
Contribution to the modelization of
VVER reactor cores in VERSION5

Design of VVER minicore geometries

Nicolas Weisse
September 2024

Under the supervision of:
Professor Alain Hébert - Polytechnique Montréal

Professor Shihe Xin - INSA Lyon

Contents

1 Introduction 1
1.1 Institut de Génie Nucléaire (IGN) . 1
1.2 VVER reactors . 1
1.3 VVER simulations and the Poly VVER initiative . 1
1.4 The Version5 distribution . 2
1.5 Contents and layout of this report . 2

2 Geometries in transport codes : a literature review 4
2.1 Fission & nuclear reactions . 4

2.1.1 Neutron / nucleus interactions . 4
2.1.2 Key nuclear variables and quantities . 6
2.1.3 The transport equation . 8

2.2 Numerical approaches to neutron transport . 9
2.2.1 The stochastic way . 9
2.2.2 The deterministic methods . 9

2.3 VVER core simulation endeavors . 13
2.3.1 Benchmarking & validation . 13
2.3.2 Early DRAGON VVER capabilities . 14
2.3.3 The CAMIVVER initiative . 14
2.3.4 POLYVVER: current state and future perspectives 14

2.4 VVER core elements . 16
2.4.1 Moderating water . 16
2.4.2 Fuel rods . 16
2.4.3 Control rods & instrument tubes . 17
2.4.4 TVSA fuel assemblies . 17

2.5 Geometries and transport codes . 19
2.5.1 Geometries in deterministic codes : the DONJON & DRAGON example . . . 19
2.5.2 Constructive solid geometries . 20
2.5.3 Boundary representation . 21
2.5.4 Conclusion & future perspectives . 21

3 Study domain & methodology 23
3.1 Proposed minicore geometry . 23

3.1.1 Fuel assemblies . 24
3.1.2 Fuel rod discretization . 25
3.1.3 Input geometries and construction challenges 25

i

3.2 DRAGON5: setup & geometric data . 26
3.2.1 Region representation . 26
3.2.2 Library generation & Self-shielding . 26
3.2.3 Tracking & flux calculation . 28
3.2.4 Data manipulation & tracked parameters . 28
3.2.5 Conclusion: Interfacing with DRAGON . 29

3.3 Minicore calculation scheme . 30
3.3.1 POLYVVER’s REL2005 basis . 30
3.3.2 Minicore adaptation . 31

4 The Salamander geometry assembler & processing tool 32
4.1 General architecture . 32

4.1.1 Element representation . 33
4.1.2 Data formats . 34

4.2 Multi-layer containers . 35
4.2.1 Regions . 35
4.2.2 Cells . 35
4.2.3 Networks . 36

4.3 Geometric operations . 37
4.3.1 Elementary operations . 37
4.3.2 Connecting geometries . 38

4.4 Indexing operations & code generation . 40
4.4.1 Medium indexing . 40
4.4.2 Code generation . 40

4.5 Minicore design in SALAMANDER . 41
4.5.1 Assembly construction . 41
4.5.2 Assembly analysis and connection . 41
4.5.3 Adding reflectors . 41
4.5.4 Final analysis and outputting files . 42

5 Results & analysis 43
5.1 Final SALOMON minicore geometry . 43
5.2 DRAGON5 simulation & comparison with SERPENT2 44

6 Conclusion 47
6.1 Current and future state of the POLYVVER project 47
6.2 Outlooks for SALAMANDER and geometry tools . 47

ii

List of Figures

2.1 Some of the major cross section data for the 235U [9] 5
2.2 Doppler broadening for a 238U resonance [19] . 5
2.3 Self shielding phenomenons for a 238U resonance [23] 7
2.4 An example of cyclic track lines (or TSPC tracks) with various boundary conditions

applied on a given geometry (left) [20] . 10
2.5 Resonant energy group splits for the 238U [21] . 11
2.6 A VVER fuel rod taken from [11] . 16
2.7 VVER control rod and instrument tube dimensions 17
2.8 A TVSA fuel assembly . 18
2.9 The gigogne geometry architecture [20] . 19
2.10 The SERPENT2 constructive geometry model [20] 20
2.11 The SALOMON geometry architecture, a precursor to ALAMOS [20] 21

3.1 The minicore geometry as described in [26] . 23
3.2 The 30AV5 fuel assembly . 24
3.3 A surrounding 390GO fuel assembly . 24
3.4 Cell geometry discretization . 25
3.5 Input geometries . 25
3.6 30AV5 cell families . 27
3.7 390GO cell families . 28
3.8 REL2005 calculation scheme flowchart . 30
3.9 Minicore calculation scheme flowchart . 31

4.1 SALAMANDER’s data flow and architecture . 33
4.2 Geometry representation in SALAMANDER . 34
4.3 Two example of regions as represented in SALAMANDER 35
4.4 An example of a cell in red with its characteristics (index ; composition_type ; type)

and its physical neighbors in green . 35
4.5 Cell numbering by radius and position within the radius in Network objects 36
4.6 Illustration of a relative rotation combining a rotation and a translation 37
4.7 The snapping mechanism in action . 38
4.8 Connecting two paired interfaces . 38
4.9 Illustration of the boundary fusion mechanism, arcs in green, circles in blue 39
4.10 Two different equilateral triangle splits for the water reflector 42
4.11 Output trapezoid and hexagonal reflectors for the minicore with N = 20 42

5.1 The output minicore geometry zoomed in on assemblies with their cells colored by type 43

iii

5.2 Comparison of minicore fission rates . 44
5.3 Comparison of minicore radiative capture rates . 44
5.4 Comparison of total absorption rates in the minicore 45
5.5 Comparison of total power factors in the minicore 45
5.6 Comparison of the finesse of available geometries . 45

iv

List of Tables

2.1 KML2 nominal operating conditions from [2] . 16
2.2 KML2 TVSA fuel assembly data from [2] . 17

3.1 Shared minicore medium indexes . 26
3.2 Self-shielded isotopes and associated local or global parameters from [12] 27
3.3 MOC tracking parameters for the whole minicore geometry 28
3.4 Tracked study parameters . 29

v

Acknowledgments

I would like to extend my sincerest thanks and gratitude to Prof. Alain Hébert for giving me the
opportunity to work on this project and for his continued guidance at work. It has been a very
exciting and interesting internship for me, which I has introduced me to the world of nuclear energy
and the world of academic research. It has been very stimulating and has certainly encouraged me
to look in both of these directions for my career and this is in no small part thanks to Prof. Alain
Hébert.

The warmest and kindest of thoughts must also go to Pierre Fontaine who has been a colleague,
a mentor and has turned into a friend as the project went on.

Thanks and appreciation to our very own SERPENT2 snake charmer Philippe Panisi who worked
on the reference Monte-Carlo solution and made the office that more lively.

Special thanks also go to Raphaël Guash and Ivan Trancart our two Ph.D. debugging consultants,
neutronics hotlines and caring friends who provided much needed help, external advice and great
laughs whenever possible.

vi

Abstract

Proposed subject: Contribution to the modelization of a VVER minicore
in DRAGON5

VVER reactors are a family of Soviet and Russian power reactors using water as both a moderator
and coolant. Although their initial design goes back to the late 1950’s they have continually evolved
to meet new safety standards, performance requirements and regulatory needs. With a diverse
fleet of reactors worldwide, modeling VVER core performance and safety is of both academic and
industrial interest for operator countries.
The DRAGON5 lattice code already has the necessary capabilities to build and simulate hexagonal
VVER cells as demonstrated in previous studies. The next step is to test its minicore simulation
capabilities. This proof of concept will lay the groundwork for further minicore studies which will
prepare full core simulations in DONJON5. While modeling simple assembly type geometries is
feasible in DRAGON5, its native geometry engine is not suited for mini-core modeling. The goal is
to develop a non-native geometry program to build minicore geometries from given ALAMOS and
SALOMON assembly geometric elements. Moreover, source code in CLE-2000 scripting language is
to be generated by this program to correctly connect the non-native geometries with DRAGON5.

Sujet proposé : Contribution à la modélisation de mini-coeur VVER dans
DRAGON5

Les réacteurs VVER sont une famille de réacteurs electrogènes soviétiques et russes à modérateur
et caloporteur eau. Si leur conception initiale remonte à la fin des années 50 ils ont continuellement
évolué pour répondre aux nouveaux standards de sécurité, aux besoins de performance et s’adapter à
différents cadres réglementaires. Avec une flotte de réacteurs VVER aussi variée que ses opérateurs,
la modélisation des performances et de la sureté des coeurs représente un intérêt académique et
industriel majeur pour les pays opérateurs dans le monde.
Le code de cellule DRAGON5 possède déjà des capacités de construction et de simulations de cellules
hexagonales VVER comme démontré dans des études précédentes. L’objectif actuel est de prouver
ses capacités de simulation de mini-coeur. Cette démonstration permettra de poser les bases pour de
plus amples études mini-coeur qui serviront de base à de futures études coeur entier dans DONJON5.
Malgré la possibilité de modéliser des géométries d’assemblages simples dans DRAGON5, son moteur
de géométries natives n’est pas conçu pour la description de mini-coeurs. Il est donc question de
développer un logiciel permettant de construire des géométries de mini-coeur à partir d’éléments de
géométries d’assemblage aux formats ALAMOS et SALOMON. De plus, du code source en langage
script CLE-2000 devra être généré pour correctement interfacer ces géométries non-natives dans
l’environnement DRAGON5.

vii

Chapter 1: Introduction

1.1 Institut de Génie Nucléaire (IGN)

Polytechnique Montréal’s nuclear engineering institute (IGN) is currently responsible for the training
of nuclear energy students, the operation of the SLOWPOKE reactor and the development of the
VERSION5 deterministic reactor physics distribution. VERSION5’s foundations go back to the
1980’s with the development of the DRAGON lattice code and the DONJON full core simulation
tool. DONJON and DRAGON codes have become reference tools for CANDU reactor operators
and are still actively developed with the first DRAGON5 version being released in 2014. It boasts
both legacy and state of the art methods for reactor simulation. DRAGON5 is distributed under
the LGPL license, making it the only complete open-source reactor simulation distribution in the
world, a particularly interesting fact for both private actors and academic users worldwide.

