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1 Thermal conduction equation in the fuel and clad

The temperature distribution in the fuel rod is given by the Fourier’s law of heat conduction, written
as

∇ · [k(T )∇T (r, t)] +Q(r, t) =
∂

∂t
[ρ(T )C(T )T (r, t)] (1.1)

where

T (r, t) = temperature distribution in the fuel rod, including the clad (K)

Q(r, t) = fission power distribution in fuel (W/m3)

k(T ) = thermal conductivity of the fuel and clad (W/m/K)

ρ(T ) = density of the fuel and clad (kg/m3)

C(T ) = specific heat capacity of the fuel and clad (J/K/kg).

We consider that the conduction process in the fuel rod has a radial symmetry, so that the temperature
is only a distribution of the radial coordinate r. Equation (1.1) can be rewritten as

1

r

∂

∂r

[

r k(T )
∂

∂r
T (r, t)

]

+Q(r, t) =
∂

∂t
[ρ(T )C(T )T (r, t)] . (1.2)

The THM: module is based on a constant surface discretization of the fuel rod. A change of variable
is performed on r, as

A(r) =
r2

2
⇒ dA = rdr (1.3)

so that Eq. (1.2) can be rewritten as

2
∂

∂A

[

Ak(T )
∂

∂A
T (A, t)

]

+Q(A, t) =
∂

∂t
[ρ(T )C(T )T (A, t)] . (1.4)

Equation (1.4) is discretized in A using the mesh centered finite difference (MCFD) method, based
on the low order difference relations

∂T

∂A

∣

∣

∣

∣

i−1/2−
≃ 2

Ti−1/2 − Ti−1

∆Ai−1
and

∂T

∂A

∣

∣

∣

∣

i−1/2+
≃ 2

Ti − Ti−1/2

∆Ai
(1.5)

where we have set ∆Ai = Ai+1/2 − Ai−1/2. We define I equal-size volumes in the fuel, a gap, and Ic
equal-size volumes in the clad. Fuel rod interfaces are located at Ai+1/2 with 1 ≤ i ≤ I and A1/2 = 0, as
depicted in Fig. 1.

The heat flux Φ(r), expressed in W/m2, is defined as

Φ(r) = −k(T )
∂

∂r
T (r, t) = −r k(T )

∂

∂A
T (A, t). (1.6)

We state the heat flux continuity condition at each point Ai−1/2 as Φ(ri−1/2−) = Φ(ri−1/2+ ). This
condition is written

ki−1
∂T

∂A

∣

∣

∣

∣

i−1/2−
= ki

∂T

∂A

∣

∣

∣

∣

i−1/2+
. (1.7)

The discretization process produces a symmetric, positive-definite and tri-diagonal linear system
with the introduction of the following time-dependent mesh-centered finite difference coefficients of unit
W/m/K:

Di+1/2 =
4Ai+1/2

∆Ai
ki

+
∆Ai+1

ki+1

=
4Ai+1/2

∆Ai +∆Ai+1

[

1

Ti − Ti+1

∫ Ti

Ti+1

dT k(T )

]

(1.8)
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Figure 1: Definition of the regions in 1D cylindrical geometry.

Ei+1/2 =
4Ai+1/2 ki

∆Ai
=

4Ai+1/2

∆Ai

[

1

Ti − Ti+1/2

∫ Ti

Ti+1/2

dT k(T )

]

(1.9)

Fi+1/2 =
4Ai+1/2 ki+1

∆Ai+1
=

4Ai+1/2

∆Ai+1

[

1

Ti+1/2 − Ti+1

∫ Ti+1/2

Ti+1

dT k(T )

]

(1.10)

and

Gi = Hgap ri (1.11)

whereHgap is the heat exchange coefficient of the gap, expressed in W/m2/K. Equations (1.8) to (1.10)
are based on a quadrature of the thermal conductivity with a linear variation of the temperature. This
procedure permits to obtain an accurate temperature distribution in the fuel with a limited number I of
equal-size volumes.

Combining Eqs. (1.5) and (1.7) we obtain an expression on the interface temperatures as

Ti−1/2 =
∆Aiki−1Ti−1 +∆Ai−1kiTi

∆Aiki−1 +∆Ai−1ki
(1.12)

and

Ti+1/2 =
∆Ai+1kiTi +∆Aiki+1Ti+1

∆Ai+1ki +∆Aiki+1
. (1.13)

After substitution of Eq. (1.12) into Eqs. (1.5), we obtain our first mesh-centered finite difference
relation as

∂T

∂A

∣

∣

∣

∣

i−1/2+
= 2ki−1

Ti − Ti−1

∆Aiki−1 +∆Ai−1ki
. (1.14)

Using a similar approach, we obtain a second mesh-centered finite-difference relation as

