3u2 −
1

4

p3(u) =

(

u2 −
1

4

)

u

p4(u) =

(

u2 −
1

4

)(

u2 −
1

20

)

(2.24)

and where u is the reduced coordinate defined over the support −1/2 < u < 1/2 as

u =
x

∆xi
−

1

2
. (2.25)

In the case where the discrepancy between the spectral indices of two nodes are higher than a fixed
threshold, the order 3 and 4 trial functions are replaced by

p3(u) = sinh(ηu)

p4(u) = cosh(ηu)−

∫ 1/2

−1/2

du cosh(ηu) = cosh(ηu)−
2

η
sinh(η/2) (2.26)

with

ηi,g = ∆xi

√

Σr,i,g

Di,g
(2.27)

where we assume that Σr,i,g ≥ 0.

All expansion functions with ℓ > 0 have zero averages. The coefficient a0,i,g is therefore the averaged
flux φ̄i,g.

Equation (2.18) is written in terms of reduced variable −1/2 < u < 1/2 as

Ri,g(u) = −
Di,g

∆x2i

d2

du2
φi,g(u) + Σr,i,g φi,g(u) + Lyz

i,g(u)−Q⋄i,g(u) = 0. (2.28)
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The expansion in Eq. (2.22) being an approximation of the real solution, the application of the operator
of diffusion to this function, leads to a function of u called remainder or residue defined as

∫ 1/2

−1/2

du pℓ(u)Ri,g(u) = 0 (2.29)

where ℓ = 0, 1, or 2 and 1 ≤ g ≤ G.

We substitute Eq. (2.22) in Eq. (2.28). We multiply this expression by weight functions p0(u) to
p2(u) and integrate over node i using Eq. (2.29). We obtain three relations on each node by forcing the
residuals Ri,g(u) to be projected on the trial functions defined in Eqs. (2.24) or (2.26). The operation
leads to a system whose unknowns are the expansion coefficients. The three weights residual relations
corresponding to a pure polynomial expansion base are1:

−
2Di,g

∆x2i

(

3a2,i,g +
a4,i,g
5

)

+Σr,i,g a0,i,g + L̄yz
i,g =

G
∑

h=1

h6=g

Σs,i,g←h a0,i,h +
χi,g

Keff

G
∑

h=1

νΣf,i,h a0,i,h, (2.30)

−
Di,g

2∆x2i
a3,i,g +

Σr,i,g

12

(

a1,i,g −
a3,i,g
10

)

+
ρyzi,g,1
12

=

G
∑

h=1

h6=g

Σs,i,g←h

12

(

a1,i,h −
a3,i,h
10

)

+
χi,g

Keff

G
∑

h=1

νΣf,i,h

12

(

a1,i,h −
a3,i,h
10

)

, (2.31)

and

−
Di,g

5∆x2i
a4,i,g +

Σr,i,g

20

(

a2,i,g −
a4,i,g
35

)

+
ρyzi,g,2
20

=

G
∑

h=1

h6=g

Σs,i,g←h

20

(

a2,i,h −
a4,i,h
35

)

+
χi,g

Keff

G
∑

h=1

νΣf,i,h

20

(

a2,i,h −
a4,i,h
35

)

. (2.32)

The corresponding weight residual relations with hyperbolic basis functions from Eqs. (2.26) are

−
Di,g

∆x2i
[6a2,i,g + α0(ηi,g)a4,i,g] + Σr,i,g a0,i,g + L̄yz

i,g =

G
∑

h=1

h6=g

Σs,i,g←h a0,i,h

+
χi,g

Keff

G
∑

h=1

νΣf,i,h a0,i,h, (2.33)

Σr,i,g

12
a1,i,g +

ρyzi,g,1
12

=

G
∑

h=1

h6=g

Σs,i,g←h

[

a1,i,h
12

+
α1(ηi,h)

η2i,h
a3,i,h

]

+
χi,g

Keff

G
∑

h=1

νΣf,i,h

[

a1,i,h
12

+
α1(ηi,h)

η2i,h
a3,i,h

]

(2.34)

and

Σr,i,g

20
a2,i,g +

ρyzi,g,2
20

=

G
∑

h=1

h6=g

Σs,i,g←h

[

a2,i,h
20

+
α2(ηi,h)

η2i,h
a4,i,h

]

+
χi,g

Keff

G
∑

h=1

νΣf,i,h

[

a2,i,h
20

+
α2(ηi,h)

η2i,h
a4,i,h

]

(2.35)

1The code Brisingr defines coefficients quad%o11 = 1/12, quad%o13 = −1/120, quad%o22 = 1/20 and quad%o24 = −1/700
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where

α0(η) = 2η sinh(η/2)

α1(η) = η cosh(η/2)− 2 sinh(η/2)

α2(η) =

(

12

η
+ η

)

sinh(η/2)− 6 cosh(η/2) (2.36)

and where we used a simplification from equation

Di,g

∆x2i
=

Σr,i,g

η2i,g
. (2.37)

In the case of a pure polynomial expansion base, interface fluxes in node i can be obtained from
Eqs. (2.47) and (2.49). They are written

φ+i−1/2,g = a0,i,g −
a1,i,g
2

+
a2,i,g
2

(2.38)

and
φ−i+1/2,g = a0,i,g +

a1,i,g
2

+
a2,i,g
2

(2.39)

where a0,i,g = φ̄i,g .

The corresponding relations with hyperbolic basis functions from Eqs. (2.26) are

φ+i−1/2,g = a0,i,g −
a1,i,g
2

+
a2,i,g
2

− sinh(ηi,g/2)a3,i,g +
α1(ηi,g)

ηi,g
a4,i,g (2.40)

and

φ−i+1/2,g = a0,i,g +
a1,i,g
2

+
a2,i,g
2

+ sinh(ηi,g/2)a3,i,g +
α1(ηi,g)

ηi,g
a4,i,g (2.41)

Interface net currents in node i can be obtained from Eqs. (2.47) and (2.49). In the case of a pure
polynomial expansion base, they are written

Ji−1/2,g = −
Di,g

∆xi

(

a1,i,g − 3a2,i,g +
a3,i,g
2

−
a4,i,g
5

)

(2.42)

and

Ji+1/2,g = −
Di,g

∆xi

(

a1,i,g + 3a2,i,g +
a3,i,g
2

+
a4,i,g
5

)

. (2.43)

The corresponding relations with hyperbolic basis functions from Eqs. (2.26) are

Ji−1/2,g = −
Di,g

∆xi
[a1,i,g − 3a2,i,g + ηi,g cosh(ηi,g/2)a3,i,g − ηi,g sinh(ηi,g/2)a4,i,g] (2.44)

and

Ji+1/2,g = −
Di,g

∆xi
[a1,i,g + 3a2,i,g + ηi,g cosh(ηi,g/2)a3,i,g + ηi,g sinh(ηi,g/2)a4,i,g] (2.45)

The flux and current continuity relations at surface xi+1/2 corresponding to a pure polynomial ex-
pansion base are obtained from Eqs. (2.20) and (2.21) as

fx+
i,g

(

a0,i,g +
a1,i,g
2

+
a2,i,g
2

)

= fx−
i+1,g

(

a0,i+1,g −
a1,i+1,g

2
+
a2,i+1,g

2

)

(2.46)

and

Di,g

∆xi

(

a1,i,g + 3a2,i,g +
a3,i,g
2

+
a4,i,g
5

)

=
Di+1,g

∆xi+1

(

a1,i+1,g − 3a2,i+1,g +
a3,i+1,g

2
−
a4,i+1,g

5

)

(2.47)

where fx+
i,g and fx−

i+1,g are the flux discontinuity factors imposed on surface xi+1/2.
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The corresponding weight residual relations with hyperbolic basis functions from Eqs. (2.26) are

fx+
i,g

[

a0,i,g +
a1,i,g
2

+
a2,i,g
2

+ sinh(ηi,g/2)a3,i,g +
α1(ηi,g)

ηi,g
a4,i,g

]

= fx−
i+1,g

[

a0,i+1,g −
a1,i+1,g

2
+
a2,i+1,g

2
− sinh(ηi+1,g/2)a3,i+1,g +

α1(ηi+1,g)

ηi+1,g
a4,i+1,g

]

(2.48)

and

Di,g

∆xi

[

a1,i,g + 3a2,i,g + ηi,g cosh(ηi,g/2)a3,i,g + ηi,g sinh(ηi,g/2)a4,i,g

]

=
Di+1,g

∆xi+1

[

a1,i+1,g − 3a2,i+1,g + ηi+1,g cosh(ηi+1,g/2)a3,i+1,g − ηi+1,g sinh(ηi+1,g/2)a4,i+1,g

]

(2.49)

The zero flux boundary conditions at surfaces x−1/2 and xI+1/2 corresponding to a pure polynomial
expansion base are:

a0,1,g −
a1,1,g
2

+
a2,1,g
2

= 0 (2.50)

and a0,I,g +
a1,I,g
2

+
a2,I,g
2

= 0. (2.51)

The corresponding weight residual relations with hyperbolic basis functions from Eqs. (2.26) are

a0,1,g −
a1,1,g
2

+
a2,1,g
2

− sinh(η1,g/2)a3,1,g +
α1(η1,g)

η1,g
a4,1,g = 0 (2.52)

and a0,I,g +
a1,I,g
2

+
a2,I,g
2

+ sinh(ηI,g/2)a3,I,g +
α1(ηI,g)

ηI,g
a4,I,g = 0 (2.53)

The albedo boundary conditions at surfaces x−1/2 and xI+1/2 corresponding to a pure polynomial
expansion base are:

(Λx−
g )a0,1,g −

(

Λx−
g

2
+
D1,g

∆x1

)

a1,1,g +

(

Λx−
g

2
+

3D1,g

∆x1

)

a2,1,g

−
D1,g

2∆x1
a3,1,g +

D1,g

5∆x1
a4,1,g = 0 (2.54)

and
(Λx+

g )a0,I,g +

(

Λx+
g

2
+
DI,g

∆xI

)

a1,I,g +

(

Λx+
g

2
+

3DI,g

∆xI

)

a2,I,g

+
DI,g

2∆xI
a3,I,g +

DI,g

5∆xI
a4,I,g = 0 (2.55)

where the albedo function Λ is expressed as a function of the boundary albedo β using Eq. (2.17).