1.2 VVER reactors

VVER nuclear reactors are a family of water cooled and water moderated pressurized power reactors
developed in the USSR and later Russia. They have seen 1500 reactor-years of operation worldwide
being known for their reliability. Operators include states from the former USSR and satellite states
as well as commercial export clients. In recent decades VVER reactors have proven to be a great
export success being well understood with incremental design updates and boasting moderate costs
along with comprehensive financing and operating schemes.

VVER technology distinguishes itself from other pressurized water reactor designs with its hexag-
onal core geometry. This design element modifies its behavior compared to other designs and also
requires specific hexagonal fuel assemblies. Such a peculiarity creates a dependence on Russian
expertise for core design and safety assessment as well as fuel assembly supply. With some legacy
VVER operators being in Moscow’s crosshair, the need for alternative fuel assembly supply and core
expertise has arisen. A first step in understanding VVER technology and being able to produce
alternative hexagonal fuel assemblies is to produce benchmarks and simulation models of VVER
cores. Said models can then be compared to experimental data measured in operational reactors to
further refine their accuracy.

1.3 VVER simulations and the Poly VVER initiative

With a lack of operator data outside the Warsaw pact during the cold war, simulating VVER cores
was of little interest and relevance to non user states. As the USSR dissolved and operator data

1

became available, a vested interested was put into understanding and assessing their capabilities and
safety. In these new conditions, some simulation environments implemented VVER specific codes
while others defined benchmarks for these cores. As the geopolitical situation degraded between
Russia and some of the former Soviet republics and Warsaw Pact states, research institutes and
companies deepened their codes to be production ready and looked into designing alternative fuel
for VVER reactors.

One of these VVER simulation initiatives was the European Commission’s Codes And Methods
Improvements for VVER comprehensive safety assessment (CAMIVVER). The project took place
from 2020 to 2023 with European research institutes and companies striving to provide industrial
standard simulations to eastern European VVER operators. In the wake of the CAMIVVER initia-
tive, a parallel project was set up at the IGN. This project’s goal is to demonstrate VERSION5’s
VVER core simulation capabilities and to provide free and open source alternatives to export con-
trolled and heavily licensed calculation schemes developed in other proprietary environments.

In 2023, the previous team of interns laid the foundations of the Poly VVER project by propos-
ing and running calculation schemes for VVER assemblies in DRAGON5. They validated their
results with an external neutron transport code, VTT’s SERPENT2, proving the relevancy of their
approaches and demonstrating a first layer of DRAGON5’s VVER capabilities.

The next step in the project is to go into the multi-assembly scale by running simulations on
a mini-core. This step is a proof of concept for further mini-core simulations and fine tuning in
DRAGON5 before going to full core simulations in DONJON5. This task requires the development
of new companion tools to assist in geometry production and to automate coupling with DRAGON5.
DRAGON5 being developed for assembly level simulations, its native geometric capabilities prove
ill suited for mini-core sized objects. An additional challenge is found in adapting really precise
assembly level calculation schemes to a much larger study domain. The SALAMANDER geometry
assembler and processing tool was developed as an answer to these project specific needs.

1.4 The Version5 distribution

The Version5 distribution is an Open Source project at Polytechnique Montréal related to the
development of codes DRAGON5 and DONJON5. DRAGON5 is a lattice code based on solutions
of the Boltzmann Transport Equation (BTE) for a small component within a nuclear reactor. This
component can be a single fuel pin cell, a fuel assembly, a colorset, a mini-core, or a reflector model.
DONJON5 is a full-core simulation code based on solutions of the neutron diffusion equation and
on the concept of fuel map for representing every assembly parameters over a 3D map. DRAGON5
can use native geometries based on its own geometry engine, or non-native geometries based on an
external tool such as ALAMOS. Our contributions are related to the support of non-native mini-core
geometries within DRAGON5. DONJON5 framework was not used.

1.5 Contents and layout of this report

This report provides information about the methods used to represent and process geometries in
SALAMANDER and introduces some of the minicore VVER results.

Firstly, key concepts in reactor physics and transport codes are introduced so that the reader may
understand the challenges and interest of the simulations. Past VVER simulation endeavors and
the studied VVER elements are reviewed to then turn the attention on geometrical representations

2

in transport codes, being this project’s center of attention.
The second part exposes the minicore geometry, DRAGON5 representation and use of geometric

data and then introduces the calculation scheme developed for the minicore study. This part serves
to outline the requirements for SALAMANDER as a both a geometry assembler and as a companion
tool. It also serves to introduce some elements of minicore calculation for later result analysis.

With an understanding of the challenges and capabilities at hand, the SALAMANDER tool is
introduced. This part describes its general architecture, its methods for processing input data and
the procedure to produce the minicore geometry.

Results are then analyzed, their relevance being compared with another reference tool and further
improvements are discussed from the geometric perspective.

3

Chapter 2: Geometries in transport codes :
a literature review

This literature review briefly introduces the reader to some key reactor physics concepts and the
types of simulation codes. The first two sections are a synthesis of information from [19], [31] and
[5] which are reference books in the field of neutron transport and reactor physics. Afterwards, past
and current advances in VVER simulations are reviewed and VVER core elements are introduced.
With their geometry exposed, the attention turns geometric representations in simulation codes to
conclude on the interest of this work.

2.1 Fission & nuclear reactions

2.1.1 Neutron / nucleus interactions

The main focus of reactor physics is the study of neutrons and their interactions with the elements in
the reactor core. All operational nuclear reactors are built around a controlled and sustained fission
reaction which provides thermal energy and free neutrons to sustain the reaction. Neutron and
matter interactions are characterized by the incident neutron’s kinetic energy and the target nucleus’
isotope. Because of the quantum nature of nuclear interactions, only probabilistic and statistical
quantities can be used to describe these interactions. For instance, probabilistic properties called
cross sections quantify the odds of specific interactions happening between a neutron of energy E
and a given isotope.

The microscopic cross section for interaction type x, σx, characterizes interaction probabilities
between a neutron and an individual atom. Its dimensions are that of a surface [L2] and may
be understood as an equivalent target size. It is conventionally given in barns which amounts to
10−28m2. The macroscopic cross-section Σx[L−1] is obtained by multiplying σx by Ni where Ni is
the density of isotopes i [atoms.L−3]. When multiplied by a length l it yields the probability of an
x interaction after a neutron traveled l deep into the i isotope medium.

While there are many types of neutron-matter interactions the most prevalent in reactors are :

• Fission (n, f): the incident neutron splits a heavy nucleus into several lighter nuclei, releasing
other free neutrons and energy

• Radiative capture (n, γ): the incident is captured by the target nucleus which releases γ rays
to return to a stable state

• Elastic scatterings: the incident neutron and the target nucleus conserve their total energy

4

in what is akin to an elastic shock, it may involve the formation of a temporary compound
nucleus in resonant elastic scatterings but no energy is lost through γ ray emissions

• Inelastic resonant scattering: the incident neutron and the target nucleus temporarily form a
compound nucleus which releases a free neutron and γ rays to return to a stable state

Figure 2.1: Some of the major cross section data for the 235U [9]

As seen in 2.1 cross sections exhibit some erratic behavior, in that particular case in the [10−6; 10−3]
MeV range. These spikes are called resonances and are the result of quantum phenomenons. They
are responsible for a more macroscopic phenomenon called self shielding 2.1.2. Cross sections also
vary with temperature due to the Doppler effect. Resonances tend to diminish in amplitude but to
widen in energy band with temperature. It is important to take this into account when designing
reactors to operate at certain temperate ranges.

Figure 2.2: Doppler broadening for a 238U resonance [19]

5

2.1.2 Key nuclear variables and quantities

In total, to accurately describe a neutronics problem the following variables are needed:

• 3 space variables condensed into r⃗, center of an elementary volume d3r

• 1 speed VN or energy E variable, VN the velocity vector’s norm, linked to energy by E = 1
2mV 2

N

• 2 direction variables, usually condensed into a solid angle Ω⃗

• 1 time variable t

Additionally, the neutron population density at position r⃗ of speed Vn going in direction Ω⃗ is given
by the n(v⃗, Vn, Ω⃗, t) variable whose dimensions are [neutrons.L−3]. As seen before, the density of
atoms in a given medium is noted N [atoms.L−3].

Flux and current

The neutron flux, ϕ is a shorthand notation appearing often in reactor physics used to quantify
neutron population distributions. It is expressed in quantities [L−2.T−1] and does not represent an
actual flux as defined in other fields. It can be understood as the number of neutrons of speed Vn

going through a surface of normal Ω⃗ by unit of time.