∂T

∂A

∣

∣

∣

∣

i+1/2−
= 2ki+1

Ti+1 − Ti

∆Ai+1ki +∆Aiki+1
. (1.15)

Setting 1 ≤ i < I in Eq. (1.4) as the fuel domain and taking the derivative of heat flux term in interval
Ai−1/2 < A < Ai+1/2, we obtain

2

∆Ai

[

Ai+1/2 ki(t)
∂T (t)

∂A

∣

∣

∣

∣

i+1/2−
−Ai−1/2 ki(t)

∂T

∂A

∣

∣

∣

∣

i−1/2+

]

+Qi(t)

=
∂

∂t
[ρi(t)Ci(t)Ti(t)] . (1.16)

Substituting Eqs. (1.14) and (1.15) in Eq. (1.16), we obtain the finite difference relation for the
temperature unknowns inside the fuel rod:

4






Ai+1/2

Ti+1(t)− Ti(t)

∆Ai

ki(t)
+

∆Ai+1

ki+1(t)

−Ai−1/2
Ti(t)− Ti−1(t)
∆Ai−1

ki−1(t)
+ ∆Ai

ki(t)







+∆AiQi(t) = ∆Ai
∂

∂t
[ρi(t)Ci(t)Ti(t)] . (1.17)
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The corresponding tri-diagonal relations in temperature for internal points are

∆Ai
∂

∂t
[ρi(t)Ci(t)Ti(t)]−Di−1/2(t)Ti−1(t)

+
[

Di−1/2(t) +Di+1/2(t)
]

Ti(t)−Di+1/2(t)Ti+1(t) = ∆AiQi(t). (1.18)

Setting i = I and substituting Eqs. (1.5) and (1.15) in Eq. (1.16), we obtain the finite difference
relation between the temperatures inside the outer fuel ring (TI) and at the surface of the fuel pin
(TI+1/2):

4







AI+1/2 kI(t)

∆AI

[

TI+1/2(t)− TI(t)
]

−AI−1/2
TI(t)− TI−1(t)

∆AI−1

kI−1(t)
+ ∆AI

kI(t)







+∆AIQI(t) = ∆AI
∂

∂t
[ρI(t)CI(t)TI(t)] . (1.19)

The corresponding tri-diagonal relation for fuel surface temperature is

∆AI
∂

∂t
[ρI(t)CI(t)TI(t)]−DI−1/2(t)TI−1(t)

+
[

DI−1/2(t) + EI+1/2(t)
]

TI(t)− EI+1/2(t)TI+1/2(t) = ∆AIQI(t). (1.20)

The h-gap relations link the temperature gradients at the surface of the fuel pin and at the inner clad
surface. The heat fluxes at the fuel surface (rI+1/2), inside the gap at rI+1 and at the inner clad surface
(rI+3/2) are related through

rI+1/2Φ(rI+1/2−) = rI+1Φ(rI+1) = rI+3/2Φ(rI+3/2+). (1.21)

Equation (1.21) is used together with the h-gap correlation, written as

Φ(rI+1) = −Hgap∆T = Hgap

[

TI+1/2(t)− TI+3/2(t)
]

(1.22)

so that the left equality in Eq. (1.21) is written

−rI+1/2 kI
∂T (t)

∂A

∣

∣

∣

∣

I+1/2−
= Hgap

rI+1

rI+1/2

[

TI+1/2(t)− TI+3/2(t)
]

(1.23)

and the right equality in Eq. (1.21) is written

Hgap
rI+1

rI+3/2

[

TI+1/2(t)− TI+3/2(t)
]

= −rI+3/2 kI+2
∂T (t)

∂A

∣

∣

∣

∣

I+3/2+
. (1.24)

The position of mesh value rI+1 in the gap is selected to produce a constant heat flux:

Hgap rI+1

[

TI+1/2(t)− TI+3/2(t)
]

= 2Hgap rI+3/2

[

TI+1(t)− TI+3/2(t)
]

= 2Hgap rI+1/2

[

TI+1/2(t)− TI+1(t)
]

(1.25)

so that

rI+1 =
2 rI+1/2 rI+3/2

rI+1/2 + rI+3/2
. (1.26)

Using Eqs. (1.5), we obtain

−2rI+1/2 kI
TI+1/2(t)− TI(t)

∆AI
= Hgap

rI+1

rI+1/2

[

TI+1/2(t)− TI+3/2(t)
]

(1.27)

and

Hgap
rI+1

rI+3/2

[

TI+1/2(t)− TI+3/2(t)
]

= −2rI+3/2 kI+2

TI+2(t)− TI+3/2(t)

∆AI+2
. (1.28)
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The corresponding tri-diagonal relations for fuel and inner clad surface temperatures are