If a reflector model is being used, the information available at boundary xI+1/2 are the reference
heterogeneous boundary flux φ∗I+1/2,g, the reference net boundary current J∗I+1/2,g and the boundary

discontinuity factor f+
I,g. In this case, the right albedo factor is written

Λx+
g =

J∗I+1/2,g f
x+
I,g

φ∗I+1/2,g

. (2.56)
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The corresponding weight residual relations with hyperbolic basis functions from Eqs. (2.26) are

(Λx−
g )a0,1,g −

(

Λx−
g

2
+
D1,g

∆x1

)

a1,1,g +

(

Λx−
g

2
+

3D1,g

∆x1

)

a2,1,g

−

(

Λx−
g sinh(η1,g/2) +

D1,g

∆x1
η1,g cosh(η1,g/2)

)

a3,1,g

+

(

Λx−
g

α1(η1,g)

η1,g
+
D1,g

∆x1
η1,g sinh(η1,g/2)

)

a4,1,g = 0 (2.57)

and
(Λx+

g )a0,I,g +

(

Λx+
g

2
+
DI,g

∆xI

)

a1,I,g +

(

Λx+
g

2
+

3DI,g

∆xI

)

a2,I,g

+

(

Λx+
g sinh(ηI,g/2) +

DI,g

∆xI
ηI,g cosh(ηI,g/2)

)

a3,I,g

+

(

Λx+
g

α1(ηI,g)

ηI,g
+
DI,g

∆xI
ηI,g sinh(ηI,g/2)

)

a4,I,g = 0. (2.58)

The X−directed node leakage L̄x
i,g is finally obtained as

L̄x
i,g = Ji+1/2,g − Ji−1/2,g =







−
2Di,g

∆xi
(3a2,i,g + a4,i,g/5) , if pure polynomials;

−
2Di,g

∆xi
[3a2,i,g + ηi,g sinh(ηi,g/2)a4,i,g] , otherwise .

(2.59)

2.2 The quadratic transverse leakage approximation with the NEM

One important point which needs to be addressed before Eq. (2.9) can be solved are the transverse leak-
age terms Ly

g(x) and L
z
g(x). Their spatial dependency is unknown, so their shape must be approximated.

The most popular approximation in nodal schemes is the quadratic transverse leakage approximation.
For example, the X-direction spatial dependence of the transverse leakage is approximated by Eq. (2.23).
The adjustment of coefficients ρyzi,g,1 and ρyzi,g,2 is made so as to preserve the node average leakages of
nodes i − 1, i and i+ 1.

The first three basis functions pℓ(u) are orthogonal on interval −1/2 ≤ u ≤ 1/2, so that the quadratic
leakage coefficients ρyzi,g,1 and ρyzi,g,2 of Eq. (2.23) are obtained as

〈

Lyz
i,g(u) p1(u)

〉

= ρyzi,g,1 〈p1(u) p1(u)〉 =
ρyzi,g,1
12

〈

Lyz
i,g(u) p2(u)

〉

= ρyzi,g,2 〈p2(u) p2(u)〉 =
ρyzi,g,2
20

. (2.60)

These coefficients can be obtained with the help of the following symbolic Matlab script:

syms u

A=[1, -dxm/2, dxm ^2/3 ; 1, dx/2, dx ^2/3 ;

1, (2* dx+dxp)/2, (3* dx ^2+3* dx*dxp+dxp ^2)/3];

coef =A\[ Lxm ; Lx ; Lxp ];

polyu=symfun(coef (1)+ coef (2)*(u+1/2)* dx+coef (3)*((u+1/2)* dx)^2,u);

p0=symfun(1,u);

p1=symfun(u,u);

p2=symfun (3*u^2-1/4, u);

dummy= simplify (int(p0*polyu , -1/2 ,1/2))

rho1 =12* simplify (int(p1*polyu , -1/2 ,1/2))

rho2 =20* simplify (int(p2*polyu , -1/2 ,1/2))

where the variable coef contains the coefficients bi of Eq. (2.7) and the variable polyu contains the
function Lyz

i,g(u) in Eq. (2.60). The result of this script is written

ρi,g,1 =
∆xi
gi

[

(

L̄i+1,g − L̄i,g

)

(∆xi + 2∆xi−1) (∆xi +∆xi−1)

+
(

L̄i,g − L̄i−1,g

)

(∆xi + 2∆xi+1) (∆xi +∆xi+1)
]

(2.61)



IGE-380 10

ρi,g,2 =
∆x2i
gi

[

(

L̄i+1,g − L̄i,g

)

(∆xi +∆xi−1) +
(

L̄i−1,g − L̄i,g

)

(∆xi +∆xi+1)
]

(2.62)

with
gi = (∆xi +∆xi+1) (∆xi +∆xi−1) (∆xi−1 +∆xi +∆xi+1) (2.63)

where 1 < i < I. In the particular case where i = 1 or i = I, one can use a linear leakage approximation
on two adjacent nodes, or stay with a quadratic leakage approximation, using nodes 1 ≤ i ≤ 3 or
I − 2 ≤ i ≤ I.

2.3 The linear transformation technique

A linear transformation technique is required with the analytic nodal method (ANM). Our presenta-

tion is limited to 2D Cartesian geometries, in order to simplify equations.
[6]

The multigroup formulation
of the steady-state 2D neutron diffusion equation is written

−∇ ·Dg(r)∇φg(r) + Σr,g(r)φg(r)

=

G
∑

h=1

h6=g

Σg←h(r)φh(r) +
χg(r)

Keff

G
∑

h=1

νΣfh(r)φh(r) (2.64)

where

G = total number of energy groups

Keff = effective multiplication factor

φg(r) = neutron flux in group g

Dg(r) = diffusion coefficient in group g

Σr,g(r) = macroscopic removal cross section in group g

Σg←h(r) = macroscopic scattering cross section from group h toward

group g

χg(r) = fission spectrum in group g

νΣfh(r) = product of the macroscopic fission cross section by the average

number of neutrons emitted per fission in group h.

The boundary condition is either a zero flux (φg(r) = 0 if r ∈ ∂Wi) or an albedo boundary condition

written as

Dg(r)∇φg(r) ·N(r) +
1

2

1− β(r)

1 + β(r)
φg(r) = 0 if r ∈ ∂Wi (2.65)

where β(r) is the albedo at surfacic point r and ∂Wi are the fraction of ∂V where the zero-flux or albedo
boundary condition is applied.

The Cartesian domain is partitioned into rectangular nodes (i, j), as depicted in Fig. 2. The nuclear
properties are assumed uniform over each node. Equation (2.64) can be written in such a way to be valid
on node (i, j) as

−Di,j,g
∂2φg
∂x2

− Di,j,g
∂2φg
∂y2

+ Σr,i,j,g φg(x, y)

=
G
∑

h=1

h6=g

Σi,j,g←h φh(x, y) +
χi,j,g

Keff

G
∑

h=1

νΣf,i,j,h φh(x, y) (2.66)

where xi−1/2 < x < xi+1/2 and yj−1/2 < y < yj+1/2.

At this point, we introduce the linear transformation technique, in order to uncouple the energy
groups. Equation (2.66) is first rewritten in matrix form as

∂2

∂x2
Φ(x, y) +

∂2

∂y2
Φ(x, y) + Fi,jΦ(x, y) = 0 (2.67)
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xi-3/2 
xi-1/2 xi+1/2 

xi+3/2 
xi-1 xi+1

xi

∆xi

X 

region i, jregion i−1, j

region i, j+1

region i+1, j

region i, j−1

Y 

yj−3/2

yj−1

yj+1/2

yj−1/2

yj+3/2

yj

yj+1

∆yj

Figure 2: Definition of the regions in 2–D Cartesian geometry

where xi−1/2 < x < xi+1/2 and yj−1/2 < y < yj+1/2, with

Φ(x, y) =







φ1(x, y)
...

φG(x, y)






(2.68)

and

Fi,j =











fi,j,11 fi,j,12 . . . fi,j,1G
fi,j,21 fi,j,22 . . . fi,j,2G

...
...

. . .
...

fi,j,G1 fi,j,G2 . . . fi,j,GG











(2.69)

where the components fgi,j,h of this matrix are written as

fgi,j,h =
1

Di,j,g

[

−Σr,i,j,gδgh +Σi,j,g←h(1− δgh) +
χi,j,g

Keff
νΣf,i,j,h

]

. (2.70)

The next step consists to find all eigenvectors ti,j,ℓ of matrix Fi,j with the associated eigenvalues λi,j,ℓ.
We build a matrix Ti,j whose columns are the eigenvectors of Fi,j . This matrix is written

Ti,j =









ti,j,1
ti,j,2
. . .
ti,j,g









(2.71)

so that

Fi,jTi,j = Ti,jdiag(λi,j,ℓ) . (2.72)

The linear transformation technique used to solve Eq. (2.66) is based on the introduction of an
unknown vector Ψ(x, y) defined as

Φ(x, y) = Ti,jΨ(x, y) =











ti,j,11 ti,j,12 . . . ti,j,1G
ti,21 ti,j,22 . . . ti,j,2G
...

...
. . .

...
ti,j,G1 ti,G2 . . . ti,j,GG





















ψ1(x, y)
ψ2(x, y)

...
ψG(x, y)











(2.73)
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and to its substitution in Eq. (2.67). We obtain

∂2

∂x2
Ti,j Ψ(x, y) +

∂2

∂y2
Ti,j Ψ(x, y) + Fi,j Ti,j Ψ(x, y) = 0 . (2.74)

We next left–multiply each side of Eq. (2.74) by [Ti]
−1 and use Eq. (2.72) to obtain

∂2

∂x2
Ψ(x, y) +

∂2

∂y2
Ψ(x, y) + diag(λi,j,ℓ)Ψ(x, y) = 0 (2.75)

where xi−1/2 < x < xi+1/2 and yj−1/2 < y < yj+1/2.

Equation (2.75) is similar to Eq. (2.67) with the difference that all the energy groups are uncoupled.
Its resolution will therefore reduces to the solution of G one-speed problems.

2.4 The analytic nodal method in 2–D Cartesian geometry

The two-dimensional (2–D) Cartesian heterogeneous reactor configurations correspond to the case
where the neutron flux is function of two spatial variables. These cases cannot be solved analytically and
the analytic nodal method (ANM) is an attempt to find a solution with the smallest possible approxi-

mation. Here, we are limiting our investigations to a 2–D Cartesian domain made from the assembly of
many x–y rectangular nodes which are infinite in the z direction.

In this case, the neutron flux and the nuclear properties of the reactor are only function of the
independent variables x and y. Equation (2.64) simplifies to Eq. (2.66) where each node is assumed to be
homogeneous, so that the corresponding nuclear properties are piecewise continuous. As shown in Fig. 2,
the reactor domain is divided into I × J regions of indices 1 ≤ i ≤ I and 1 ≤ j ≤ J , in such a way that
the nuclear properties in region i, j are constant and equal to Di,j,g, Σr,i,j,g, Σi,j,g←h, χi,j,g and νΣf,i,j,h.