ϕ(v⃗, Vn, Ω⃗, t) = Vnn(v⃗, Vn, Ω⃗, t) (2.1)

The more classical flux definition is the neutron current. For a surface element d2S defined by the
unit normal vector N⃗ the angular current J⃗ can be defined as :

d3n

d2Sdt
= J⃗(v⃗, Vn, Ω⃗, t).N⃗ (2.2)

Neutron multiplication factor and reactivity

The neutron multiplication factor k is an indicator of the evolution of the neutron population. It is
a dimensionless number that can be understood as the ratio of neutrons between two generations or
the average number of fission neutrons that will themselves cause fission reactions. Its values can
describe three evolutions :

• k < 1 : subcriticality : the neutron population is decreasing exponentially, not enough neutrons
are produced to sustain the chain reaction

• k = 1 : criticality : the neutron population stays constant, the reaction is balanced and
sustained,

• k > 1 : supercriticality : the neutron population is increasing exponentially

A distinction is to be made between the k∞, neutron multiplication factor in an infinitely repeated
environment with no leaks and the keff , effective neutron multiplication factor simulated or observed
in a given bounded medium.

Reactivity ρ = k−1
k is another way to describe a neutron population evolution, using criticality as

6

a reference. It is relevant when weighing the contributions of different elements to core dynamics.
Absorbent materials will add negative reactivity to the core while neutron sources will add positive
reactivity to the core. It is measured in pcm (per cent mille, 10−5) to account for fine evolutions.

Reaction rates

The reaction rate τx, is the number of x type reactions, happening at E energies, per unit of volume
and time. It is later mapped throughout the minicore to assess its behavior and compare its reaction
and power distributions to other reference cases. It can be written as :

τx(r⃗, E, t) = Σx(r⃗, E, t)ϕ(r⃗, E, t) (2.3)

Self-shielding

As seen in 2.1, some isotopes contain resonances. The increased cross sections at given neutron
energies deplete the neutron flux around these energies in resonant isotopes. This phenomenon
happens both on an energy and spatial level, these are respectively called energy and spatial self
shielding. Isotopes are said to be self shielded from neutrons in these energy bands as their flux is
depleted.

(a) An example of energy self shielding (b) An example of spatial self shielding

Figure 2.3: Self shielding phenomenons for a 238U resonance [23]

Modeling self-shielding proves challenging both analytically and computationally. In transport
codes, it generally involves intermediate steps and adjusting cross sections in specific regions to
account for this phenomenon. This step will be mentioned in the DRAGON5 architecture and
calculation scheme part.

Burnup

Burnup is a quantity used to measure how much of the fuel has already been used. Some of the key
reactor parameters mentioned before tend to be plotted against burnup rather than time. In power
reactors it is the product of the reactor’s nominal thermal power by its running time in days divided
by its initial fuel load mass : Q̇∆,t

mi
. Its units usually are GWd/t or MWd/t, gigawatt, or megawatt

day per tonne.

7

2.1.3 The transport equation

The Boltzmann Transport Equation (BTE) known as both the Boltzmann Equation and the Trans-
port Equation is a balance equation that describes the neutron flux’s evolution. In a static case, in
an elementary volume d3r, it is written as follows :

Ω⃗.∇ϕ(r⃗, E, Ω⃗) + Σ(r⃗, E)ϕ(r⃗, E, Ω⃗, t) = Q(r⃗, E, Ω⃗) (2.4)

• Ω⃗.∇ϕ(r⃗, E, Ω⃗) : accounts for the flux’s spatial evolution, in that convention positive if neutrons
leave d3r and negative if they enter d3r

• Σ(r⃗, E)ϕ(r⃗, E, Ω⃗) : accounts for neutrons interacting with matter, subsequently changing en-
ergy and / or direction

• Q(r⃗, E, Ω⃗) : the source term in the equation, it counts two contributions :

- neutrons being scattered, changing directions and energy

- neutrons produced from fissions within d3r

With reactor cores spanning a dozen meters and containing heterogeneous materials, solving the
transport equation analytically proves impossible in most cases. This is why numerical methods to
model neutron transport have been developed.

8

2.2 Numerical approaches to neutron transport

Two main approaches to neutron transport can be identified: Stochastic and Deterministic. The
latter solves the BTE numerically while the former simulates individual neutron trajectories. The
following part introduces some of the major elements and challenges behind transport codes. It must
be noted that they are complex and highly configurable environments that provide base building
blocks to users that then have to chain them and configure them properly to fit the needs of their
study in what is called a calculation scheme. As such, the backbone of a transport code can only be
correctly used with a sound calculation scheme.

2.2.1 The stochastic way

Stochastic codes, also referred to as Monte-Carlo codes, take a statistical approach to core simu-
lation. These codes simulate individual neutron trajectories and interactions with random number
generation. They have the disadvantage of having statistical errors, which may be reduced with
higher neutron populations and more iterations. Simulating each neutron’s trajectory and inter-
actions proves more costly than a deterministic resolution as this involves simulating thousands
to millions of neutrons per iteration. However, Monte-Carlo methods prove extremely relevant for
reference calculations as their individual neutron simulation are closer to the actual physical phe-
nomenons at play in the reactor than the deterministic solutions. Additionally, they are generally
easier to use as their geometry engines and solvers are more flexible than deterministic codes. Some
of them also have the advantage of being energy continuous, meaning they do not discretize the
energy variable into groups as seen in deterministic codes, relying instead on local interpolations. In
this study the SERPENT2 Monte-Carlo code will be used to validate DRAGON5’s results.

2.2.2 The deterministic methods

Deterministic methods encompass a wide array of ways to solve the neutron transport equation
with differing mathematical and numerical approaches. When properly configured deterministic
codes prove orders of magnitude faster than stochastic codes and provide reasonably precise results
relative to them [14]. This makes deterministic codes relevant for industrial users running great
amounts of calculations or for academic users with limited computational resources.

A distinction is to be made between what are called lattice and full core codes. The former, like
DRAGON, are for modeling neutron transport in small objects like individual cells or sets of cells
forming an infinitely repeated pattern, a lattice. The latter, like DONJON, are meant to model full
cores once individual assemblies have been studied with a lattice code. Full core codes make use of
more approximations than lattice codes, for instance modeling neutron transport with a diffusion
equation or discretizing neutron energies in way less groups than in lattice codes, usually two against
at least a hundred. However, these approximations prove sound in practice on core sized objects.

This study is strictly about using DRAGON5 for multi-assembly simulations, being at the limits
of what a lattice code is able to do. Calculations on the minicore geometry produced in this work
made use of the Method of Characteristics (MOC) and the Collision Probability method (CP or
Pij) with its Interface Current (IC) sub case. They both involve discretizing the space and energy
variables.

9

Track generation

Track generation is the process which translates raw geometric data defined by the user into solver
specific spatial data for MOC and CP calculations. The main challenge behind track generation is
to accurately represent a given geometry while keeping the number of tracks as low as possible. The
direction variable is broken down into a set number of discrete values and parallel tracks following
these directions are then traced throughout the domain.

Figure 2.4: An example of cyclic track lines (or TSPC tracks) with various boundary conditions
applied on a given geometry (left) [20]

An additional challenge of track generation is the handling of boundary conditions. When dealing
with infinitely repeated lattice patterns, shape specific boundary conditions have to be implemented
to account for tracks crossing over from neighboring cells [17], as exemplified in 2.4. This is known
as cyclical tracking, as tracks exiting the lattice cycle back to it, respective of lattice shape and
boundary type. For wholly defined geometries of finite extents, uniform tracking algorithms may be
used. It limits the user to either void or isotropic reflection boundary conditions but allows the use
of irregular geometries [35] [20] [28].

Energy discretization

As seen in 2.1.3, the transport equation is energy dependent. In deterministic codes solving the
BTE also involves discretizing the continuous energy variable into smaller intervals called groups.
Splits are not made at regular intervals but are weighed against cross sections to better represent
the spectrum, the accurate treatment of resonances becomes a challenge here. Lattice codes like
DRAGON5 typically have a great quantity of groups as the studied domains are small[19]. This
work uses the legacy SHEM295 energy mesh with 295 energy groups.

10

Figure 2.5: Resonant energy group splits for the 238U [21]

Method of Characteristics

In MOC solvers the BTE is integrated along straight paths called characteristics. Taking M⃗ as a
starting point, the space variable is simplified as M⃗ + sΩ⃗ where s is the length traveled along the
track. This gives the characteristic form of the BTE :

d

ds
ϕ(M⃗ + sΩ⃗, E, Ω⃗) + Σ(M⃗ + sΩ⃗, E)ϕ(M⃗ + sΩ⃗, E, Ω⃗) = Q(M⃗ + sΩ⃗, E, Ω⃗) (2.5)

This method only produces an N size result matrix for each energy group where N is the number
of regions in the geometry. As such it is generally preferred when running calculations with domains
containing more than a few hundred regions.

Collision probability method

Like in the MOC approach, the CP method is based on discretizing space along certain neutron
paths. The domain is split into regions and flux is computed for each individual region i from the
probability of a neutron coming from region j colliding into i, hence the Pij name. For a given
energy group g, the reduced CP can be written as :

pi,j,g =
Pij,g

Σj,g
=

1

4πVi

∫
V ∞
i

d3r′
∫
Vj

d3r
e−τg(s)

s2
(2.6)

The flux in region i is then computed as :

ϕi,g = ΣjQj,gpij,g (2.7)

With Qj,g being the neutron production term in region j for energy group g.
This method proves particularly costly for large domains as it produces an N × N result matrix

per energy group, where N is the number of regions in the domain. On top of that, the CP method
assumes isotropic neutron emissions which the MOC does not. It remains relevant in few region
problems with symmetries involved.