−EI+1/2(t)TI(t) +
[

EI+1/2(t) +GI+1(t)
]

TI+1/2(t)−GI+1(t)TI+3/2(t) = 0 (1.29)

and
−GI+1(t)TI+1/2(t) +

[

GI+1(t) + FI+3/2(t)
]

TI+3/2(t)− FI+3/2(t)TI+2(t) = 0. (1.30)

The tri-diagonal relation for clad surface temperature is similar to Eq. (1.20). It is written

∆AI+Ic+1
∂

∂t
[ρI+Ic+1(t)CI+Ic+1(t)TI+Ic+1(t)]−DI+Ic+1/2(t)TI+Ic(t)

+
[

DI+Ic+1/2(t) + EI+Ic+3/2(t)
]

TI+Ic+1(t) = EI+Ic+3/2(t)Tsurf(t) + ∆AI+Ic+1QI+Ic+1(t).

(1.31)

We obtained a tridiagonal linear system of order I+ Ic+2 with a source term function of the external
clad surface temperature Tsurf . This system can be written

[

∂

∂t
C (t) + A(t)

]

T (t) = S1(t) + Tsurf(t)S2(t) (1.32)

where

C = diag
(

∆A1ρ1C1, ∆A2ρ2C2, . . . , ∆AIρICI , 0, 0, ∆AI+2ρI+2CI+2, . . . ,

∆AI+Ic+1ρI+Ic+1CI+Ic+1

)

, (1.33)

A =





































D3/2 −D3/2 0 . . . . . . . . .
−D3/2 D3/2 +D5/2 −D5/2 0

...
. . .

... −DI−1/2 DI−1/2 + EI+1/2 −EI+1/2 0

... 0 −EI+1/2 EI+1/2 +GI+1 −GI+1 0

... 0 −GI+1 GI+1 + FI+3/2 −FI+3/2

... 0 −FI+3/2

. . .
...





































,

(1.34)

T = col
(

T1, T2, . . . , TI , TI+1/2, TI+3/2, TI+2, TI+3, . . . , TI+Ic+1

)

, (1.35)

S1 = col (∆A1Q1, ∆A2Q2, . . . , ∆AIQI , 0, 0∆AI+2QI+2, . . . , ∆AI+Ic+1QI+Ic+1) (1.36)

and
S2 = col

(

0, 0, . . . , 0, EI+Ic+3/2(t)
)

(1.37)

where region I + 1 corresponds to the gap and index I + Ic + 3/2 refers to the external clad surface.

The time-derivative is handled using a fully implicit temporal scheme, based on a finite-difference
relation, written as

∂

∂t
C (t)T (t)

∣

∣

∣

∣

tn

=
C(tn)T (tn)− C(tn−1)T (tn−1)

∆tn
(1.38)

where T (tn) is the temperature at time tn and ∆tn is the time step size over which the temporal
derivatives of the unknowns are assumed to be constant. A variable time step size is used during the
numerical procedure for decreasing the total amount of time steps and computing time.
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Substituting Eq. (1.32) into Eq. (1.38), we obtain

− A (tn)T (tn) + S1(tn) + Tsurf(tn)S2(tn) =
C(tn)T (tn)− C(tn−1)T (tn−1)

∆tn
(1.39)

Rearranging terms, our implicit scheme is finally written as

T (tn) =

[

C(tn)

∆tn
+ A(tn)

]

−1 {[
C(tn−1)

∆tn

]

T (tn−1) + [S1(tn) + Tsurf(tn)S2(tn)]

}

. (1.40)

The linear power delivered from the clad to the fluid in W/m is obtained as

q′′fluid(t) = 2πEI+Ic+3/2(t) [TI+Ic+1(t)− Tsurf(t)] (1.41)

where the temperature in the center of mesh I + Ic + 1 is a function of Tsurf(t) written as

TI+Ic+1(t) = B1(t) + Tsurf(t)B2(t). (1.42)

Substituting Eq. (1.42) into Eq. (1.41), we obtain

q′′fluid(t) = 2π [Z1(t)− Tsurf(t)Z2(t)] (1.43)

where Z1(t) = EI+Ic+3/2(t)B1(t) and Z2(t) = EI+Ic+3/2(t) [1−B2(t)].

Equation (1.43) is used in transient cases. If the flow is in steady-state conditions, the linear power
q′′fluid around the clad can be obtained directly from the steady-state fission power distribution in the fuel
as

q′′fluid =

∫

Sfuel

d2r Q(r) (1.44)

where Sfuel = πr2fuel is the fuel cross section area.