The linear transformation technique of Sect. 2.3 is applied on each node, leading to the linear trans-
formation G×G matrix Ti,j and to a set of G eigenvalues λi,j,ℓ. The transformation process is repeated
for each node, leading to I × J matrix equations written as

∂2

∂x2
Ψ(x, y) +

∂2

∂y2
Ψ(x, y) + diag(λi,j,ℓ)Ψ(x, y) = 0 (2.76)

if xi−1/2 < x < xi+1/2 and yj−1/2 < y < yj+1/2. Each equation is uncoupled in energy, and can be
written as G differential equations of the form

∂2

∂x2
ψg(x, y) +

∂2

∂y2
ψg(x, y) + λi,j,g ψg(x, y) = 0 ; g = 1, G . (2.77)

Unfortunately, it is impossible to find the analytical solution of Eq. (2.77) because its dependent
variable ψg(x, y) is generally not separable. The ANM is based on transverse integration of Eq. (2.77),
leading to

∫ yj+1/2

yj−1/2

dy
∂2

∂x2
ψg(x, y) +

∫ yj+1/2

yj−1/2

dy
∂2

∂y2
ψg(x, y) + λi,j,g

∫ yj+1/2

yj−1/2

dy ψg(x, y) = 0

which can be transverse integrated along the Y axis as

∂2

∂x2
ψy
j,g(x) + λi,j,g ψ

y
j,g(x) = Ly

j,g(x) , (2.78)

ψy
j,g(x) =

1

∆yj

∫ yj+1/2

yj−1/2

dy ψg(x, y) (2.79)

where ∆yj = yj+1/2 − yj−1/2 and where we introduced the X–directed transverse leakage term as

Ly
j,g(x) = −

1

∆yj

∫ yj+1/2

yj−1/2

dy
∂2

∂y2
ψg(x, y) = −

1

∆yj

∂

∂y
ψg(x, y)

∣

∣

∣

∣

yj+1/2

yj−1/2

. (2.80)
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Similarly, the transverse integration along the X axis leads to

∂2

∂y2
ψx
i,g(y) + λi,j,g ψ

x
i,g(y) = Lx

i,g(y) , (2.81)

ψx
i,g(y) =

1

∆xi

∫ xi+1/2

xi−1/2

dxψg(x, y) (2.82)

where ∆xi = xi+1/2 − xi−1/2 and where we introduced the Y –directed transverse leakage term as

Lx
i,g(y) = −

1

∆xi

∫ xi+1/2

xi−1/2

dx
∂2

∂x2
ψg(x, y) = −

1

∆xi

∂

∂x
ψg(x, y)

∣

∣

∣

∣

xi+1/2

xi−1/2

. (2.83)

Equations (2.78) and (2.81) can be solved analytically, provided that the x and y variation of the
transverse leakage terms Ly

j,g(x) and Lx
i,g(y) are known. This is where we introduce the quadratic leak-

age approximation of Eq.(2.7) as the unique approximation of the ANM. Such an approximation can be
constructed for node (i, j), in the X–direction, using L̄y

i−1,j,g, L̄
y
i,j,g and L̄y

i+1,j,g, the transverse leakage
terms without linear transformation. In his thesis, Smith developed the ANM with a quadratic leak-
age approximation in two–group, 3D Cartesian geometry. Here, we are presenting the ANM with the
quadratic transverse leakage approximation in G–group and 2–D Cartesian geometry.

We now present the relations between node averaged fluxes φ̄i,j,g and X−directed boundary fluxes
φyj,g(xi±1/2) and boundary net currents Jy

j,g(xi±1/2). Under these conditions, the right-hand term of
Eq. (2.78) is assumed to exhibit a quadratic variation in x, written as

Ly
j,g(x) = b0 + b1 x+ b2 x

2

where xi−1/2 ≤ x ≤ xi+1/2. The polynomial coefficients in Eq. (2.84) are related to L̄y
i−1,j,g, L̄

y
i,j,g and

L̄y
i+1,j,g, the transverse leakage terms without linear transformation, using

1

∆xi−1

∫ xi−1/2

xi−3/2

dxLy
j,g(x) = L̄y

i−1,j,g ,
1

∆xi

∫ xi+1/2

xi−1/2

dxLy
j,g(x) = L̄y

i,j,g

and
1

∆xi+1

∫ xi+3/2

xi+1/2

dxLy
j,g(x) = L̄y

i+1,j,g , (2.84)

so that




b0
b1
b2



 =







1
xi−3/2+xi−1/2

2

xi−3/2
2+xi−3/2xi−1/2+xi−1/2

2

3

1
xi−1/2+xi+1/2

2

xi−1/2
2+xi−1/2xi+1/2+xi+1/2

2

3

1
xi+1/2+xi+3/2

2

xi+1/2
2+xi+1/2xi+3/2+xi+3/2

2

3







−1




L̄y
i−1,j,g

L̄y
i,j,g

L̄y
i+1,j,g



 . (2.85)

If a node i is located on a zero-flux left boundary, Eqs. (2.84) are still used, taking care to set
L̄y
i−1,j,g = 0. Similarly, if a node i is located on a zero-flux right boundary, we use L̄y

i+1,j,g = 0. This
approach is selected in a try to keep the compatibility with the recipe used in QUANDRY, the original
ANM implementation by Smith.[4]

The integration of Eq. (2.78) over node (i, j) leads to the transformed nodal balance equation, written
as

ψ̄i,j,g =
1

λi,j,g

(

L̄x
i,j,g + L̄y

i,j,g

)

.

Let us first consider the case where λi,j,g ≥ 0. In energy group g and in node (i, j), Eq. (2.78) has an
analytical solution of the form

ψy
j,g(x) = α+ β x+ γ x2 +Ai,j,g cos(

√

λi,j,g x) +Bi,j,g sin(
√

λi,j,g x) (2.86)

if xi−1/2 < x < xi+1/2. The particular solution is a quadratic polynomial in x with coefficients

α =
b0
λi,j,g

−
2b2
λ2i,j,g

, β =
b1
λi,j,g

and γ =
b2
λi,j,g

(2.87)
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where b0, b1 and b2 are the polynomial coefficients of the transverse leakage term Ly
j,g(x), as given by

Eq. (2.84).

Integrating Eq. (2.86) over the node leads to

ψ̄i,j,g = α+ β
xi−i/2 + xi+i/2

2
+ γ

x2i−i/2 + xi−i/2xi+i/2 + x2i+i/2

3

+
Ai,j,g

∆xi
√

λi,j,g
sin(

√

λi,j,g x)
∣

∣

∣

xi+i/2

xi−i/2

−
Bi,j,g

∆xi
√

λi,j,g
cos(

√

λi,j,g x)
∣

∣

∣

xi+i/2

xi−i/2

.

(2.88)

Differentiating Eq. (2.86) over the node leads to

J y
j,g(x) = −β − 2γ x+Ai,j,g

√

λi,j,g sin(
√

λi,j,g x)

− Bi,j,g

√

λi,j,g cos(
√

λi,j,g x) . (2.89)

Equations (2.86) to (2.89) can be rewritten, if λi,j,g ≤ 0, as

ψy
j,g(x) = α+ β x+ γ x2 + Ci,j,g cosh(

√

−λi,j,g x)

+ Ei,j,g sinh(
√

−λi,j,g x) , (2.90)

ψ̄i,j,g = α+ β
xi−i/2 + xi+i/2

2
+ γ

x2i−i/2 + xi−i/2xi+i/2 + x2i+i/2

3

+
Ci,j,g

∆xi
√

−λi,j,g
sinh(

√

−λi,j,g x)
∣

∣

∣

xi+i/2

xi−i/2

+
Ei,j,g

∆xi
√

−λi,j,g
cosh(

√

−λi,j,g x)
∣

∣

∣

xi+i/2

xi−i/2

(2.91)

and

J y
j,g(x) = −β − 2γ x− Ci,j,g

√

−λi,j,g sinh(
√

−λi,j,g x)

− Ei,j,g

√

−λi,j,g cosh(
√

−λi,j,g x) . (2.92)

To proceed further, we need to rewrite Eqs. (2.86) to (2.92) in matrix algebra. We define

Ψy
j (x) = {ψy

j,g(x) ; g = 1, G}

Ψ̄i,j = {ψ̄i,j,g ; g = 1, G}

J
y
j (x) = {J y

j,g(x) ; g = 1, G}

J
x
i (y) = {J x

i,g(y) ; g = 1, G}

Ai,j = {Ai,j,g ; g = 1, G}

Bi,j = {Bi,j,g ; g = 1, G}

Jx
i (y) =

{

−Di,j,g
d

dy
φxi,g(y) ; g = 1, G

}

= diag(Di,j,g) Ti,j J
x
i (y)

Si,j = T−1i,j diag(Di,j,g)
−1 ,

so that the above equations can be cast into
(

Ψ̄i,j

J
y
j (xi−1/2)

)

= M−i,j

(

Ai,j

Bi,j

)

+
[

−V−i,j V−i,j
]

×

















Si,j O O O O O

O Si,j O O O O

O O Si,j O O O

O O O Si,j O O

O O O O Si,j O

O O O O O Si,j

































Jx
i−1(yj−1/2)
Jx

i (yj−1/2)
Jx

i+1(yj−1/2)
Jx

i−1(yj+1/2)
Jx

i (yj+1/2)
Jx

i+1(yj+1/2)

















, (2.93)
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(

Ψ̄i,j

J
y
j (xi+1/2)

)

= M+
i,j

(

Ai,j

Bi,j

)

+
[

−V+
i,j V+

i,j

]

×

















Si,j O O O O O

O Si,j O O O O

O O Si,j O O O

O O O Si,j O O

O O O O Si,j O

O O O O O Si,j

































Jx
i−1(yj−1/2)
Jx

i (yj−1/2)
Jx

i+1(yj−1/2)
Jx

i−1(yj+1/2)
Jx

i (yj+1/2)
Jx

i+1(yj+1/2)

















, (2.94)

Ψy
j (xi−1/2) = N−i,j

(

Ai,j

Bi,j

)

+
[

−U−i,j U−i,j
]

×

















Si,j O O O O O

O Si,j O O O O

O O Si,j O O O

O O O Si,j O O

O O O O Si,j O

O O O O O Si,j

































Jx
i−1(yj−1/2)
Jx

i (yj−1/2)
Jx

i+1(yj−1/2)
Jx

i−1(yj+1/2)
Jx

i (yj+1/2)
Jx

i+1(yj+1/2)

















(2.95)

and

Ψy
j (xi+1/2) = N+

i,j

(

Ai,j

Bi,j

)

+
[

−U+
i,j U+

i,j

]

×

















Si,j O O O O O

O Si,j O O O O

O O Si,j O O O

O O O Si,j O O

O O O O Si,j O

O O O O O Si,j

































Jx
i−1(yj−1/2)
Jx

i (yj−1/2)
Jx

i+1(yj−1/2)
Jx

i−1(yj+1/2)
Jx

i (yj+1/2)
Jx

i+1(yj+1/2)

















(2.96)

where M±i,j are two 2G× 2G matrices. N±i,j are two G× 2G matrices. Finally, U±i,j are G× 3G matrices

and V±i,j are 2G×3G matrices. The coefficients of these matrices are recovered from Eqs. (2.86) to (2.92).
Coefficients Ai,j and Bi,j from Eq. (2.95) can be eliminated using Eq. (2.93) and coefficients Ai,j and
Bi,j from Eq. (2.96) can be eliminated using Eq. (2.94). The resulting equations can be cast into

Ψy
j (xi−1/2) = P−i,jΨ̄i,j + P+

i,jJ
y
j (xi−1/2) + Psour

i,j

















Jx
i−1(yj−1/2)
Jx

i (yj−1/2)
Jx

i+1(yj−1/2)
Jx

i−1(yj+1/2)
Jx

i (yj+1/2)
Jx

i+1(yj+1/2)

















(2.97)

where P±i,j are G×G matrices and Psour
i,j is a G× 6G matrix;

Ψy
j (xi+1/2) = Q−i,jΨ̄i,j +Q+

i,jJ
y
j (xi+1/2) +Qsour

i,j

















Jx
i−1(yj−1/2)
Jx

i (yj−1/2)
Jx

i+1(yj−1/2)
Jx

i−1(yj+1/2)
Jx

i (yj+1/2)
Jx

i+1(yj+1/2)

















(2.98)

where Q±i,j are G×G matrices and Qsour
i,j is a G× 6G matrix.