An interesting sub case of the CP method is the interface current (IC) method where cells are
bundled by families. The collision probabilities are only calculated for cells of different families and

11

coupling between families is represented using interface currents. It speeds up computation and is
interesting when building self-shielding libraries.

12

2.3 VVER core simulation endeavors

VVER simulation is a relatively recent and active topic in transport codes as validating codes for
a given reactor type requires relevant experimental data. This was only made possible after the
complete fall of the Iron Curtain in the early 90’s and the compilation of data by external organisms
like the OECD or the EU [6]. Moreover, codes mostly optimized for conventional square PWR
geometries had to be adapted to hexagonal VVER geometries. The following literature review
briefly exposes some early and contemporary benchmarking efforts, DRAGON’s VVER capabilities
and the CAMIVVER project to then open up on the POLYVVER project.

2.3.1 Benchmarking & validation

The development of accurate computer models requires comparison to experimental datasets from
defined reference cases. Comparing the relative accuracy of a computer model against real world
data or other reference simulation models is called benchmarking. Running a transport code through
benchmarks is a required step when adapting it to and certifying it for a new type of reactor. As
such, one must separate the process of certifying a code from its actual use for a specific study case.
This makes the study of VVER challenging on two levels, the actual adaptation and validation of
codes to VVER cores and then the design and development of industrial calculation schemes in
newly certified codes.

As the Cold War drew to a close access to VVER reactors was made easier and a variety of bench-
marks have been defined and continue to be defined. As an example, the 2002 VVER Low Enriched
Uranium (LEU) and Mixed OXyde (MOX) benchmark from the Nuclear Energy Agency (NEA) has
been widely used as a reference case in the validation of transport codes. It originally compared
computational results from Russian codes and non Russian Monte-Carlo and deterministic codes.
This benchmark’s legacy and relevance is justified by the challenges posed by MOX (plutonium +
uranium) assemblies, as they both modify power distribution and isotopic concentrations in the core
[1].

Another example would be a more recent benchmark defined from the Khmelnytskyi-2 reactor
whose fuel assemblies are later studied in this report. While it was defined in 2009 it has seen a
few revisions until 2020 with improvement of computer models and technical documentation being
refined [25] [3]. It provides great insight into early operation of a VVER with data being gathered
from the first cycles of the reactor. It has been used in conjunction with SERPENT to fill in some
missing experimental data. This shows the iterative cycles benchmarks, methodologies and codes
can go through before having a definitive convincing package.

These two examples illustrate the newfound wealth in VVER data and benchmarks and the ongoing
efforts to improve codes that are already certified or that are being certified for VVERs. As some
codes are validated for VVER studies they can then serve as references for the validation of others.
Such is the case of SERPENT2, passing several real and virtual VVER benchmarks [32]. It is later
used in this study as the reference model. These examples also show that while VVER technical
documentation and experimental data is becoming more and more accessible, current codes continue
to be improved and refined for VVERs and that industrial calculation schemes are still in the works
for VVERs [16].

13

2.3.2 Early DRAGON VVER capabilities

During the 90’s DRAGON’s geometry module and the EXCELT: track generator were expanded
with hexagonal design and simulation capabilities [29]. This first step still proved rather limited,
with no major VVER studies being undertaken with it. DRAGON reached its full potential with
H. P. Raghav’s 2012 Ph.D. work [30] and the addition of new tracking algorithms for hexagonal
assemblies in NXT: [17]. Since then, DRAGON has been used for various academic VVER studies
comparing it to other deterministic and Monte-Carlo codes.

One of the most major and recent VVER study in DRAGON is a 2023 paper from the China
Institute of Atomic Energy [36]. They ran DRAGON through 3 VVER benchmarks, one of them
being the NEA’s LEU and MOX benchmark, following the evolutions of k∞ and isotopic concentra-
tions in pin-cells and assemblies. DRAGON’s relevance and reliability was illustrated by its close
proximity to stochastic simulation results and experimental data, with DRAGON performing better
than reference codes against experimental data. The authors deemed DRAGON suitable for pin-cell
and assembly level VVER simulations.

2.3.3 The CAMIVVER initiative

The CAMIVVER (Codes And Methods Improvements for comprehensive VVER safety assessment)
project was born out of a renewed effort to grant more autonomy to VVER operators in Europe
with new benchmarks being defined and data being gathered. Started in 2020, its main focus is, as
its name implies, safety assessment of VVER plants and improvements of current codes for these
studies. As such it outlines guidelines and improvement for VVER calculation schemes [33] as well
as new safety benchmarks with coupled thermal hydraulics codes [15]. This shows the very ongoing
nature of VVER modeling from neutronic, thermal hydraulics and safety perspectives. CAMIVVER
highlights the need to readapt and requalify existing tool chains for this type of reactors and the
current challenges and perspectives for VVER modeling.

A 2024 paper published by Karlsruhe Institute of Technology (KIT) as part of the CAMIVVER
project serves as the basis for this project’s geometry definition [26]. The paper itself outlines
methods to compare theoretical examples of transient control rod ejection in minicores. It is con-
cerned with the reactivity weight of control rods and coupled thermal hydraulics study of the impact
of rod ejection. These studies are conducted to compare deterministic schemes developed during
CAMIVVER to reference stochastic solutions. This paper could prove useful for further minicore
studies and could be used to benchmark a DRAGON VVER minicore against reference test cases
and data.

2.3.4 POLYVVER: current state and future perspectives

In the wake of the CAMIVVER project, the 2023 POLYVVER project focused on lattice and
assembly level comparisons between DRAGON5 and SERPENT2. Their aim was to adapt several
classical PWR calculation schemes to VVER reactors in the DRAGON5 environment. Their results
proved the already demonstrated quality of DRAGON’s VVER simulation and the feasibility of a
REL2005 two layer calculation scheme for VVER assemblies [11]. Adapting a REL2005 scheme
to VVER cores in DRAGON5 means that it can now be used to reliably output production level
results for industrials using standard schemes and not just project specific tweaks and adjustments.
Their DRAGON calculation scheme also serves as a reference architecture for the continuation of
the POLYVVER project. Additionally, they developed post-processing tools to compare data from
SERPENT2 and DRAGON5 [7]. This first step was major, providing the current minicore project

14

valuable glue tools for data manipulation and a base DRAGON code architecture to work from and
adapt.

With assembly elements proven to work in DRAGON, the POLYVVER minicore project starts
with the goal of adapting and optimizing the calculation schemes to a larger scale. This part of the
project is about building a first technology demonstrator for VVER minicore studies in DRAGON.
It must noted that minicore studies are relatively rare in lattice codes and that DRAGON was never
used with minicores this size. But as seen during the CAMIVVER project, studying minicores can
prove interesting for benchmarking and localized safety assessment studies. Minicore calculations
also act as a stepping stone before full core calculations to certify the whole VERSION5 toolchain
for reliable VVER simulations.

It must be noted that at the time of writing, transport codes validated for VVER core modeling and
simulation exist but are entirely proprietary. Continuous efforts are being made to further extend
their capabilities whether on the software side or calculation scheme part. Their proprietary nature
poses problems for potential users who may fall under budget constraints, export control regulations
or who could see their license agreement severely restrict their use of a given code. Proprietary
software just maintains users in a state of dependence relative to the parent institution or company.
This is why VERSION5 and its open-source model proves an interesting alternative for VVER core
simulation to other transport codes, as it already is for other PWR designs.

15

2.4 VVER core elements

VVER reactor cores are made from a set of hexagonal Fuel Assemblies (FA) enclosed in a pressure
vessel where cooling water is circulated in a closed loop. FA are themselves made up of fuel rods,
control rods and instrument tubes. This study is set at a multi-assembly scale. The core elements
studied in this report are from Khmelnytskyi-2 (KML2), in Ukraine. It is of type V-320 and has
been built in the early 1980’s. In standard conditions the KML2 reactor operates as follows:

Number of assemblies 163
Reactor power (MWt) 3000

Reactor pressure (MPa) 15.7
Moderator temperature (K) 560

Fuel temperature (K) 900
Gross power output (MWe) 1000
Net power output (MWe) 950

Table 2.1: KML2 nominal operating conditions from [2]

2.4.1 Moderating water

Water is circulated through the core to cool it and moderate the neutrons. Moderation is the process
of slowing down high energy neutrons to lower energies with scattering interactions. Here, hydrogen
atoms in the water have a high scattering cross section and slow the fission neutrons in the reactor.
The neutrons emitted after fissions typically have energies of a few MeV while U235 fission is more
prevalent for neutrons at energies of a few eV . Water may also be injected with soluble boron, a
neutron absorber, to add negative reactivity to the core and modulate its power output on a global
scale.