The fuel effective temperature Teff can be expressed in term of the Rowlands formula, a simplified
correlation written as

Teff =
5

9
Tsfuel +

4

9
Tcenter (1.45)

where Tsfuel is the surface-fuel temperature and Tcenter is the center-pin temperature assumed to be related
to its neighbour values by a linear expression:

T1 =
1

2
(Tcenter + T3/2). (1.46)

The mesh-limit temperature T3/2 can be computed iteratively using Eq. (1.7):

[

∫ T1

T3/2

dT k(T )

]

(T1 − T3/2) =

[

∫ T3/2

T2

dT k(T )

]

(T3/2 − T2) (1.47)

and Tcenter can be obtained from Eq. (1.46) using the converged value of T3/2.
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2 Thermal convection equation in the coolant

The heat exchange relation between clad and fluid for different heat transfer regimes K is a fonction
of the clad surface temperature Tsurf(t) and of the saturation temperature Tsat(t) of the coolant. If the
clad surface temperature is smaller than the saturation temperature of the coolant, the heat exchange is
the single-phase free convection regime (K = 0) and is described by the Dittus-Boelter correlation. In
the subcooled boiling regime (K = 1), the bulk coolant is still subcooled (Tfluid(t) < Tsat(t)), while the
liquid and vapor in contact with the wall are slightly above saturation. Finally, in the saturated nucleate

boiling regime (K = 2), nucleate boiling occurs in the fluid and its thermodynamic quality xth(t) is above
zero. An additional component Hnb(t) must be added to the Dittus-Boelter thermal exchange coefficient
in cases where K ≥ 1. The Newton’s law of cooling is written

q′′fluid(t)

2πrclad
=











Hc(t) [Tsurf(t)− Tfluid(t)] if K = 0;

Hnb(t) [Tsurf(t)− Tsat(t)] +Hc(t) [Tsurf(t)− Tfluid(t)] if K = 1;

[Hnb(t) +Hc(t)] [Tsurf(t)− Tsat(t)] if K = 2;

(2.1)

where

Hc(t) = Dittus-Boelter thermal exchange coefficient (W/m2/K)

Hnb(t) = Forster-Zuber thermal exchange coefficient (W/m2/K).

rclad = external radius of the clad (m).

The thermal exchange coefficient Hc(t) and Hnb(t) are function of the fluid temperature Tfluid(t).
Moreover, Hnb(t) is a function of Tsurf(t).

Substituting Eq. (1.43) into Eq. (2.1) for K = 1, we obtain

rclad {Hnb(t) [Tsurf(t)− Tsat(t)] +Hc(t) [Tsurf(t)− Tfluid(t)]} = Z1(t)− Tsurf(t)Z2(t). (2.2)

From Eq. (2.2), we obtain

Tsurf(t) =
Z1(t) + rcladHnb(t)Tsat(t) + rclad Hc(t)Tfluid(t)

Z2(t) + rclad Hnb(t) + rcladHc(t)
(2.3)

and
q′′fluid(t)

2πrclad
=

Hnb(t) [Z1(t)− Z2(t)Tsat(t)] +Hc(t) [Z1(t)− Z2(t)Tfluid(t)]

Z2(t) + rclad Hnb(t) + rcladHc(t)
(2.4)

so that
1

2πrclad

∂q′′fluid
∂Tfluid

(t) = −Hc(t)

[

Z2(t)

Z2(t) + rclad Hnb(t) + rclad Hc(t)

]

. (2.5)

In steady-state cases, Eq. (1.44) can be used to simplify Eq. (2.3) as

Tsurf =
ϕ+Hnb Tsat +Hc Tfluid

Hnb +Hc
(2.6)

where the known heat flux delivered to coolant is ϕ = q′′fluid/Ph with the heated perimeter defined as
Ph = 2πrclad.

If we write h = h(Tfluid, p), the enthalpy of water, and consider a constant pressure process, we can
write the following relation:

Cp(T, p) =

(

∂h

∂Tfluid

)

p

(2.7)

where Cp is the specific heat capacity of water (J/K/kg) at constant presure.

In this study, we are assuming single phase and forced convection flow regime. The mass flow equation
in the coolant is based on the following balance relation

∂

∂t
ρ(z, t) +

∂

∂z
Q(z, t) = 0 (2.8)

where
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Q(z, t) = mass flow rate at an elevation z (kg/m2/s)

ρ(z, t) = coolant density as given by the IAPWS-IF97 water tables as a finction of temperature and
pressure (kg/m3). May also be a function of the flow regime.

so that Q(z) is constant in steady-state cases, with

Q(z, t) = V (z, t) ρ(z, t) (2.9)

where V (z, t) is the flow velocity (m/s).