The transformed nodal balance equation (2.86) can be written in matrix form as

Ψ̄i,j =
[

−Xi,j Xi,j

]

(

J
y
j (xi−1/2)

J
y
j (xi+1/2)

)

+
[

−Yi,j Yi,j

]

(

J
x
i (yj−1/2)

J
x
i (yj+1/2)

)

. (2.99)
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Finally, the linear transformation can be inverted, with the help of the following definitions:

Φy
j (x) = {φyj,g(x) ; g = 1, G} = Ti,jΨ

y
j (x)

Φ̄i,j = {φ̄i,j,g ; g = 1, G} = Ti,jΨ̄i,j

J
y
j (x) =

{

−Di,j,g
d

dx
φyj,g(x) ; g = 1, G

}

= diag(Di,j,g) Ti,j J
y
j (x) .

We can show that

Φy
j (xi−1/2) = Lx−

i,j Φ̄i,j + Lx+
i,j J

y
j (xi−1/2) + L

x,sour
i,j

















Jx
i−1(yj−1/2)
Jx

i (yj−1/2)
Jx

i+1(yj−1/2)
Jx

i−1(yj+1/2)
Jx

i (yj+1/2)
Jx

i+1(yj+1/2)

















(2.100)

and

Φy
j (xi+1/2) = Rx−

i,j Φ̄i,j + Rx+
i,j J

y
j (xi+1/2) + R

x,sour
i,j

















Jx
i−1(yj−1/2)
Jx

i (yj−1/2)
Jx

i+1(yj−1/2)
Jx

i−1(yj+1/2)
Jx

i (yj+1/2)
Jx

i+1(yj+1/2)

















(2.101)

where

Lx−
i,j = Ti,j P

−
i,j T

−1
i,j , Lx+

i,j = Ti,j P
+
i,j Si,j ,

L
x,sour
i,j = Ti,j P

sour
i,j

















Si,j O O O O O

O Si,j O O O O

O O Si,j O O O

O O O Si,j O O

O O O O Si,j O

O O O O O Si,j

















(2.102)

and

Rx−
i,j = Ti,j Q

−
i,j T

−1
i,j , Rx+

i,j = Ti,j Q
+
i,j Si,j ,

R
x,sour
i,j = Ti,j Q

sour
i,j

















Si,j O O O O O

O Si,j O O O O

O O Si,j O O O

O O O Si,j O O

O O O O Si,j O

O O O O O Si,j

















. (2.103)

The X–directed ANM coupling relations are therefore written by imposing the flux continuity on
xi−1/2, as

[

f
x+
i−1,j

]

















Rx−
i−1,jΦ̄i−1,j + Rx+

i−1,jJ
y
j (xi−1/2) + R

x,sour
i−1,j

















Jx
i−2(yj−1/2)

Jx
i−1(yj−1/2)
Jx

i (yj−1/2)
Jx

i−2(yj+1/2)
Jx

i−1(yj+1/2)
Jx

i (yj+1/2)

































=
[

f
x−
i,j

]

















Lx−
i,j Φ̄i,j + Lx+

i,j J
y
j (xi−1/2) + L

x,sour
i,j

















Jx
i−1(yj−1/2)
Jx

i (yj−1/2)
Jx

i+1(yj−1/2)
Jx

i−1(yj+1/2)
Jx

i (yj+1/2)
Jx

i+1(yj+1/2)

































(2.104)
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where
[

fx+
i−1,j

]

and
[

fx−
i,j

]

are G×G diagonal matrices containing multigroup discontinuity functions.

The nodal balance equation can be written in term of non-transformed variables as

Φ̄i,j = Bx
i,j

(

J
y
j (xi−1/2)

J
y
j (xi+1/2)

)

+ B
y
i,j

(

Jx
i (yj−1/2)

Jx
i (yj+1/2)

)

(2.105)

where

Bx
i,j = Ti,j

[

−Xi,j Xi,j

]

[

Si,j O

O Si,j

]

(2.106)

and

B
y
i,j = Ti,j

[

−Yi,j Yi,j

]

[

Si,j O

O Si,j

]

. (2.107)

Relations (2.104) are used together with the Y –directed ANM coupling relations and with the nodal
balance equation (2.105) to build the global matrix system.

Calculation of matrices Li,j , Ri,j , B
x
i,j and B

y
i,j for each node represents the core of the ANM. These

matrices are function of the G–group cross sections and diffusion coefficients, of the node size and of the
effective multiplication factor Keff . They must be updated during the power iteration, as Keff change.

Assuming a rectangular domain, the zero flux boundary conditions at surfaces x−1/2 and xI+1/2 for
all values of y corresponding to the ANM are:

Lx−
1,j Φ̄1,j + Lx+

1,jJ
y
j (x−1/2) + L

x,sour
1,j

















Jx
1(yj−1/2)

Jx
2(yj−1/2)

Jx
3(yj−1/2)

Jx
1(yj+1/2)

Jx
2(yj+1/2)

Jx
3(yj+1/2)

















= 0 , ∀j (2.108)

and

Rx−
I,j Φ̄I,j + Rx+

I,jJ
y
j (xI−1/2) + R

x,sour
I,j

















Jx
I−2(yj−1/2)

Jx
I−1(yj−1/2)
Jx

I (yj−1/2)
Jx

I−2(yj+1/2)
Jx

I−1(yj+1/2)
Jx

I (yj+1/2)

















= 0 , ∀j. (2.109)

Assuming a rectangular domain, the albedo boundary conditions at surfaces x−1/2 and xI+1/2 for all
values of y corresponding to the ANM are:

{

I+
[

Λx−
j

] [

Lx+
1,j

]}

J
y
j (x−1/2) = −

[

Λx−
j

]

















Lx−
1,j Φ̄1,j + L

x,sour
1,j

















Jx
1(yj−1/2)

Jx
2(yj−1/2)

Jx
3(yj−1/2)

Jx
1(yj+1/2)

Jx
2(yj+1/2)

Jx
3(yj+1/2)

































, ∀j (2.110)

and

{

− I+
[

Λx+
j

]

[

Rx+
I,j

]}

J
y
j (xI−1/2) = −

[

Λx+
j

]

















Rx−
I,j Φ̄I,j + R

x,sour
I,j

















Jx
I−2(yj−1/2)

Jx
I−1(yj−1/2)
Jx

I (yj−1/2)
Jx

I−2(yj+1/2)
Jx

I−1(yj+1/2)
Jx

I (yj+1/2)

































, ∀j (2.111)

where I is the G×G identity matrix and where
[

Λx−
j

]

and
[

Λx+
j

]

are G×G diagonal matrices containing
multigroup albedo functions as defined by Eq. (2.17).
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2.5 The nodal update procedure

The nodal update procedure performs a sequence of one- and two-nodes one-dimensional fixed-source
calculations to obtain the NEM or ANM nodal coefficients as a function of node-averaged fluxes φ̄i,g ,
sources Q̄i,g and discontinuity factors f±i,g. These nodal coefficients are then used to re-evaluate the

discontinuous neutron flux φ∓i±1/2,g and continuous current Ji±1/2,g at node interfaces and to update the

drift coefficients D̃±i,g. This algorithm is depicted in Fig. 3.

Initialize φi,g and Di,g  = 0 ±(0) ~

Solve CMFD equations

over domain

φi,g , Keff
(n)

Perform nodal update
nodal

update

φi±1/2,g, Ji±1/2,g, Di,g
±~(n)(n) (n)

(n)

convergence

yes

no

yes

no

(0)

(n)fi,g
±

Figure 3: The nodal update procedure.

The two-nodes matrix equations are used to evaluate the neutron flux and current between two internal
nodes. We first present the calculation of φ∓i±1/2,g and Ji±1/2,g for two adjacent nodes along the X−axis.

2.5.1 NEM update procedure

If the nodal expansion method is used, the order of the two-node matrix system is equal to 8G, where
G is the number of energy groups. It is written









A1,1 O O O

O A2,2 O O

O O A3,3 A3,4

A4,1 A4,2 A4,3 A4,4

















aeven
i,g

aeven
i+1,g

aodd
i,g

aodd
i+1,g









=









Seven
i,g

Seven
i+1,g

Sodd
i,i+1,g

Scont
i,i+1,g









(2.112)

where O are 2G × 2G null matrices and where the unknowns are defined as aeven
i,g = col {a2,i,g, a4,i,g}

and aodd
i,g = col {a1,i,g, a3,i,g}. In the case of a pure polynomial expansion with G = 2, the sub-matrix

components in Eq. (2.112) are recovered from Eqs. (2.30) to (2.47) as

A1,1 =













−
6Di,1

2∆x2
i

−
2Di,1

5∆x2
i

0 0

0 0 −
6Di,2

2∆x2
i

−
2Di,2

5∆x2
i

Ai,1

20 −
Di,1

5∆x2
i
−

Ai,1

700 −
Qi,1←2

20
Qi,1←2

700

−
Qi,2←1

20
Qi,2←1

700
Ai,2

20 −
Di,2

5∆x2
i
−

Ai,2

700













, (2.113)
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A2,2 =















−
6Di+1,1

2∆x2
i+1

−
2Di+1,1

5∆x2
i+1

0 0

0 0 −
6Di+1,2

2∆x2
i+1

−
2Di+1,2

5∆x2
i+1

Ai+1,1

20 −
Di+1,1

5∆x2
i+1

−
Ai+1,1

700 −
Qi+1,1←2

20
Qi+1,1←2

700

−
Qi+1,2←1

20
Qi+1,2←1

700
Ai+1,2

20 −
Di+1,2

5∆x2
i+1

−
Ai+1,2

700















, (2.114)