2.4.2 Fuel rods

Water moderator
Helium
Fuel cell

Zirconium alloy E110

Figure 2.6: A VVER fuel rod taken from [11]

VVER fuel rods are made up of 3 components. An external zirconium alloy cladding which serves
as a containment layer in case of accidents, otherwise it is virtually transparent to neutrons, having

16

a very low total cross section. Two gap layers filled with helium which are located both within and
without the fuel cell. And the actual fuel cell, made up of UO2 pellets or UO2 and Gd2O3 pellets
in burnable absorbers rods. These rods contain a set mass percentage of fissile U235, this is called
enrichment and it governs the core’s dynamics. VVER reactors run on 3% to 5% enriched uranium
fuel [27].

As mentioned before their fuel assemblies may contain what are called burnable absorbers, i.e.
isotopes with high absorption cross sections. As these burnable absorbers capture neutrons they
turn into isotopes with lower absorption cross sections. They provide local negative reactivity
in early stages of reactor operation and as time goes on and they have transformed into stabler
isotopes, their absorbing effect vanishes. When properly placed, burnable absorbers are a way of
locally smoothing reactivity over time [10].

2.4.3 Control rods & instrument tubes

VVER control rods are made from a given enrichment of B4C or Dy2O3 TiO2, two potent neutron
absorbers. Depending on the location of the fuel assembly within the core, its rods may be used for
power modulation, partially inserted and dynamically readjusted, or just safety purposes, all in /
all out configurations. Instrument guides tubes are located at the center of each VVER FA. Both
these guide tubes are made up of zirconium alloy E635.

Control rods Instrument tubes
R1 (mm) 5.45 5.50
R2 (mm) 6.30 6.50

Figure 2.7: VVER control rod and instrument tube dimensions

2.4.4 TVSA fuel assemblies

The Ukrainian VVER fleet uses TVSA fuel assemblies. The KML2 assemblies have the peculiarity of
having stiffener blades around their outer edges, it is represented in 2.8, they are meant to improve
mechanical stability. Their presence does not modify the actual lattice pitch but may cause some
parasitic neutron absorption.

Number of fuel rods 312
Number of guide tubes 18

Number of central guide tube 1
Hexagonal lattice pitch (cm) 23.6

Active height (cm) 353.0
Fuel mass (kg) 491.4 ± 4.5

Table 2.2: KML2 TVSA fuel assembly data from [2]

17

Central instrument guide tube
Control rod guide tubes

Stiffener blades

Figure 2.8: A TVSA fuel assembly

18

2.5 Geometries and transport codes

Before diving into how transport codes represent geometries, some definitions are needed to lift
confusions. The words geometry and mesh are sometimes used interchangeably while they designate
two different concepts [4].

• A geometry is the abstract structure describing an object with sets of elements and operations.
The quality of the modeled object is tied to the underlying geometric representation model
and its capabilities.

• A mesh is the discretization of the geometry into smaller parts, typically for rendering or com-
puting purposes. Meshes are a form of geometry themselves, they are a simpler representation
of the model with coarser geometric elements.

The line between geometries and meshes is often blurred in reactor simulations as users manually
discretize regions to better account for phenomenons such as spatial self shielding. With this side
note out of the way, this section is only about geometries.

Another important note is the platform dependent nature of geometric representation models in
transport codes. With various approaches to solving the transport equation, the multiple ways of
discretizing space and their relative computational costs, geometries are often constrained by the
solvers. This makes it so that no definitive, universal models can be described for all transport
codes of a given type. Studying individual models also requires having access to technical documen-
tation, which is often restricted for proprietary software. The following subsections gloss over a few
documented examples encountered during the project.

2.5.1 Geometries in deterministic codes : the DONJON & DRAGON
example

An example of platform specific geometry can be found in DRAGON’s gigogne geometries which
shares some commonalities with the CEA’s APOLLO 1 and 2 geometries. The gigogne representation
model is highly structured and is specifically aimed at modeling reactors with lattices built from
elementary predefined shapes. Individual geometries describing individual cells can then be layered
into one another with recursion to produce larger geometries such as fuel assemblies [20] [13].

Figure 2.9: The gigogne geometry architecture [20]

19

Such a structure simplifies tracking to a certain degree as it limits geometries to a few regular shapes
with set attributes. These particular shapes can be identified and proper boundary conditions may
be applied to them. The layered structure also means that geometries can be represented as trees,
which makes boundary and collision detection easier when generating tracks. However, users are
bound to simplify their models to fit the native geometric capabilities. With conventional PWR
cores being made up of square or hexagonal assemblies these limitations have only been a minor
hurdle in core simulation. They may prove limiting for more irregular and complex core designs like
the ones found in fast breeder reactors or small modular reactors.

2.5.2 Constructive solid geometries

A more flexible approach to core geometry design is found in Constructive Solid Geometry (CSG). It
allows users to define surfaces and volumes from a set of primitive shapes which are then combined
with boolean geometric operations (intersection, union and exclusion). Like before, the primitives
remain a limiting factor although the possibilities are extended by the boolean operators.

Figure 2.10: The SERPENT2 constructive geometry model [20]

As illustrated in 2.10, CSG models, such as the one in SERPENT2 [24], may involve some complex
and layered structures, grouping up pins in cells, cells in lattices and lattices in universes. This nested
structure proves powerful for describing complex core or assembly patterns. Hierarchical constructs
like these allow the use of tree data structures to represent a given geometry. This is efficient when
testing collisions with the ray tracing algorithms used to model neutron trajectories in stochastic
codes, hence the historical of CSG in Monte-Carlo codes.

This approach is still less structured than gigogne geometries and is fairly rare in deterministic
transport codes. As examples, GTRAN2 and OpenMOC use CSG as their base geometric repre-
sentation model [28]. Information about both of these codes is scarce and it must be noted that no

20

reference deterministic code, like DRAGON, uses CSG.

2.5.3 Boundary representation

An answer to the platform specific and primitive specific limitations mentioned before is boundary
representation or BRep. These geometries are made up of elementary shapes which describe the
boundaries of surfaces or volumes. An example of a BRep format is the CEA’s and EDF’s ALAMOS
format. With segments, circles and arc circles most of the complex geometries can be constructed
or at least faithfully approximated.

Figure 2.11: The SALOMON geometry architecture, a precursor to ALAMOS [20]

As see in 2.11, the geometry is now a set of completely unstructured elements, defining possibly
incoherent shapes. It is important to perform consistency checks and structure healing procedures
to ensure the overall soundness of a structure. With the added complexity of manipulating simpler
elements than in gigogne models, the design of such geometries requires a dedicated companion tool
with a GUI [8] [22]. Track generation also becomes more challenging as regular and irregular shapes
may coexist in the same geometry. However with the implementation of more general tracking
algorithms some of these problems have been alleviated, allowing DRAGON to import ALAMOS
and SALOMON formatted BRep geometries [35].

2.5.4 Conclusion & future perspectives

As core geometries become more complex and irregular with next generation core designs, the need
for advanced geometric models grows. Contemporary efforts are focused on providing GUI tools to
design models usually by way of interfacing with external CAD platforms. These new interfaces
are also meant to be used for result visualization and for data fusion from other multi-physics
simulation software. One such example can be found in the SALOME platform, whose development
is lead by EDF and the CEA among other institutions and industrials. Its provides a graphical and
programmable CAD interface which may be extended with modules like the CEA’s ALAMOS [8].
SALOME’s modular architecture opens up new possibilities for advanced calculation schemes, result
analysis and deeper coupling between DRAGON and codes from other domains in reactor simulation

21

[22]. Such platforms also make core design for comparative deterministic / stochastic studies easy
with BRep to CSG conversion tool kits such as McCAD [18].

Further developments of integrated platforms like SALOME and individual software interfaces
provide a compelling answer to the problems posed by core geometry design and analysis. With this
in mind, challenges still remain in deterministic codes to develop track generators with appropriate
cyclical tracking algorithms for given lattice shapes. It must be noted that core design modules
like ALAMOS in SALOME are for the most part proprietary. This still proves a hurdle for export
controlled or budget restricted projects. Efforts are being made to circumvent such restrictions
at the IGN with open source tools being in the works but they remain mid term endeavors. This
project is a short term solution to bridge the gap between DRAGON and already designed ALAMOS
geometries.

22

Chapter 3: Study domain & methodology

This chapter outlines the studied FAs, some of the inner workings of DRAGON as a platform and
how it was configured for a first proof of concept minicore study. It must be understood that
this work is not strictly about reactor physics, as such elements mentioned here will be looked at
from a geometry point of view. It will also be a way to sketch SALAMANDER’s requirements as
a companion tool. For reactor physics analysis as well as in depths DRAGON5 and SERPENT2
configurations please refer to P. Fontaine’s and P. Panisi’s report [12].

3.1 Proposed minicore geometry

The proposed mini-core geometry is taken from the configuration outlined in the Karlsruhe Institute
of Technology (KIT) paper and as part of the CAMIVVER project [26]. It is made up of one central
30AV5 FA and 6 390GO FAs, surrounded by a water reflector in an overall hexagonal pattern and the
boundaries beyond the water reflectors are considered to be void (albedo of 0). Boron concentration
in water is set to 600ppm to mirror KIT’s configuration.

30AV5 (with CR)

390GO

Water reflector

Figure 3.1: The minicore geometry as described in [26]

23

3.1.1 Fuel assemblies

The 30AV5 fuel assembly only contains one type of fuel pin with one type of burnable absorber. Its
burnable absorbers are located more in its periphery and the enrichment of its fuel is relatively low
compared to a 390GO FA.