The momentum conservation relation is responsible for the variation of the pressure along the channel
as a function of mass flow rate gradient, gravity effect and coolant friction. This equation is written

∂

∂t
Q(z, t) +

∂

∂z

[

Q2(z, t)

ρ(z, t)
+ p(z, t)

]

+

[

f Q2(z, t)

2ρ(z, t)DH
+ ρ(z, t) g

]

= 0 (2.10)

where

p(z, t) = pressure at an elevation z (Pa)

DH = hydraulic diameter (m)

g = gravity acceleration constant (m/s2)

f = friction parameter as given by the Müller-Steinhagen correlation.

Note that the momentum conservation relation is currently not activated in module THM:. The
pressure p(z, t) is assumed constant along the channel.

The thermal convection equation in the coolant is based on a one-phase energy conservation relation
in energy, written as

∂

∂t
[h(z, t)ρ(z, t)] +

∂

∂z
[h(z, t)Q(z, t)]−

1

A(z)
q′′fluid(z, t) = 0 (2.11)

where

q′′fluid(z, t) = linear power received by the fluid through clad (W/m)

h(z, t) = coolant enthalpy (J/kg)

A(z) = cross section of the coolant channel (m2).

rod+clad coolant

zj

zj+1

Qj-1

Qj

pj+1

pj

u
p

w
in

dmesh j

mesh j+1

mesh j-1

Figure 2: Definition of the axial mesh.

The method used to solve Eqs. (2.8) to (2.11) is based on a finite volume discretization along 1D axial
meshes zj , as depicted in Fig. 2. The main unknowns are the coolant flow rates Qj, the clad surface
Tsurf,j and coolant Tfluid,j temperatures at each axial mesh, as a function of time. The spatial and time
discretizations take into account the clad radius variation with axial mesh position z and time t. The
cross section Aj and height ∆zj of the channel section are assumed to be constant all over a mesh j.
Equations (2.8) and (2.11) are solved in the upwind direction and Eq. (2.9) is solved in the downwind

direction.
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The integration of Eq. (2.8) over a mesh j delimited by zj and zj+1 leads to

1

∆tn

[

∫ zj+1

zj

dz ρ

∣

∣

∣

∣

tn

−

∫ zj+1

zj

dz ρ

∣

∣

∣

∣

tn−1

]

+ [Qj −Qj−1] = 0. (2.12)

The integration of Eq. (2.9) over a mesh j delimited by zj and zj+1 leads to

1

∆tn

[

∫ zj+1

zj

dz Q

∣

∣

∣

∣

tn

−

∫ zj+1

zj

dz Q

∣

∣

∣

∣

tn−1

]

+

[

Q2
j

ρj
−

Q2
j−1

ρj−1

]

+ [pj+1 − pj ]

+

∫ zj+1

zj

dz

[

f Q2

2ρDH
+ ρ g

]

= 0. (2.13)

The integration of Eq. (2.11) over a mesh j delimited by zj and zj+1 leads to

1

∆tn

[

∫ zj+1

zj

dz hρ

∣

∣

∣

∣

tn

−

∫ zj+1

zj

dz hρ

∣

∣

∣

∣

tn−1

]

+ [h(zj+1)Qj − h(zj)Qj−1]

−
1

Aj

∫ zj+1

zj

dz q′′fluid = 0 (2.14)

where the terms h(zj) are expressed as

h(zj) = h(Tfluid,j−1, pj−1) (2.15)

and the integrals in dz are expressed as
∫ zj+1

zj

dz hρ = [h(Tfluid,j−1, pj−1) ρ(Tfluid,j−1, pj−1) + h(Tfluid,j , pj) ρ(Tfluid,j , pj)]
∆zj
2

. (2.16)

Equation (2.14) can be rewritten as

h(Tfluid,j , pj) =

[

ρ(Tfluid,j , pj)∆zj
2∆tn

∣

∣

∣

n
+Qj

]

−1

×

[(

−
ρ(Tfluid,j−1, pj−1)∆zj

2∆tn

∣

∣

∣

n
+Qj−1

)

h(Tfluid,j−1, pj−1)

+
ρ(Tfluid,j−1, pj−1)∆zj

2∆tn
h(Tfluid,j−1, pj−1)

∣

∣

∣

n−1

+
ρ(Tfluid,j, pj)∆zj

2∆tn
h(Tfluid,j , pj)

∣

∣

∣

n−1
+

1

Aj

∫ zj+1

zj

dz q′′fluid

]

(2.17)

where q′′fluid is itself a function of Tfluid,j . Equation (2.17) is therefore an implicit relation in Tfluid,j that
can be solved by inverting the water function h(Tfluid,j, pj).