A3,3 =











Ai,1

12 −
Di,1

2∆x2
i
+

Ai,1

120 −
Qi,1←2

12
Qi,1←2

120

−
Qi,2←1

12
Qi,2←1

120
Ai,2

12 −
Di,2

2∆x2
i
+

Ai,2

120

0 0 0 0
0 0 0 0











, (2.115)

A3,4 =











0 0 0 0
0 0 0 0

Ai+1,1

12 −
Di+1,1

2∆x2
i+1

+
Ai+1,1

120 −
Qi+1,1←2

12
Qi+1,1←2

120

−
Qi+1,2←1

12
Qi+1,2←1

120
Ai+1,2

12 −
Di+1,2

2∆x2
i+1

+
Ai+1,2

120











, (2.116)

A4,1 =













3Di,1

∆xi

Di,1

5∆xi
0 0

0 0
3Di,2

∆xi

Di,2

5∆xi

−
f+

i,1

2 0 0 0

0 0 −
f+

i,2

2 0













, (2.117)

A4,2 =













3Di+1,1

∆xi+1

Di+1,1

5∆xi+1
0 0

0 0
3Di+1,2

∆xi+1

Di+1,2

5∆xi+1

f−i+1,1

2 0 0 0

0 0
f−i+1,2

2 0













, (2.118)

A4,3 =













−
Di,1

∆xi
−

Di,1

2∆xi
0 0

0 0 −
Di,2

∆xi
−

Di,2

2∆xi

f+
i,1

2 0 0 0

0 0
f+

i,2

2 0













(2.119)

and

A4,4 =













Di+1,1

∆xi+1

Di+1,1

2∆xi+1
0 0

0 0
Di+1,2

∆xi+1

Di+1,2

2∆xi+1

f−i+1,1

2 0 0 0

0 0
f−i+1,2

2 0













(2.120)

where
Ai,g = Σr,i,g −

χi,g

Keff
νΣf,i,g, (2.121)

Qi,g←h = Σs,i,g←h +
χi,g

Keff
νΣf,i,h, (2.122)

Seven
i,g =

















−Σr,i,1 φ̄i,1 − L̄yz
i,1 +Σs,i,1←2 φ̄i,2 +

χi,1

Keff

∑G
h=1 νΣf,i,h φ̄i,h

−Σr,i,2 φ̄i,2 − L̄yz
i,2 +Σs,i,2←1 φ̄i,1 +

χi,2

Keff

∑G
h=1 νΣf,i,h φ̄i,h

−
L̄yz

i,1

20

−
L̄yz

i,2

20

















, (2.123)
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Sodd
i,i+1g =



















−
L̄yz

i,1

12

−
L̄yz

i,2

12

−
L̄yz

i+1,1

12

−
L̄yz

i+1,2

12



















, (2.124)

and

Scont
i,i+1,g =











0
0

−f+
i,1 φ̄i,1 + f−i+1,1 φ̄i+1,1

−f+
i,2 φ̄i,2 + f−i+1,2 φ̄i+1,2











. (2.125)

The optimal sequence for solving the linear system of Eq. (2.112) is

aeven
i,g = A−11,1 S

even
i,g

aeven
i+1,g = A−12,2 S

even
i+1,g

[

aodd
i,g

aodd
i+1,g

]

=

[

A3,3 A3,4

A4,3 A4,4

]−1 [
Sodd

i,i+1,g

Scont
i,i+1,g − A4,1 a

even
i,g − A4,2 a

even
i+1,g

]

. (2.126)

The one-node matrix equations are used to evaluate the neutron flux and current on a domain bound-
ary. We next present the calculation of φi±1/2,g and Ji±1/2,g for a boundary surface i ± 1/2 along the
X−axis. The order of the matrix system is equal to 4G, where G is the number of energy groups. It is
written





A1,1 O

O B2,2

B3,1 B3,2





[

aeven
i,g

aodd
i,g

]

=





Seven
i,g

Sodd
i,g

Sbc
i,g



 (2.127)

In the case of a pure polynomial expansion with G = 2, the sub-matrix components in Eq. (2.127)
are recovered from Eqs. (2.30) to (2.17) as

B2,2 =

[ Ai,1

12 −
Di,1

2∆x2
i
+

Ai,1

120 −
Qi,1←2

12
Qi,1←2

120

−
Qi,2←1

12
Qi,2←1

120
Ai,2

12 −
Di,2

2∆x2
i
+

Ai,2

120

]

(2.128)

with

Sodd
i,g =





−
L̄yz

i,1

12

−
L̄yz

i,2

12



 . (2.129)

Three different types of boundary conditions are now considered:

zero net current

B3,1 =

[

3 1
5 0 0

0 0 3 1
5

]

, (2.130)

B3,2 =

[

∓1 ∓ 1
2 0 0

0 0 ∓1 ∓ 1
2

]

(2.131)

and

Sbc
i,g =

[

0
0

]

(2.132)

where the minus sign in Eq. (2.131) is used for the left boundary condition.
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albedo condition

B3,1 =





(

Λx∓
1

2 +
3Di,1

∆xi

)

Di,1

5∆xi
0 0

0 0
(

Λx∓
2

2 +
3Di,2

∆xi

)

Di,2

5∆xi



 , (2.133)

B3,2 =





∓
(

Λx∓
1

2 +
Di,1

2∆xi

)

∓
Di,1

2∆xi
0 0

0 0 ∓
(

Λx∓
2

2 +
Di,2

∆xi

)

∓
Di,2

2∆xi



 (2.134)

and

Sbc
i,g =

[

−(Λx∓
1 )φ̄i,1

−(Λx∓
2 )φ̄i,2

]

(2.135)

where the minus sign in Eq. (2.134) is used for the left boundary condition.

zero flux

B3,1 =

[

1
2 0 0 0
0 0 1

2 0

]

, (2.136)

B3,2 =

[

∓ 1
2 0 0 0
0 0 ∓ 1

2 0

]

(2.137)

and

Sbc
i,g =

[

−φ̄i,1
−φ̄i,2

]

(2.138)

where the minus sign in Eq. (2.137) is used for the left boundary condition.

The optimal sequence for solving the linear system of Eq. (2.127) is

aeven
i,g = A−11,1 S

even
i,g

aodd
i,g =

[

B2,2

B3,2

]−1 [
Sodd

i,g

Sbc
i,g − B3,1 a

even
i,g

]

. (2.139)

Similar matrix equations can be obtained for hyperbolic basis functions. Once the solution of the
linear system is obtained for a 1D traverse, interface fluxes and currents can be obtained from Eqs. (2.38)
to (2.45).

2.5.2 ANM update procedure

The ANM update procedure is presented for the X-axis. The two-nodes relations corresponding to
the analytic nodal method are obtained from Eq. (2.104). The X-directed net current J

y
j (xi−1/2) at

node interface xi−1/2 is obtained as a function of the CMFD neighbour fluxes Φ̄i−1,j and Φ̄i,j , and of the
Y –directed net currents Jx

i (yj±1/2) taken from the previous nodal correction iteration. Nodal balance
equations (2.105) are not used. We write

{[

f
x+
i−1

]

Rx+
i−1,j −

[

f
x−
i

]

Lx+
i,j

}

J
y
j (xi−1/2) = −

[

f
x+
i−1

]

















Rx−
i−1,jΦ̄i−1,j + R

x,sour
i−1,j

















Jx
i−2(yj−1/2)

Jx
i−1(yj−1/2)
Jx

i (yj−1/2)
Jx

i−2(yj+1/2)
Jx

i−1(yj+1/2)
Jx

i (yj+1/2)

































+
[

f
x−
i

]

















Lx−
i,j Φ̄i,j + L

x,sour
i,j

















Jx
i−1(yj−1/2)
Jx

i (yj−1/2)
Jx

i+1(yj−1/2)
Jx

i−1(yj+1/2)
Jx

i (yj+1/2)
Jx

i+1(yj+1/2)

































. (2.140)
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If a zero-flux boundary condition is set, boundary currents J
y
j (x−1/2) and J

y
j (xI−1/2) are given

by Eqs. (2.108) and (2.109), respectively. If an albedo boundary condition is set, boundary currents
J

y
j (x−1/2) and J

y
j (xI−1/2) are given by Eqs. (2.110) and (2.111), respectively.

After the evaluation of X-directed net currents Jy
j (xi±1/2) is completed, boundary fluxes are obtained

using Eqs. (2.100) and (2.101).

2.5.3 Update of the drift coefficients

The updated drift coefficients D̃±i,g between two internal nodes are finally obtained from Eqs. (2.13)
and (2.14) as

D̃+
i,g =















−
Ji+1/2,g +D+

i,g

(

φ̄i+1,g − φ̄i,g
)

φ̄i+1,g + φ̄i,g
if i < I

−
Ji+1/2,g −D+

i,gφ̄i,g
φ̄i,g

if i = I

(2.141)

and

D̃−i,g =















−
Ji−1/2,g +D−i,g

(

φ̄i,g − φ̄i−1,g
)

φ̄i,g + φ̄i−1,g
if i > 1

−
Ji−1/2,g +D−i,gφ̄i,g

φ̄i,g
if i = 1 .

(2.142)

where D±i,g is defined by Eqs. (2.15) and (2.16).

2.6 Intranodal flux reconstruction

The nodal expansion for the solution of the diffusion equation is made in one dimension for each of
the directions x, y and z. The crossed terms are not considered but are taken into account implicitly in
the processing of the transverse leakage terms, according to the formulation made in Sects. 2.2 and 2.4.
Determination of the homogeneous intranodal flux is required for fine power reconstruction. Intranodal
flux reconstruction is performed after convergence of the NEM or ANM. This capability is available in
module VAL: of Trivac5 and in module IDET: of Donjon5. In 2D and 3D cases, we perform a polynomial
flux reconstruction using the following polynomials along each direction:

p1(u) = u

p2(u) = 3u2 −
1

4

p3(u) =

(

u2 −
1

4

)

u

p4(u) =

(

u2 −
1

4

)(

u2 −
1

20

)

(2.143)

where −1/2 ≤ u ≤ 1/2.

The procedure consists of the following steps:

1. Perfom an additive polynomial reconstruction preserving all information contained in the NEM
or ANM solution in each energy group: averaged fluxes φ̄i,j,k, surface fluxes φ∓i±1/2,j,k, φ

∓
i,j±1/2,k ,

φ∓i,j,k±1/2 and surface currents Jx
i±1/2,j,k, J

y
i,j±1/2,k, J

z
i,j,k±1/2.