Cell type Number
Non fuel 19

3.0%235U fuel pin 303
2.4%235U and 5.0%Gd2O3 absorber pin 9

Figure 3.2: The 30AV5 fuel assembly

The 390GO FA is made up of two types of fuel pins, with the lowest enriched ones being placed on
its outer shell. This is done to prevent power peaks and neutron leaks at its boundary. Its burnable
absorbers are set closer to its center.

Cell type Number
Non fuel 19

4%235U fuel pin 240
3.6%235U fuel pin 66

3.3%235U and 5.0%Gd2O3 absorber pin 6

Figure 3.3: A surrounding 390GO fuel assembly

24

3.1.2 Fuel rod discretization

The fuel rod geometries have been modified with the removal of the outer helium void region to
speed up calculations. The fuel cell part has also been radially split into increasingly smaller annular
regions as radius increases. This is done to better model the effects of spatial self-shielding and the
evolution of isotopes at different radii in the cells. Fuel cells have been split in 4 annular regions
and burnable absorber cells in 12 annular regions.

(a) Discretization of fuel cells (b) Discretization of burnable absorber cells

Figure 3.4: Cell geometry discretization

3.1.3 Input geometries and construction challenges

The geometries of individual assemblies come in the form of smaller symmetry geometries which
were split to save disk space and computation time when adequate boundary conditions are applied.
The 30AV5 comes as a diamond geometry while the 390GO is split in an equilateral triangle, as
seen in 3.5. Building a complete minicore geometry requires unfolding those input files, removing
internal boundaries and then fusing them together. Additionally, as reflector geometries were not
given they have to be produced and added onto the final design. Answering those needs constitute
the core requirements for the SALAMANDER tool.

(a) 30AV5 diamond symmetry geometry
(b) 390GO triangle symmetry geometry

Figure 3.5: Input geometries

25

3.2 DRAGON5: setup & geometric data

DRAGON’s module and data are accessed via the CLE-2000 language. It is used to control data
flow, define routines and develop calculation schemes. In the following subsections the link between
geometric data and nuclear data are explained and the configuration of modules used during the
project is outlined.

3.2.1 Region representation

DRAGON has its own geometry module GEO: and also has the capability to import non-native
ALAMOS / SALOMON surface geometries using the module G2S:. While these two types of
geometries are defined and structured differently, they both divide space in what are called regions.
Regions represent closed surfaces or volumes, they have a unique identifier index and a medium
index. The medium index is used when building libraries and accessing nuclear data for this given
region. It may be shared or be unique, depending on the type of medium and evolution observed
in that medium’s material. Regions bearing fuel or burnable absorber materials will be assigned a
unique medium number for accurate self-shielding and evolution calculations. Otherwise, regions
made up of structural materials will be assigned shared medium indexes. In this study the following
medium indexes were shared across multiple region:

Medium Medium index
Void / helium 1

Water 2
Stiffener material 3

30AV5 instrument guide tube material 4
390GO instrument guide tube material 5

30AV5 control guide tube material 6
390GO control guide tube material 7

30AV5 fuel cladding material 8
390GO fuel cladding material 9

Table 3.1: Shared minicore medium indexes

3.2.2 Library generation & Self-shielding

The data structure that links medium indexes to actual property tables and material definition is
called a library, in DRAGON it is defined with the LIB: module. It builds a database of relevant
nuclear data, such as cross-sections, from the materials defined by the user. The library may be
further refined with calls to self-shielding modules on specific mediums and their isotopes to correct
cross-sectional data to account for the flux depletion caused by self-shielding. Self-shielding modules
run an extra flux calculation step to reevaluate some of the data associated with materials. In
this project the USS: (Universal Self-Shielding) module was used with the Pij method on native
DRAGON assembly geometries. This simplifies the problem from a whole minicore calculation to
two individual assembly calculations. However medium indexes in the native DRAGON self-shielding
geometries and the minicore flux calculation geometry must match for data to be coherently written
to the library.

26

Isotopes Self-shielding parameter
235U Uniform self-shielding in all mixtures
238U Self-shielded by fuel region
239Pu Self-shielded by fuel region

240Pu,241 Pu,242 Pu Uniform self-shielding in all mediums
154Gd,155 Gd,156 Gd,157 Gd,158 Gd Self-shielded by fuel region

90Zr,91 Zr,92 Zr,94 Zr,96 Zr Uniform self-shielding in all mediums

Table 3.2: Self-shielded isotopes and associated local or global parameters from [12]

To accurately model the effects of self shielding at the assembly level, cells in the native geometries
were defined by families. These families are meant to group cells with relatively similar behaviors
and environments, so families are defined from a cell’s composition and neighborhood. The 30AV5
being at the center of the minicore, having one fuel composition, one burnable absorber type and
being exposed to 390GO FAs on all sides, its self-shielding families are discretized radially and
around peculiar elements like control rod guide tubes and fuel absorber cells. The 390GO FAs are
more challenging because of their varied surrounding and their two fuel compositions. As such their
boundaries are discretized by side and angle cells are placed in to account for discontinuities between
two sides.

C
1

C
2

C
3

C
4

C
5

C
6

T
I

C
7

T
G
1

T
G
2

C
8

G
1

G
2

G
3

Figure 3.6: 30AV5 cell families

27

C
19

C2

C3

C4

C5

C6

TI

TG
1

TG
2

C7

Gd
1

C8

C9

C
11

C
10

C
17

C
16

C
15

C
18

C
14

C1

C
20

C
21

C
22

C
12

C
13

Figure 3.7: 390GO cell families

3.2.3 Tracking & flux calculation

The tracking process, as seen in 2.2.2, runs neutron trajectories through the study domain, splitting
each tracks by regions. Tracking data is then passed to BTE solvers which calculate the flux in
each region. Inside a region flux is assumed to be uniformly distributed, as such, it is important
to keep regions small and sometimes split them for more precise results. During flux calculation
a region’s medium data is looked up in the library to use appropriate nuclear data. The surfacic
minicore geometry is processed by the SALT: module whose track data is fed into the MCCGT:
MOC tracking module. After flux calculation the EVO: module is called to calculate burnup, the
evolution of isotopes in the minicore and other relevant key of reactor quantities.

Track density (cm−1) 25
Number of polar angles 4

Distribution of polar angles CACB (uniform)
Boundary condition TISO (isotropic reflection) and void boundary

Table 3.3: MOC tracking parameters for the whole minicore geometry

3.2.4 Data manipulation & tracked parameters

At last, data computed during the flux calculation and evolution procedure can be manipulated
and processed by the EDI: module. In this project it was used to group fuel region data by cells
and to condense the 295 energy group data into 2 energy groups. This processed output can then

28

be compared to similarly formatted data from SERPENT2 with post-processing tools. The data
manipulation step requires precise knowledge of the geometry and its medium indexes to coherently
bundle mediums together.

Studied isotopes 235U,238 U,239 Pu,157 Gd,135 Xe,149 Sm
Condensed energy groups 2 (slow and fast neutrons)

Energy group split 0.625 MeV
Output data NWTO (flux), H-FACTOR (power factor)

NFTOT (fission cross section), NG (radiative capture cross section)

Table 3.4: Tracked study parameters

3.2.5 Conclusion: Interfacing with DRAGON

With the VVER minicore being made up of 6 FAs, each consisting of 321 cells, themselves split
in at least 6 regions, the total region count grows to numbers too great for human operators to
handle when inputting or manipulating data in DRAGON. As such, the SALAMANDER tool has
to provide a coherent region and medium indexing solution as well code generators to automate
library generation and data manipulation. SALAMANDER must be able to make sense of abstract
structures like cells and assemblies to properly number regions and split them for assembly by
assembly self-shielding calculations. On top of that, geometric and numbering operations must be
rigorously conducted to produce coherent closing shapes for the track generators to work with.

29

3.3 Minicore calculation scheme

The minicore’s calculation scheme takes it roots in the previous POLYVVER project which succeeded
in adapting a REL2005 calculation scheme to VVER assemblies in DRAGON. However, as the
minicore is a large and complex object to simulate, concessions had to be made. The REL2005
scheme is introduced to clarify some notions and terms used in the demonstrator minicore scheme.

3.3.1 POLYVVER’s REL2005 basis

REL2005 is a PWR FA calculation scheme developed at the CEA. It is said to be a two layer
scheme because of its use of two distinct geometries for flux calculation, transformed into Track_1L
and Track_2L in the illustration below. The nuclear data library and region mixes are generated
and the first flux calculation takes place with a coarse geometry and the Pij method. It is used
to reevaluate the data in the library for a second flux calculation, this time with a finer geometry
and the MOC method. The result of this flux calculation is then used for data edition or evolution
of isotopic concentrations. Self-shielding calculations take place only at the initial step and at set
burnup points to save computation time, it is computed by Pij method on a coarse geometry. [34]
The scheme may be hybrid, using two different types of geometry, 100% ALAMOS or 100% native,
using only ALAMOS or native GIGOGNE geometries respectively.

Figure 3.8: REL2005 calculation scheme flowchart

30

3.3.2 Minicore adaptation

With technical limitations encountered during the project, notably in terms of computation time
and library size, a simpler scheme was developed. The two layer REL-2005 approach was dropped
for just one MOC flux calculation which is more appropriate for large objects. The geometry used for
flux calculation is a coarse one provided by SALAMANDER. Self-shielding calculations take place
on smaller assembly geometries and not on the whole minicore geometry. While those compromises
degrade the quality of the results they are sufficient to prove the feasibility of a minicore and
DRAGON. These results are only meant to be compared with SERPENT2 to identify the points to
be improved in the calculation scheme and, if really limited, in DRAGON.