In steady-state conditions, the mass flow rate Q(z) is constant along the channel and Eq. (2.17)
simplifies to an expression giving the increase in enthalpy over each axial mesh:

hj = hj−1 +
q′′fluid
QAj

∆zj = hj−1 +
Ph ϕ

QAj
∆zj (2.18)

where

Ph = heated perimeter (m)

ϕ = heat flux delivered to fluid (W/m2)

Q = mass flow rate (kg/m2/s)

Aj = coolant cross section area (m2)

∆zj = axial mesh width (m).
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3 The flow regime model

The flow regime model of module THM: is based on legacy correlations function of flow characteristics
such as the heat flux delivered to fluid, the fluid enthalpy, the clad surface temperature, and other
thermodynamic properties of the fluid. Different flow regimes are identified along the coolant channel, as
depicted in Fig. 3.

G

Surface temperature T
surf

Bulk liquid temperature T

Saturation temperature T
sat

Subcooled boiling Saturated boiling

∆T
sat

x
th

 > 0

D

x > 0

E

∆T
sub

C

One phase flow

Figure 3: Surface and fluid bulk temperature distributions in subcooled and saturated boil-
ing.

When a heated surface exceeds the saturation temperature of the surrounding fluid, boiling can occur.
If the bulk fluid temperature is below the saturation temperature, boiling is referred to as subcooled

boiling (K = 1). If the bulk fluid temperature is equal to the saturation temperature, this is referred to
as saturated boiling (K = 2). Thermodynamic equilibrium between the liquid and the vapor phases can
only exists in saturated boiling regime where both phases are at saturation temperature. If bulk fluid
temperature is above the saturation temperature, the fluid is in superheated steam state (K = 3).

The axial point C in the channel is the onset of nuclear boiling (ONB) where the wall temperature
rises sufficiently above the local saturation temperature so that bubbles start to form at the heated wall.
Point D is the onset of fully developed boiling (OFDB) where bubble detachment first occurs before the
bulk liquid is saturated. It is assumed that contributions to steam voidage start at OFDB so that a
single-phase free convection regime (K = 0) can be set before this point.

The thermodynamic quality xth is a characteristics of the boiling regime. It is obtained from the
overall energy balance

xth =
h̄(P, Tcool)− hsat,ℓ(P )

hsat,v(P )− hsat,ℓ(P )
(3.1)

where

Tcool = bulk fluid temperature (K)

P = bulk fluid pressure (Pa)

h̄ = bulk fluid enthalpy (J/kg) as obtained from the solution of the Navier-Stokes equations

hsat,ℓ = enthalpy of the saturated liquid at pressure P (J/kg)

hsat,v = enthalpy of the saturated vapor at pressure P (J/kg).

Since the thermodynamic quality is defined in terms of the fluid enthalpy, it can have values greater than
one and less than zero. The thermodynamic quality is negative for subcooled boiling.
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The water boiling model is based on the calculation of three non-dimensional flow quantities: the flow
quality x, the slip ratio S and the void fraction α of the vapor. The flow quality x is the true flow fraction
of the vapor phase and is always between zero and one, regardless of the fluid state. The thermodynamic
quality corresponds to the flow quality only if thermodynamic equilibrium exists between the phases. We
define the flow quality as

x =
ṁv

ṁv + ṁℓ
(3.2)

where

ṁℓ = mass flow rate of the liquid phase (kg/s)

ṁv = mass flow rate of the vapor phase (kg/s).

If the two phases are moving at the same speed, the corresponding void fraction is written

α =

x
ρv

x
ρv + 1− x

ρℓ

(3.3)

where

ρℓ = density of the saturated liquid at pressure P (kg/m3)

ρv = density of the saturated vapor at pressure P (kg/m3).

In order to characterize a two-phase flow, a slip ratio different than one is frequently introduced in
addition of void fraction. The slip ratio is defined as the ratio of the average velocity of vapor phase flow
uv to the average velocity of liquid phase flow uℓ. The void fraction α can be related to the slip ratio S
as follows:

S =
uv

uℓ
=

ṁx/Aαρv
ṁ(1 − x)/A(1− α)ρℓ

=
ρℓ x(1 − α)

ρv(1 − x)α
(3.4)

where A is the fluid cross-section area and ṁ = ṁv + ṁℓ is the total mass flow rate (kg/s), so that the
void fraction is now written

α =

x
ρv

x
ρv + S 1− x

ρℓ

. (3.5)

Knowledge of the void fraction is required to compute the averaged density ρ̄ of the saturated bulk
fluid as

ρ̄ = αρv + (1− α)ρℓ (3.6)

which is next substituted in Eqs. (2.8) to (2.11).

The calculation of the flow quality in module THM: is based on a choice between two different models:

• The first model is an implementation of the Bowring model, as described in Sect. 4.1 of Mayinger

text.
[2]

According to this model, heat is removed from clad by two main mechanisms. The agitation
heat flux ϕa is the convection mechanism on the boundary layer due to the temperature difference
between clad surface and bulk fluid. The evaporation heat flux ϕe is related to bubble grows and is
function of the latent heat of vaporization. The increase of flow quality is only due to the evaporation
heat flux. Here, we are neglecting the heat flux due to single phase heat transfer between patches
of bubbles.