2. Calculate the averaged corner point flux values.

3. Perform a polynomial corner flux correction.

The polynomial expansion of step 1 is based on the following 3D expansion:

φstep1(x, y, z) = φ̄i,j,k +

4
∑

ℓ=1

axℓ,i,j,k pℓ(u) +

4
∑

ℓ=1

ayℓ,i,j,k pℓ(v) +

4
∑

ℓ=1

azℓ,i,j,k pℓ(w) (2.144)
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where xi−1/2 < x < xi+1/2, yj−1/2 < y < yj+1/2 and zk−1/2 < z < zk+1/2

and where u, v and w are the reduced coordinates defined over the support (−1/2, 1/2) as

u =
x

∆xi
−

1

2
, v =

y

∆yj
−

1

2
and w =

z

∆zk
−

1

2
. (2.145)

Coefficients axℓ,i,j,k, a
y
ℓ,i,j,k and azℓ,i,j,k are the solution of three order–4 linear systems using information

of the NEM or ANM solution in each node.

The reconstructed flux φstep1(x, y, z) presents important discontinuities along the node boundaries,
with maximum discrepancies at node corners. An internal corner point is surrounded by 8 nodes, similar
to those depicted in Fig. 4. An averaged corner point flux value at node corner 1 can be obtain as

x

y

z

1 2

3 4

5 6

7 8

Figure 4: 3D node corner numerotation.

φ̄corn1i,j,k =
1

8

(

φcorn1i,j,k + φcorn2i−1,j,k + φcorn3i,j−1,k + φcorn4i−1,j−1,k + φcorn5i,j,k−1 + φcorn6i−1,j,k−1 + φcorn7i,j−1,k−1 + φcorn8i−1,j−1,k−1

)

.

(2.146)
Similar expressions can be written for each node corner, taking care of the fact that boundary nodes

have a number of neighbours smaller than 8.

The third step consists to correct the polynomial expansion of Eq. (2.144) so as to fit averaged corner
point flux value obtained in second step. The corrected expansion is written

φstep3(x, y, z) = φstep1(x, y, z) +

2
∑

n=1

2
∑

m=1

2
∑

ℓ=1

acℓ,m,n,i,j,k pℓ(u) pm(v) pn(w) (2.147)

where coefficients acℓ,m,n,i,j,k are the solution of three order–8 linear system in each node. The solution
of this linear system is

























ac1,1,1,i,j,k
ac2,1,1,i,j,k
ac1,2,1,i,j,k
ac2,2,1,i,j,k
ac1,1,2,i,j,k
ac2,1,2,i,j,k
ac1,2,2,i,j,k
ac2,2,2,i,j,k

























=

























−1 1 1 −1 1 −1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1
−1 −1 −1 −1 1 1 1 1
1 −1 −1 1 1 −1 −1 1
−1 −1 1 1 −1 −1 1 1
−1 1 −1 1 −1 1 −1 1
1 1 1 1 1 1 1 1

















































φ̄corn1i,j,k − φcorn1i,j,k

φ̄corn2i,j,k − φcorn2i,j,k

φ̄corn3i,j,k − φcorn3i,j,k

φ̄corn4i,j,k − φcorn4i,j,k

φ̄corn5i,j,k − φcorn5i,j,k

φ̄corn6i,j,k − φcorn6i,j,k

φ̄corn7i,j,k − φcorn7i,j,k

φ̄corn8i,j,k − φcorn8i,j,k

























. (2.148)

The effect of corner flux correction is depicted in Fig. 5 for a 2D case. The result of polynomial
reconstruction based on Eqs. (2.144) (on left) and (2.147) (on right) are compared.
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Figure 5: Polynomial reconstruction in 2D.
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3 Input data specifications

3.1 Syntactic rules for input data specifications

The input data to any module is read in free format using the subroutine REDGET. The rules for
specifying the input data are therefore given in this section. The users guide was written using the
following conventions:

• the parameters surrounded by single square brackets ‘[ ]’ denote an optional input;

• the parameters surrounded by double square brackets ‘[[ ]]’ denote an optional input which may be
repeated as many times as desired;

• the parameters in braces separated by vertical bars ‘{ | | }’ denote a choice of input where (one and
only one is mandatory);

• the parameters in bold face and in brackets ‘( )’ denote an input structure;

• the parameters in italics and in brackets with an index ‘(data(i), i=1,n)’ denote a set of n inputs;

• the words using the typewriter font are character constants keywordS used as keywords;

• the words in italics are user defined variables, they should be lower case and are of type integer
(starting with i to n) and real (starting with a to h or o to z) or of type character in uppercase
CHARACTER.

3.2 The global input structure

Brisingr is built around the GAN generalized driver.[2] Input data must therefore follow the calling
specifications given below:

Table 1: Structure (Brisingr)

[ LINKED LIST [[ NAME1 ]] ; ]
[ XSM FILE [[ NAME2 ]] ; ]
[ SEQ BINARY [[ NAME3 ]] ; ]
[ SEQ ASCII [[ NAME4 ]] ; ]
[ HDF5 FILE [[ NAME5 ]] ; ]
[ MODULE [[ NAME6 ]] ; ]
[[ (specif) ]]
END: ;

where

NAME1 Character*12 name of a lcm object.

NAME2 Character*12 name of an xsm file.

NAME3 Character*12 name of a sequential binary file.

NAME4 Character*12 name of a sequential ascii file.

NAME5 Character*12 name of a hdf5 file.
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NAME6 Character*12 name of a module.

(specif) Input specifications for a single module. Specifications for Brisingr modules will be given
in the following sections.

The input data always begins with the declaration of each lcm object, xsm file, sequential (binary or
ascii) file or hdf5 file that will be required by the following modules. This is followed by the declaration
of the modules actually used in the input data deck. The following data describes a sequence of module
calls, in the format of the GAN generalized driver. As indicated in Fig. 6, the modules communicate with
each other through lcm objects or xsm files whose specifications are given in section 2. The Brisingr user
generally has the choice to declare its data structures as LINKED LIST to reduce CPU time resources or
as XSM FILE to reduce CPU memory resources.

The input data always ends with a call to the END: module.

GEO: BRIF: OUT: 
L_GEOM 

L_MACROLIB 

NCR: 

L_MACROLIBL_FLUX 

L_MULTICOMPO 

L_TRACK

APEX ACR: 

NSST: 

MAC: 

Figure 6: The Brisingr modular approach.

3.3 The BRIF: module

The BRIF: module is used to compute the solution to an eigenvalue problem corresponding to a nodal
expansion method (NEM) discretization. The actual implementation is limited to 1D/2D/3D Cartesian
geometries. The calling specifications are:

Table 2: Structure (BRIF:)

FLUX := BRIF: TRACK MACRO :: (BRIF data)

where

FLUX character*12 name of the lcm object (type L FLUX) containing the solution.

TRACK character*12 name of the lcm object (type L TRACK) containing the tracking.

MACRO character*12 name of the lcm object (type L MACROLIB) containing the cross sections,
diffusion coefficients and discontinuity factors.

(BRIF data) structure containing the data to module BRIF: (see Sect. 3.3.1).
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3.3.1 Data input for module BRIF:

Table 3: Structure (BRIF data)

[ EDIT iprint ]
[ NUPD max no nodal iter ]
[ EXTE [ max no outer iter ] [ outer tol ] ]
[ INNE [ max no inner iter ] [ inner tol ] ]
[ THER [ max no group iter ] [ group tol ] ]
[ NODA { NEM | ANM | OFF } ]
[ GEOM { colorset | general } ]
[ ADJ ] [ { NODF | SELE } ]
[ CMFD [ { all groups | one group } ] [ Wielandt { ON | OFF } ]

[ Krylov { bicgstab | cg | jacobi | ldu } ] ]
[ VOID { Mark | Marshak } ]
[ LEAK { flat | linear | quadratic } ]
[ FREQ ev nodal freq ]
[ BUCK valb2 ]
;

where

EDIT keyword used to set iprint.

iprint index used to control the printing in module BRIF:. =0 for no print; =1 for minimum
printing (default value).

NUPD keyword to specify the maximum number of nodal update iterations.

max no nodal iter maximum number of nodal update iterations iterations. The fixed default value is
max no outer iter = 300.

EXTE keyword to specify that the control parameters for the Keff iteration are to be modified.

max no outer iter maximum number of Keff iterations. The fixed default value is max no outer iter

= 300.

outer tol convergence criterion for the Keff iterations. The fixed default value is outer tol = 1.0 ×
10−8.

INNER keyword to specify that the control parameters for the inner iteration are to be modified.
This information is used by the Krylov solver.

max no inner iter maximum number of inner iterations. The fixed default value is max no inner iter

= 300.

inner tol convergence criterion for the inner iterations. The fixed default value is inner tol = 1.0×
10−8.

THER keyword to specify that the control parameters for the thermal upscattering iteration are
to be modified.

max no group iter maximum number of thermal upscattering iterations. The fixed default value is
max no group iter = 300.



IGE-380 28

group tol convergence criterion for the thermal upscattering iterations. The fixed default value is
group tol = 1.0× 10−6.

NODA keyword used to set the type of nodal update.

NEM nodal expansion method (default value).

ANM analytic nodal method.

OFF nNo nodal updatre performed. A solution of a pure coarse-mesh finite difference (CMFD)
equation is obtained.

GEOM keyword used to set how discontinuity factors are used.

colorset apply discontinuity factors for colorset calculations.

general general rule of application (default value).

ADJ keyword used to fperform an adjoint calculation. By default, a direct solution is obtained.

NODF keyword used to force discontinuity factors to one.

SELE keyword used to replace discontinuity factors with SPH factors. Discontinuity factors
are set to one and macroscopic cross sections, diffusion coefficients and physical albedos
are SPH-corrected. This option is only available in cases where the nodes have equal
discontinuity factors on their sides.

CMFD keyword to specify various options of the coarse-mesh finite difference (CMFD) calculation

all groups keyword to specify that the inner problem is solved simultanously for all energy groups
(default option).

one groups keyword to specify that the inner problem is solved one group a time.

Wielandt keyword to activate/desactivate (ON/OFF) the acceleration of Keff iterations using the
Wielandt method (ON is set by default).

Krylov keyword to set the type of preconditionning used bt the internal Krylov solver.

bicgstab Biconjugate gradient stabilized method (default option).

cg Conjugate gradient method.

jacobi Jacobi method.

ldu Full or incomplete factorization of the sparse matricces.

VOID keyword to specify the type of albedo or vacuum boundary condition.

Marshak Marshak boundary condition (default option).

Mark Mark boundary condition.

LEAK keyword to specify the type of transverse leakage approximation.

flat flat leakage approximation.

linear quadratic leakage approximation in the internal nodes and linear leakage approximation in
the boundary nodes.

quadratic quadratic leakage approximation in all the nodes, including boundary nodes (default op-
tion).