Figure 3.9: Minicore calculation scheme flowchart

31

Chapter 4: The Salamander geometry assem-
bler & processing tool

Salamander was developed to process multiple mother assembly geometries and output a multi-
assembly child geometry with project specific CLE-2000 companion scripting code for easy plug in
with DRAGON5. Its main interest lies in its code generation and multi-layer geometric identification
abilities. This chapter goes over SALAMANDER’s architecture and functionalities. It is done so
that external users may grasp the inner workings of SALAMANDER to work with it, to expand
it or to build new codes from the experience acquired when developing SALAMANDER. Attention
is first given to its global architecture and the basic Element class it manipulates. Then abstract
containers, geometric operations and indexing operations are introduced. Finally, focus is set on the
minicore design procedure.

4.1 General architecture

SALAMANDER works with ALAMOS and SALOMON surfacic formats, describing 2D BRep ge-
ometries, it can manipulate them with basic geometric operations. BRep’s design flexibility on the
user side also hides layers of complexity for later processing as geometries prove completely unstruc-
tured 2.5. This lack of direction and hierarchy makes analyzing a BRep geometry and identifying
its superstructures costly and complex. SALAMANDER’s role is to provide and build abstract
data structures for these unstructured geometries. Its key guiding principle is to build appropriate
containers for both internal geometric operations and the user’s needs. SALAMANDER was devel-
oped in PYTHON3 using an object oriented approach to quicken access to and modification of data
structures. It also has a TKinter graphical user interface for visual inspection of output geometries
although this module remains completely optional.

32

Figure 4.1: SALAMANDER’s data flow and architecture

SALAMANDER is built around a master container class named Geometry which stores Element
and Region objects as well as other meta information regarding the geometry’s precision and
boundary conditions. It is used to apply any type of geometric operation on the whole set of elements
and regions as some require intricate coordination between several layers of the geometry. Geometry
classes can be copied (copy() method) or added (add(geom) or batchAdd([geom]) methods) together
as well, their elements and regions are just renumbered and appended to the mother geometry’s
lists.

Additionally, the Geometry class can contain two abstract data structures that appear as part
of the analysis process:

• Cells: a list of Cell objects defined from its Region objects

• Networks: a list of Networks objects, which contain and operate on Cell objects

These structures are then read by the Controller class which is used to renumber the region
indexes and mediums according to user input and the underlying structure of the geometry. It must
be called just before saving the geometry to disk and it is tasked with 2 main functions:

• Renumbering regions for export according to user input, region material and earlier analysis

• Generating CLE-2000 code and correspondence tables for the user

4.1.1 Element representation

As seen in 2.11 during the literature review, ALAMOS / SALAOMON geometries have 3 elementary
oriented shapes:

• Lines: defined by a starting point and vector v⃗

• Circles: defined by a center point and a radius r

• Arcs: defined by center point, a radius r, a starting angle α and an opening angle β

33

Elements are oriented, they have a positive and negative side each bearing a region, or node, index.
The positive direction for ALAMOS / SALOMON files is defined as clockwise and the limits of the
study domain are marked by a 0 region index.

(a) Orientation of base elements (b) A simple surface geometry

Figure 4.2: Geometry representation in SALAMANDER

4.1.2 Data formats

SALAMANDER can manipulate two data formats with one being preferred for input, .ap3 ALAMOS
files and one for output .sal SALOMON files. They have the exact same geometric representations
and basic elements, making converting from one format to another a lossless operation. The use of
two file formats is due to the region data they contain.

ALAMOS format

ALAMOS geometries come in two ascii files:

• .ap3 file : sets of points and orientated elements linking those points, these elements have set
regions on their positive and negative sides, it also defines region materials

• .za file : material, temperature and property maps

The .ap3 file is sufficient to build the geometry and is easily parsed. The region material information
is key when later analyzing the core and is not easily found in SALOMON files, hence the use of
.ap3 files as inputs. SALAMANDER only parses .ap3 files but doesn’t output them, SALOMON
files are selected for DRAGON exports.

SALOMON format

SALOMON files are used as output for their explicit medium numbering, which is later used when
coupling with DRAGON. They also pack more data with them such as boundary conditions, perime-
ter information and some meta information about the geometry’s precision. For now SALAMAN-
DER only outputs SALOMON files with default meta values taken from DRAGON’s ALAMOS
to SALOMON export module G2S:. SALAMANDER may both read and write SALOMON files,
however a dedicated material map is needed to make sense of medium numbering in SALOMON
files.

34

4.2 Multi-layer containers

SALAMANDER’s analysis and code generation abilities arise from its variety of object containers
which may be nested into one another. It fills the void left by the unstructured, unordered BREP
elements. It translates needs and data structures from the DRAGON such as cells and assemblies.

4.2.1 Regions

Regions are defined by a unique region index, a medium index, a material and the set of Element
objects they contain. The material string is later required when assigning medium indexes in the
Controller class. Region objects are automatically constructed when parsing a geometry file and
they are assigned to the corresponding nodes of the Element objects they contain. Region 0 does
not actually exist but is created and reserved for quick access to boundary Element objects.

(a) A simple region in blue with (index ; re-
gion_index ; material) (b) Region 0 in red

Figure 4.3: Two example of regions as represented in SALAMANDER

4.2.2 Cells

Cells are sets of concentric regions defined by a unique index, a composition type and a finer
arbitrary type. The composition type is a list of the Cell’s Region materials. The type is a more
refined indicator used for self-shielding groups, by default the type is set to the composition type,
the user needs to define its own types later.

Figure 4.4: An example of a cell in red with its characteristics (index ; composition_type ; type)
and its physical neighbors in green

35

Cells are identified and built with Cell’s identify([regions]) which returns a list of cell objects.
This process automatically builds the cells indices and defines composition types and also assigns
the corresponding mother Cell object to children Region objects within itself. Regions are grouped
by centers and then sorted by radius for simplified access to data. Cell objects may contain several
regions in one radius group in the case of ultra fine wedged geometries.

4.2.3 Networks

The Network class is the highest level container, representing a fuel assembly. They are made
up of Cell objects and defined from a reference center Cell, radii groups are then identified and
Cell objects are assigned in corresponding radii group. When a Cell has less than 6 neighbors it is
considered on the outer limit. Network objects allow simple access to these radii of Cell objects
for quicker type assignment by users based on geometric position and not arbitrary cell indexes.
They are also used to identify a the different assembly types in a given Geometry.

Figure 4.5: Cell numbering by radius and position within the radius in Network objects

36

4.3 Geometric operations

Geometric operations can be divided into two main types, elementary movement operations only
applied on Element objects and structural changes applied on Element object nodes and Region
objects.

4.3.1 Elementary operations

Translation proves trivial in the data representation used in SALAMANDER, the element’s ori-
gin point or center just sees the translation vector’s coordinates added or subtracted to its own
coordinates. This is done using the translate(vector) method of the Geometry class.

Rotations are done with the help of a rotation matrix, it is applied to each element’s point. For arc
circles the rotation angle is also added to their opening angle and for lines their vectors are rotated
as well. A θ rotation of point r⃗ to point r⃗′ can be written as :

r⃗ = R(θ)r⃗ =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)(
x
y

)
=

(
xcos(θ)− ysin(θ)
xsin(θ) + ycos(θ)

)
=

(
x′

y′

)
(4.1)

This rotates the point about the origin, which is not useful in SALAMANDER’s use cases so
relative rotation was introduced. By default geometries are rotated about their centers in a clockwise
direction, this is done with the rotate(angle) method. Other reference points can be manually
inputted with rotateRel(Point, angle). Relative rotation involves correcting the rotation with a
translation to the original reference point’s coordinates. So, for a reference point r⃗, which would be
rotated to r⃗′, the correction translation vector can be written as : c⃗ = r⃗ − r⃗′. These two steps are
illustrated in the figure below, the original geometry in black is first rotated, in blue, then returned
to its original center, in red. The red point represents the origin and the green points are the centers
of the geometries.

(a) Effect of the rotation matrix on the geometry (b) Translation to the geometry’s original center

Figure 4.6: Illustration of a relative rotation combining a rotation and a translation

To simplify the construction of the minicore the snap point concept was introduced. Snap points
are actually line Element objects perpendicular to outer boundary elements in a geometry, they
start at the boundary Element’s center and extend outwards. When snapping two Geometry
objects onto each other, one is referred to as a mother Geometry with its snap point serving as
references, and the other is the child Geometry being translated. The child’s snap vectors are
compared to find the exact opposite of the mother’s and then the child is translated so that its snap
point overlaps with the the mother’s. This is done by calling snapOn(extGeo, pointIndex) on the
mother Geometry.

37

(a) Definition of snap points (b) The blue geometry has been glued to the
black one

Figure 4.7: The snapping mechanism in action

4.3.2 Connecting geometries

Connections are operations involving the detection of overlapping interfaces or boundaries in a ge-
ometry and reassigning some Element objects to appropriate Region objects. As these operations
take place on several objects of different types they also require a higher level object to piece every-
thing together, these operations are once again methods of the Geometry class.