The flow quatity xj in axial mesh j is approached using a relation similar to Eq. (2.18):

xj =







0 if j is at OFDB;

xj−1 +
Ph ϕe

QAj (hsat,v − hsat,ℓ)
∆zj otherwise

(3.7)

with
ϕe =

ϕ

1 + π
(3.8)



IGE-409 11

and

π =
ϕa

ϕe
=

ρℓ Cℓ (Tsurf − Tcool)

ρv (hsat,v − hsat,ℓ)
(3.9)

where

Ph = heated perimeter (m)

ϕ = heat flux delivered to fluid (W/m2)

Cℓ = specific heat capacity of the liquid (J/K/kg)

Q = mass flow rate (kg/m2/s)

Aj = coolant cross section area (m2)

∆zj = axial mesh width (m).

• The second option for computing the flow quality is a profile-fit model, as proposed in Sect. 5.2.2.2
of Ref. [3] and generally used with the Saha-Zuber correlation. The profile-fit model is based in
the assumption that the main liquid enthalpy hℓ along the channel is a function of the bulk fluid

enthalpy h̄. The proposed approximation has the form
[4]

hsat,ℓ − hℓ

hsat,ℓ − hℓ,D
= exp

(

−
h̄− hℓ,D

hsat,ℓ − hℓ,D

)

(3.10)

where hℓ,D is the main liquid enthalpy on the OFDB point D.

The flow quality can be approximated by the following relation

x =
h̄− hℓ

hsat,v − hℓ
(3.11)

and is equal to the thermodynamic quality in the saturated region where hℓ = hsat,ℓ. Equation (3.10)
gives h̄ = hℓ = hℓ,D on point D, corresponding to a flow quality equal to zero. The liquid enthalpy
hℓ ≤ hsat,ℓ is given from Eq. (3.11) as

hℓ =
h̄− xhsat,v

1− x
(3.12)

and can be used to obtain the liquid temperature in the subcooled region by inverting the water
function hℓ(Tfluid, p).

Evaluation of Eq. (3.10) is based on the knowledge of the thermodynamic thermodynamic quality
at OFDB, written as

xth,D = −
hsat,ℓ − hℓ,D

hsat,v − hsat,ℓ
= −

Cℓ ∆Tsub,D

hsat,v − hsat,ℓ
(3.13)

where

Cℓ = specific heat capacity of the liquid (J/K/kg)

∆Tsub,D = degree of subcooling (Tsat − TD) of bulk fluid at OFDB (K).

We note that both xth and xth,D values are negative in the subcooled region. We combine Eqs. (3.10)
and (3.11) to obtain

x =

h̄− hsat,ℓ + (hsat,ℓ − hℓ,D) exp

(

−
h̄− hℓ,D

hsat,ℓ − hℓ,D

)

hsat,v − hsat,ℓ + (hsat,ℓ − hℓ,D) exp

(

−
h̄− hℓ,D

hsat,ℓ − hℓ,D

) . (3.14)
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Substituting Eqs. (3.1) and (3.12) in Eq. (3.14), we obtain

x =
xth − xth,D exp

(

xth
xth,D

− 1
)

1− xth,D exp
(

xth
xth,D

− 1
) (3.15)

so that x = 0 if h̄ = hℓ,D and x = 1 if xth = 1.

Accurate calculation of the slip ratio is important to obtain correct thermo-hydraulics quantities such
as the coolant density. Assuming S = 1 leads to overprediction of the void fraction and to inexact value
of the coolant density. The drift flux model is recommended for flow regimes typical to those found in

pressurized or boiling water reactors.
[5]

The velocity ŪGU (m/s) of the vapor relative to a reference frame
moving with the coolant is given by a correlation of the form

ŪGU = 1.18

[

σℓ g (ρℓ − ρv)

ρ2ℓ

]1/4

(3.16)

where

σℓ = surface tension of the liquid (N/m)

g = acceleration due to gravity (9.81 m/s2)

ρℓ = mass density of the liquid (kg/m3)

ρv = mass density of the vapor (kg/m3).

The drift flux model replaces Eq. (3.3) for the void fraction with the following expression:

α =

x
ρv

C0

(

x
ρv + 1− x

ρℓ

)

+ ŪGU
Q

(3.17)

where

C0 = concentration parameter that corrects for the fact that the void concentration and velocity profiles
across the channel can vary independently of one another. This parameter is taken as C0 = 1.13.

Q = mass flow rate (kg/m2/s).