FREQ keyword to specify the frequency of nodal updates.
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ev nodal freq number of external iterations before performing a nodal update. The fixed default value
is ev nodal freq = 0.

BUCK keyword used to specify the fixed buckling. By default, valb2 = 0 cm−2

valb2 value of the fixed total buckling in cm−2.

3.4 The NODSPH: module

This module compute a macrolib for a 2D equivalent macro-geometry based on discontinuity factor

equivalence theory. A fine-mesh reference calculation (using a fine-group transport calculation) is first
performed so as to produce a coarse-group and coarse-mesh Macrolib stored within an output edition

object (EDIT REF), compatible with the selected reflector model. Module NODSPH: recovers the reference
geometry, depicted in Figs. 7 to 9, from object GEOM GAP. The Sn geometry must have a reflective
(REFL or ALBE 1.0) boundary condition on its left (X-) and lower (Y-) boundaries. Module NODSPH:

recovers the following information from each EDIT REF object:

• Coarse group surfacic fluxes between the nodes using averaged flux values recovered into gap vol-
umes, corresponding to water blades in fuel assemblies or to tiny meshes in reflector zones. There
is no need to define a gap over a symmetry surface, except if this surface is a boundary where an
assembly discontinuity factor (ADF) is required. However, a gap should be set over a void or albedo
6= 1 boundary.

• Coarse group net currents on the heavy line segments between the nodes in Figs. 7 to 9. These
values are obtained from a balance relation, assuming reflection on the left and lower boundaries.

• Averaged macroscopic cross sections and diffusion coefficients within the no-gap homogenized nodes.
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Figure 7: Definition of quarter-assembly macro-geometries (with and without gaps) used by
the NODSPH: module.

At output, a macrolib object is produced with equivalent macroscopic cross sections, diffusion co-
efficients, discontinuity factors and albedos. A verification calculation is performed over the NODSPH:

no-gap geometry as depicted in Figs. 7 to 9.

Nodal expansion base functions are used to represent the flux nodal expansion methods. By default,
polynomials defined over (−0.5, 0.5) are used as base functions:[5]

P0(u) = 1

P1(u) = u

P2(u) = 3u2 −
1

4

P3(u) =

(

u2 −
1

4

)

u

P4(u) =

(

u2 −
1

4

)(

u2 −
1

20

)

(3.1)



IGE-380 30

1

C C

C C

2 3 4 5 6 7 8 9 10 11

12

23

45

56

67

78

85

92

99

13 21 2221

gap gap gap

24

35

46

57

68

79

86

93

100

36

26 27

47

28 29 30 33

58

69

80

87

94

59

70

81

88

95

42 43 44

55

103

96

89

71

82

72

63 66

74 77

84

75 76

91

98

90

83

97

104

1 2 3 4 5 6

12

171614 15

22 23 24

7

13

19

25

29

8 9 10 11

21

27

31

28

32
equivalent

reflector

feeding fuel

assemblies

void

25

14 15 18 19

31 32

37 38 39

48 51 52

73

49 50 53 54

60 61 62 64 65

18

20

26

30

16 17

34 40 41

101 102 105

Figure 8: Definition of fuel–reflector macro-geometries (with and without gaps) used by the
NODSPH: module.
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Figure 9: Definition of colorset macro-geometries (with and without gaps) used by the
NODSPH: module.

There is the option of using hyperbolic functions in some energy groups:

P3(u) = sinh(ζgu)

P4(u) = cosh(ζgu)−
2

ζ
sinh(ζg/2) (3.2)

where

ζg = ∆x

√

Σr,g

Dg
(3.3)

where ∆x, Σr,g and Dg are the node width (cm), the macroscopic removal cross section (cm−1) and the
diffusion coefficient (cm) in group g, respectively.
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The calling specifications are:

Table 4: Structure (NODSPH:)

GEOM MACRO := NODSPH: GEOM GAP [[ EDIT REF ]] :: (NODSPH data)

where

GEOM character*12 name of the nodal geometry (type L GEOM) object open creation mode.
This geometry can be used for performing a verification calculation over the 1D nodal
geometry.

MACRO character*12 name of the nodal macrolib (type L MACROLIB) object open in creation
mode.

GEOM GAP character*12 name of the macro-geometry with gaps (type L GEOM) object open
read-only mode. This object describes geometries depicted on left sides of Figs. 7 to 9.

EDIT REF character*12 name of a reference edition (type L EDIT) object, containing a coarse-
group and coarse-mesh macrolib for the macro-geometry with gaps.

NODSPH data input data structure containing specific data (see Section 3.4.1).

3.4.1 Data input for module NODSPH:

Table 5: Structure (NODSPH data)

[ EDIT iprint ]
[ HYPE igmax ]
GRID ((igrid(i,j),j=1,LY ),i=1,LX)
[ { ALBE | NOAL } ] [ { LEFT | RIGH } ]
[ NGET [ (adf (g), g=1,Ng) ] ]
;

where

EDIT keyword used to set iprint.

iprint index used to control the printing in module NODSPH:. =0 for no print; =1 for minimum
printing (default value).

HYPE keyword used to specify the type of nodal expansion base functions. By default,
polynomial base functions are used in all energy groups. This keyword has no effect
with the analytic nodal method.

igmax hyperbolic base functions are used for coarse energy groups with indices ≥ igmax.
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GRID keyword used to set the nodal mixture indices igrid. A LX×LY matrix follows, where
LX and LY are the number of lines and columns of the MIX array in the macro-

geometry GEOM GAP.

igrid(i,j) Nodal mixtures indices in non-gap locations. Mixture indices should not be repeated
to keep consistency about discontinuity factor orientations. In gap locations, symbols
“|”, “-” and “.” are used.

The GRID data structures corresponding to Figs. 7 to 9 are set as

GRID (* quarter -assembly *)

1 2 |

3 4 |

- - .

GRID (* fuel -reflector *)

1 2 | | 3 4 | | 5 6 |

7 8 | | 9 10 | | 11 12 |

- - . . - - . . - - .

13 14 | | 15 16 | | 17 18 |

19 20 | | 21 22 | | 23 24 |

- - . . - - . . - - .

25 26 | | 27 28 | | 0 0 |

29 30 | | 31 32 | | 0 0 |

- - . . - - . . - - .

and

GRID (* colorset *)

1 2 | | 3 4

5 6 | | 7 8

- - . . - -

- - . . - -

9 10 | | 11 12

13 14 | | 15 16

ALBE keyword used to compute an equivalent albedo in each coarse energy group (default
option).

NOAL keyword used to desactivate equivalent albedo calculation.

LEFT keyword used to merge single gaps with the left nodes.

RIGH keyword used to merge single gaps with the right nodes (default option).

NGET keyword used to force the value of the fuel assembly discontinuity factor at the fuel-
reflector interface, as used by the NGET normalization. By default, this value is not
modified by NGET normalization.

adf value of the assembly discontinuity factor (ADF) on the fuel-reflector interface in
group g ≤ Ng. If keyword NGET is set and adf values are not given, the ADF values
are recovered from EDIT SN .
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4 Examples of input data files

4.1 IAEA-3D benchmark

The IAEA-3D benchmark is defined in Ref. 9 and its geometry is represented in Fig. 10. Here, it is
solved using the nodal expansion method with axial mesh set at 0, 20, 63.33, 106.67, 150, 193.33, 236.67,
280, 320, 360 and 380 cm.
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Figure 10: Description of the IAEA-3D benchmark.

*----

* TEST CASE IAEA3D UNFOLDED

* MACROLIB-DEFINED CROSS SECTIONS

*----

* Define STRUCTURES and MODULES used

*----

LINKED_LIST IAEA3D TRACK MACRO FLUX REF EDIT ERROR ;

MODULE GEO: NSST: BRIF: MAC: OUT: ERROR: END: ;

SEQ_ASCII _iaea3d_ref :: FILE ’./_iaea3d_full_ref.txt’ ;

PROCEDURE assertS ;

*

IAEA3D := GEO: :: CAR3D 17 17 4

EDIT 2

X- VOID X+ VOID

Y- VOID Y+ VOID
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Z- VOID Z+ VOID

MESHX -160.0 -140.0 -120.0 -100.0 -80.0 -60.0 -40.0 -20.0

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0

MESHY -160.0 -140.0 -120.0 -100.0 -80.0 -60.0 -40.0 -20.0

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0

MESHZ 0.0 20.0 280.0 360.0 380.0

SPLITZ 1 6 2 1

MIX

! PLANE NB 1

0 0 0 0 0 4 4 4 4 4 4 4 0 0 0 0 0

0 0 0 4 4 4 4 4 4 4 4 4 4 4 0 0 0

0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0

0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0

0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0

0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0

0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0

0 0 0 4 4 4 4 4 4 4 4 4 4 4 0 0 0

0 0 0 0 0 4 4 4 4 4 4 4 0 0 0 0 0

! PLANE NB 2

0 0 0 0 0 4 4 4 4 4 4 4 0 0 0 0 0

0 0 0 4 4 4 1 1 1 1 1 4 4 4 0 0 0

0 0 4 4 1 1 1 2 2 2 1 1 1 4 4 0 0

0 4 4 1 1 2 2 2 2 2 2 2 1 1 4 4 0

0 4 1 1 3 2 2 2 3 2 2 2 3 1 1 4 0

4 4 1 2 2 2 2 2 2 2 2 2 2 2 1 4 4

4 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 4

4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 4

4 1 2 2 3 2 2 2 3 2 2 2 3 2 2 1 4

4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 4

4 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 4

4 4 1 2 2 2 2 2 2 2 2 2 2 2 1 4 4

0 4 1 1 3 2 2 2 3 2 2 2 3 1 1 4 0

0 4 4 1 1 2 2 2 2 2 2 2 1 1 4 4 0

0 0 4 4 1 1 1 2 2 2 1 1 1 4 4 0 0

0 0 0 4 4 4 1 1 1 1 1 4 4 4 0 0 0

0 0 0 0 0 4 4 4 4 4 4 4 0 0 0 0 0

! PLANE NB 3

0 0 0 0 0 4 4 4 4 4 4 4 0 0 0 0 0

0 0 0 4 4 4 1 1 1 1 1 4 4 4 0 0 0

0 0 4 4 1 1 1 2 2 2 1 1 1 4 4 0 0

0 4 4 1 1 2 2 2 2 2 2 2 1 1 4 4 0



IGE-380 35

0 4 1 1 3 2 2 2 3 2 2 2 3 1 1 4 0

4 4 1 2 2 2 2 2 2 2 2 2 2 2 1 4 4

4 1 1 2 2 2 3 2 2 2 3 2 2 2 1 1 4

4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 4

4 1 2 2 3 2 2 2 3 2 2 2 3 2 2 1 4

4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 4

4 1 1 2 2 2 3 2 2 2 3 2 2 2 1 1 4

4 4 1 2 2 2 2 2 2 2 2 2 2 2 1 4 4

0 4 1 1 3 2 2 2 3 2 2 2 3 1 1 4 0

0 4 4 1 1 2 2 2 2 2 2 2 1 1 4 4 0

0 0 4 4 1 1 1 2 2 2 1 1 1 4 4 0 0

0 0 0 4 4 4 1 1 1 1 1 4 4 4 0 0 0

0 0 0 0 0 4 4 4 4 4 4 4 0 0 0 0 0

! PLANE NB 4

0 0 0 0 0 4 4 4 4 4 4 4 0 0 0 0 0

0 0 0 4 4 4 4 4 4 4 4 4 4 4 0 0 0

0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0

0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0

0 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 5 4 4 4 5 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 5 4 4 4 5 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