As depicted in Fig. 3, OFDB occurs at an axial location where bubble detachment first occurs before
the bulk liquid is saturated. OFDB occurs if the bulk fluid enthalpy satisfies h̄ ≥ hsat,ℓ − Cℓ ∆Tsub,D.
Different correlations are available to compute the degree of subcooling of bulk fluid at OFDB:

• Bowring correlates the temperature at which the bubbles detach by the simple equation
[6]

∆Tsub,D =
η ϕ

v
(3.18)

where

η = subcooled void parameter (K m3/J)

ϕ = heat flux delivered to fluid (W/m2)

v = liquid velocity (m/s)

and where the subcooled void parameter is a function of the fluid pressure P (Pa) written as

η =
14 + 0.1P

1.01325× 105
. (3.19)
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• The Saha-Zuber correlation is used to calculate the temperature subcooling at OFDB in the sub-

cooled region.
[7]

At low flow rates, the bubble detachment occurs at constant Nusselt number and
is thermally controlled, while at high flow rate, the bubble departure is hydrodynamically induced
at a fixed Stanton number. The Peclet number Pe is defined as

Pe =
QDhCℓ

kℓ
(3.20)

where

Q = mass flow rate (kg/m2/s)

Dh = hydraulic diameter (m)

Cℓ = specific heat capacity of the liquid (W/kg/K)

kℓ = thermal conductivity of the liquid (W/m/K).

The value Pe = 70000 is the limit between thermally and hydrodynamically controlled bubble
departure. The Saha-Zuber correlation for the temperature subcooling at OFDB is written

∆Tsub,D =















ϕ
0.0065QCℓ

if Pe > 70000;

ϕDh
455 kℓ

if Pe ≤ 70000

(3.21)

where ϕ is the heat flux delivered to fluid (W/m2).

Knowledge of the flow regime and flow quality is required to obtain the value of the heat transfer
coefficients used in the Newton’s law of cooling (2.1). These coefficients are function of the following
non-dimensional numbers:

Nusselt number:

Nu =
HDh

kℓ
(3.22)

where

H = heat transfer coefficient (W/m2/K)

Dh = hydraulic diameter (m)

kℓ = thermal conductivity of the liquid (W/m/K).

liquid Reynolds number:

Reℓ = (1− x)
QDh

µℓ
(3.23)

where

Q = mass flow rate (kg/m2/s)

µℓ = dynamic viscosity of the liquid (kg/m/s).

liquid Prandlt number:

Pr =
µℓ Cℓ

kℓ
(3.24)

where

Cℓ = specific heat capacity of the liquid (J/K/kg).

inverse Martinelli number:

X−1
tt =

(

x

1− x

)0.9 (
ρℓ
ρv

)0.5 (
µv

µℓ

)0.1

(3.25)

where



IGE-409 14

ρℓ = mass density of the liquid (kg/m3)

ρv = mass density of the vapor (kg/m3)

µv = dynamic viscosity of the vapor (kg/m/s).

For fully developed (hydrodynamically and thermally) turbulent flow in a smooth circular tube, the
local Nusselt number may be obtained from the Dittus-Boelter correlation:

Nu = 0.023Re0.8Pr0.4 (3.26)

so that the Dittus-Boelter expression of the heat transfer coefficient is

Hsp = 0.023
kℓ
Dh

Re0.8Pr0.4 (3.27)

The nucleate pool boiling correlation of Forster and Zuber is used to calculate the nucleate boiling
heat transfer coefficient Hfz and the turbulent flow correlation of Dittus-Boelter is used to calculate the
liquid-phase convective heat transfer coefficient Hc. The Forster and Zuber expression of the heat transfer
coefficient is

Hfz = 0.00122
k0.79ℓ C0.45

ℓ ρ0.49ℓ

µ0.29
ℓ σ0.5

ℓ (hsat,v − hsat,l)0.24ρ0.24v

(Tsurf − Tsat)
0.24

[Psat(Tsurf)− P ]
0.75

(3.28)

where

σℓ = surface tension of the liquid (N/m)

P = bulk fluid pressure (Pa)

Psat(Tsurf) = saturation pressure as a function of temperature Tsurf (Pa).

The Chen expression of the heat transfer coefficients are taking into account both the heat transfer

coefficients due to nucleate boiling as well as forced convective regimes.
[8]

They are written

Hc = F Hsp and Hnb = SfzHfz (3.29)

where the two-phase multiplier F is a function of the inverse Martinelli number X−1
tt written as

F =











2.35
(

0.213 +X−1
tt

)0.736
if X−1

tt > 0.100207;

0 else.

(3.30)

The nucleate boiling suppression factor Sfz is the ratio of the effective superheat to wall superheat.
It accounts for decreased boiling heat transfer because the effective superheat across the boundary layer
is less than the superheat based on wall temperature. The suppression factor is written

Sfz =
1

1 + 2.53× 10−6 (Reℓ F 1.25)
1.17 . (3.31)
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