0 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 0

0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0

0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0

0 0 0 4 4 4 4 4 4 4 4 4 4 4 0 0 0

0 0 0 0 0 4 4 4 4 4 4 4 0 0 0 0 0

;

TRACK := NSST: IAEA3D :: EDIT 2 MAXR 3000 HYPE 2 ;

************************************************************************

* MACROLIB DEFINITION *

************************************************************************

MACRO := MAC: ::

EDIT 2 NGRO 2 NMIX 5 NIFI 1

READ INPUT

MIX 1

DIFF 1.500E+00 4.0000E-01

TOTAL 3.000E-02 8.0000E-02

NUSIGF 0.000E+00 1.3500E-01

CHI 1.0 0.0

H-FACTOR 0.000E+00 1.3500E-01

SCAT 1 1 0.0 2 2 0.0 0.2E-01

MIX 2

DIFF 1.500E+00 4.0000E-01

TOTAL 3.000E-02 8.5000E-02

NUSIGF 0.000E+00 1.3500E-01
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CHI 1.0 0.0

H-FACTOR 0.000E+00 1.3500E-01

SCAT 1 1 0.0 2 2 0.0 0.2E-01

MIX 3

DIFF 1.500E+00 4.00000E-01

TOTAL 3.000E-02 1.30000E-01

NUSIGF 0.000E+00 1.35000E-01

CHI 1.0 0.0

H-FACTOR 0.000E+00 1.35000E-01

SCAT 1 1 0.0 2 2 0.0 0.2E-01

MIX 4

DIFF 2.000E+00 3.0000E-01

TOTAL 4.000E-02 1.0000E-02

SCAT 1 1 0.0 2 2 0.0 0.4E-01

MIX 5

DIFF 2.000E+00 3.0000E-01

TOTAL 4.000E-02 5.5000E-02

SCAT 1 1 0.0 2 2 0.0 0.4E-01

;

************************************************************************

* FLUX SOLUTION (NODAL EXPANSION METHOD) *

************************************************************************

FLUX := BRIF: TRACK MACRO ::

EDIT 1

NUPD 100 !max no. of nodal updates

EXTE 1.E-8 300 !max no. of iterations and tolerance for outer iterations for power method

INNE 1.E-8 300 !max no. of iterations and tolerance for Krylov iterations for power method

THER 1.E-6 300 !max no. of iterations and tolerance for thermal iterations for power method

CMFD all_groups Wielandt ON Krylov bicgstab

VOID Marshak

NODA NEM

LEAK quadratic

;

REF := _iaea3d_ref :: EDIT 1 ;

EDIT := OUT: FLUX TRACK MACRO IAEA3D ::

EDIT 2 INTG IN ;

ERROR: REF EDIT ;

assertS FLUX :: ’K-EFFECTIVE’ 1 1.029083 ;

END: ;

The corresponding numerical results are presented in Table 6. Statistics are given for keff and power
distribution accuracies. The reference solution is a converged Raviart-Thomas solution with cubic poly-
nomials, Gauss-Legendre integration and 2×2×2 mesh splitting. Reference powers P ∗i of assembly i were
obtained with the following formula:

P ∗i =
1

Vi

∫

Vi

d3r
∑

h

νΣf,h(r)φh(r) (4.1)

where Vi is the volume of assembly i.
These powers are then compared to data from less accurate calculations in order to obtain maximum

and average errors:

ǫmax = max
i

{

|Pi − P ∗i |

P ∗i

}

(4.2)

and

ǭ =
1

Vcore

∑

i

Vi
|Pi − P ∗i |

P ∗i
. (4.3)
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Table 6: IAEA3D benchmark calculations.a

Type of Transverse Mesh- ∆keff ǫmax ǭ
method leakage splitting Ntot keff (pcm) (%) (%)
Coarse mesh No 24681 1.031891 282.1 25.6 9.4
finite differences 2×2×2 195124 1.028992 −7.8 26.4 9.6
Nodal expansion flat No 24681 1.029760 69.0 5.6 0.7
method flat 2×2×2 195124 1.029258 18.8 1.6 0.3

quadratic No 24681 1.029083 1.3 1.2 0.4
quadratic 2×2×2 195124 1.029085 1.5 0.2 0.1

Analytic nodal flat No 24681 1.029833 76.4 5.7 0.8
method flat 2×2×2 195124 1.029442 37.3 3.8 0.5

quadratic No 24681 1.029131 6.2 1.2 0.3
quadratic 2×2×2 195124 1.029111 4.2 0.5 0.1

(a) The reference effective multiplication factor is keff = 1.029070.
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5 The Brisingr Package

The following archive is required to install Brisingr:

Brisingr_Version5.0.8_evn.tgz

Information is recovered from the archive using

tar xvfz Brisingr_Version5.0.8_evn.tgz

The tar xvfz operations will create a directory named Brisingr Version5 evn. Another directory
named libraries should also be created at the same level to hold cross section libraries. Directory
libraries is generally a symbolic link to an existing location. The complete setup is depicted in Figure 11.

Brisingr_Version5_evn

Utilib

Ganlib

doc

script

readme_brisingr

Trivac

Working Copy

make_depend_py3.py

IGE380

install

IGE380.pdf

Brisingr

rbrisingr

bin

lib

src

data

Makefile

find_pylib.py

libraries

b_endian

l_endian

hdf5

Dragon

Donjon

Figure 11: Distribution content.

Directory Brisingr Version5 evn contains the information required to install and configure Brisingr.
Inside this directory is a file named readme brisingr that contain the information required to configure
Brisingr on your system. This configuration process has the effect to add a few directories and binary
files to the Brisingr Version5 evn directory.
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It is possible to perform a basic installation on a Unix-based system using makefiles. Note: On AIX
and Solaris OS, you must replace make with gmake (the GNU variant of make utility). To install Brisingr,
simply do

cd ~/Brisingr_Version5_evn/Brisingr/

make

make clean

To execute the Brisingr non-regression tests, do

make tests

Directory libraries contains cross section libraries that can be used to test your implementation.
The libraries directory must me installed as shown in Figure 11 before following the instructions
of the readme brisingr file for executing any test requising a cross-section library. As an exam-
ple, the SmallCore BaffRefl.access script creates a symbolic link between the Apollob file named
CEA514 T2 V1 SHEM281 GV0.3.3 N.xsm and local file CEAT2 used in the SmallCore BaffRefl.x2m non-
regression test. The CEA514 T2 V1 SHEM281 GV0.3.3 N.xsm file is not included in the archive.

The content of the readmeBrisingr file follows:

File: readmeBrisingr

# To activate hdf5 and Python3 bindings in the make utility, you need to define

# environment variables on a UNIX system. Add the information about the HDF5_INC,

# HDF5_API and FORTRANPATH environment variables in the .profile or .bashrc script.

# These lines are OS-dependent.

# Availability of python3 utility and definition of the FORTRANPATH

# environment variable are prerequisite requirements for using both Makefiles

# and the PyGan bindings.

#

# On the recherche network at Polytechnique Montreal:

# Support for HDF5

export HDF5_INC="/usr/local/hdf5/include" # HDF5 include directory

if [ $MachineExtension = "-aix" ]

then

export HDF5_INC="/usr/include" # HDF5 include directory

fi

export HDF5_API="$HDF5_INC/../lib" # HDF5 C API

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$HDF5_API"

# Support for Python3 API

export FORTRANPATH="/usr/lib/gcc/x86_64-redhat-linux/4.8.5/" # contains libgfortran.so

#

# On the RedHat 8 operating system:

# Support for HDF5

export HDF5_INC="/usr/include" # HDF5 include directory

export HDF5_API="$HDF5_INC/../lib64" # HDF5 C API

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$HDF5_API"

# Support for Python3 API

export FORTRANPATH="/usr/lib/gcc/x86_64-redhat-linux/8/" # contains libgfortran.so

#

# On the Ubuntu operating system:

# Support for HDF5

export HDF5_INC="/usr/include/hdf5/serial/" # HDF5 include directory

export HDF5_API="/usr/lib/x86_64-linux-gnu/hdf5/serial" # HDF5 C API
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export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$HDF5_API"

# Support for Python3 API

export FORTRANPATH="/usr/lib/gcc/x86_64-linux/9/" # contains libgfortran.so

#

# On the Scibian 10 operating system:

# Support for HDF5

export HDF5_INC="/usr/include/hdf5/serial" # HDF5 include directory

export HDF5_API="/usr/lib/x86_64-linux-gnu/hdf5/serial" # HDF5 C API

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$HDF5_API"

# Support for Python3 API

export FORTRANPATH="/usr/lib/gcc/x86_64-linux-gnu/8/" # contains libgfortran.so

#

# Instructions for configuring Brisingr_Version5_evn on UNIX systems

#

# To configure Brisingr_Version5_evn components with custom compiler using makefiles:

cd ~/Brisingr_Version5_evn/Brisingr/

make

make clean

#

# To configure Brisingr_Version5_evn components with Intel compiler using makefiles:

cd ~/Brisingr_Version5_evn/Brisingr/

make intel=1

make clean

#

# To build an OpenMP-enabled version, simply write

make openmp=1

#

# To execute the non-regression tests with custom compiler:

make tests

#

# To execute the non-regression tests with Intel compiler:

make tests intel=1

#

# On AIX and Solaris OS, you must use GNU Make:

cd ~/Brisingr_Version5_evn/Brisingr/

gmake

gmake clean

gmake tests

# To execute Brisingr with Intel compiler:

cd ~/Brisingr_Version5_evn/Brisingr/

./rbrisingr -c intel AFA_180_310_type1.x2m

# To execute Brisingr with custom compiler:

cd ~/Brisingr_Version5_evn/Brisingr/

./rbrisingr AFA_180_310_type1.x2m

# To configure the doc

cd ~/Brisingr_Version5_evn/doc/IGE380

./install

# To read the doc:

gv -antialias ~/Brisingr_Version5_evn/doc/IGE380/IGE380.pdf
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