Linking interfaces

The linking operation is meant to be used when connecting two fully defined geometries. It involves
what are called interfaces which are Element objects with a node set to a negative integer value
instead of an adequate Region object. This interface is meant to be paired with another overlapping
one. Once paired only one of the two Element is kept and its interface node is assigned the Region
object of the other Element. This last element is deleted and removed from its none interface
region.

Figure 4.8: Connecting two paired interfaces

Connections are automatically made when using the connect() method from the Geometry class if
interfaces were previously defined. The user can user manually create them or use bound2inter(’all’)
and inter2bound(’all’) methods respectively before and after the use of the connect() method to
open and close interfaces on all boundary elements after snapping two Geometry objects onto each
other.

Fusing boundaries

Boundary region fusion is called with the fuse() method of the Geometry class and is only applied
on boundary Element objects. It is used when unfolding symmetry geometries, removing their
inner split and reconstructing their exact shape. It is not to be used when connecting two different

38

geometries as it will remove some of their outer shell elements and degrade the finesse of the resulting
geometry. Its inner workings are as follows:

1. Group overlapping boundary Element objects by fusion groups

2. Pick a master Rm Region per group to receive Element objects from other Ri Region
objects in the group

3. Replace Element nodes bearing Ri with Rm and add these Element objects from Ri to Rm

4. Extend connecting arc-circles or transform them into circles if their opening angle ≥ 360

5. Delete Ri Region objects and overlapping boundary Element objects

(a) Before fusion, overlapping boundary elements
in red

(b) After the fusion operation

Figure 4.9: Illustration of the boundary fusion mechanism, arcs in green, circles in blue

39

4.4 Indexing operations & code generation

As seen during 3.2, the geometry itself is just an empty shell describing sets of regions and their
limits, it is only when coupled with a library that it can be sent to flux or self-shielding modules.
SALAMANDER comes with its own CLE-2000 code generators to speed up geometry export and
avoid human error when working on large domains such as a minicore. These operations are handled
by the Controller class and require the Geometry class to have defined Cell objects and Network
objects.

4.4.1 Medium indexing

When passed a Geometry object, the Controller class will automatically renumber its region
indexes and region medium indexes. It looks the MediumIndexing.conf file in the Settings folder of
SALAMANDER. In this file the user defines correspondence between material names as defined in
the input .ap3 geometry and medium indexes as defined in the output .sal geometry and outlined in
3.2.1. They are defined with the following syntax:

material_name = Imedium

Then a renumbering and sorting algorithm is applied to ensure a replicable and coherent region
indexing.

1. Assign structural mediums to Region objects with structural materials

2. Go through each Cell’s Region by smallest radius and assign a unique medium index if the
Region bears a non structural material

3. Sort Region objects by medium index

4. Renumber Region indexes by their position in the previously ordered list

4.4.2 Code generation

When generating code for DRAGON, SALAMANDER identifies what are called generator cells. A
generator cell is the lowest indexed Cell of a given type, the medium indexes of its Region objects
are used to define the native DRAGON geometry. With those generator cells identified, CLE-2000
code generation is made possible with the following methods:

• generators(): writes an easily readable correspondence table with all the structural mediums,
generator cells and their composition so that users may quickly inspect SALAMANDER’s
output and use it to build their native DRAGON geometries

• autop(): produces the mixA1_MCORE.c2m file which generates the library and self-
shielding library code

• edit(): generates the EDIT_MCORE.c2m file for data manipulation at the end of flux
calculations and for later outputs

• mix(): generates the copy lines for the MIX_MCORE.c2m file with the generator mediums

40

4.5 Minicore design in SALAMANDER

Building the minicore geometry in SALAMANDER is ensured by the MCORE() method. This
section outlines its inner workings and illustrates SALAMANDER’s full capabilities and module
chaining.

4.5.1 Assembly construction

Individual FA geometries are loaded from the InputGeometries/[Geometry name] folder in SALA-
MANDER’s directory and opened with the parse([Geometry name]) method which returns a
Geometry class. The FA geometries are then unfolded with thetriangleUnfold(Geometry) and
diamondUnfold(Geometry) methods which work as follows:

• Copy of the mother symmetry geometry

• Rotation about the identified center of the assembly

• Addition of all the children rotated geometries to the mother geometry

• Fusion and connection of internal border and interface elements

4.5.2 Assembly analysis and connection

Each unfolded FA is then analyzed by building its Cell objects and Network objects. FAs are
automatically identified by the Network class and cell type assignment procedures are called. The
390GO FAs are rotated to ensure that corresponding cell families always face the same neighbors
on their boundaries. They are then snapped onto the central 30AV5 assembly and added to to it.
Their borders are turned into interfaces to connect neighbor assemblies and the remaining interfaces
after connection are turned back into boundaries.

4.5.3 Adding reflectors

The water reflectors are the only actual geometry entirely produced by SALAMANDER. They are
built from equilateral triangles subdivided into a variable number of other equilateral triangles.
They are then then bundled into trapezoids or full hexagons in an operation very much analogous
to the unfolding of FAs. A reflector of matching VVER FA dimensions is returned when calling
the equiHex(N, nFold) method. They are rotated, snapped onto the mother minicore Geometry,
added to it and connected in the same way as individual assemblies before. This project retained
N = 20 as a default value for reflector mesh finesse.

41

(a) A reflector triangle split with N = 1 (b) A reflector triangle split with N = 20

Figure 4.10: Two different equilateral triangle splits for the water reflector

(a) Reflector trapezoid with nFold = 3

(b) Reflector hexagon with nFold = 6

Figure 4.11: Output trapezoid and hexagonal reflectors for the minicore with N = 20

4.5.4 Final analysis and outputting files

When the geometry is ready for export the Controller class and its code generation methods are
called and then the Writr.write(Geometry) method is called. They both output their files to the
OutputGeometries/[Geometry name] folder.

42

Chapter 5: Results & analysis

5.1 Final SALOMON minicore geometry

The minicore geometry and the companion code to couple it with DRAGON5 are results in and of
themselves. The geometry is able to be tracked with the parameters supplied in 2.2.2 and the code
is fully read by DRAGON with no errors.

Total element count 59413
Total region count 40490
Total cell count 2247

Unique cell types 40

Figure 5.1: The output minicore geometry zoomed in on assemblies with their cells colored by type

43

5.2 DRAGON5 simulation & comparison with SERPENT2

For easier comparison and visualization, the simulation results are observed on a third of the minicore
geometry but symmetry ensures that results observed here are the same in the other two thirds of
the geometry. This report only considers static results at burnup 0 serving as a demonstrator
and already proving the geometry’s working state. SERPENT2’s results are taken as a reference
for relative difference comparisons. Gadolinium cells are hatched while the empty instrument and
control rod guide tubes are filled with black.

(a) Fission rates in the slow group (b) Fission rates in the fast group

Figure 5.2: Comparison of minicore fission rates

(a) Radiative captures in the slow group (b) Radiative captures in the fast group

Figure 5.3: Comparison of minicore radiative capture rates

44

Figure 5.4: Comparison of total absorp-
tion rates in the minicore

Figure 5.5: Comparison of total power factors in
the minicore

A global pattern emerges from the comparison of minicore data: DRAGON overestimates all data
in the periphery of the minicore while underestimating them around the center. Cells with the
lowest relative differences are located around the centers of 390GO FAs and in the central 30AV5
FA. Overall, DRAGON5’s results are decent for a proof of concept phase, falling in the same orders of
magnitude as SERPENT2’s, however they are not satisfying for any consequential minicore studies
and they remain above the 1% error margin the previous POLYVVER had set for result validation
[11]. Sources of errors must come from the calculation scheme and / or the geometry.

The currently observed discrepancies could be in part explained by the geometry’s finesse or lack
thereof as the previous POLYVVER project used an ultra fine flux calculation geometry and here
only the coarser geometry is used to be build the minicore. The differences can be appreciated
in 5.6 on the 390GO triangle. The ultra fine geometry would have been very costly for minicore
simulations but it can still be processed by SALAMANDER.

(a) Currently used coarse geometry (b) Ultra fine geometry

Figure 5.6: Comparison of the finesse of available geometries

45

A more local observation reveals 390GO FA boundaries behave differently depending on their
neighbors:

• 390GO-30AV5: these borders’ data is systematically underestimated and does not show any
particular space dependence

• 390GO-390GO: data is underestimated closer to the 30AV5 and then slightly overestimated
before dipping again

• 390GO-Reflector-390GO: data is underestimated closer to the neighbor 390GO and is then
overestimated farther

• 390GO-Reflector: data is systematically and the most notably overestimated

These discrepancies could be explained in part by how this calculation scheme treats self-shielding.
The actual self-shielding flux calculation is applied over individual assembly geometries set in in-
finitely repeated domains of themselves. As such, no concern is given to the actual neighborhood
and boundaries of a given assembly. This proves somewhat reasonable for boundaries involving the
30AV5 FA as these boundary regions are made up of fuel rods on both sides even though they do not
share the same enrichment values. On the other hand, it is particularly problematic when dealing
with fuel-water boundaries, as self-shielding only considered a fuel-fuel environment. These obser-
vations are further proven by the gradient observed on the 390GO-390GO borders which go from
under to overestimating data, with middle points showing really small relative differences with SER-
PENT2. A costly but effective way of reducing relative differences would be to perform self-shielding
calculations on a whole minicore geometry. Individual assembly geometries could also be configured
with proper boundary conditions although this method will not completely erase the errors on the
boundaries and would require more in depth studies of the flux received and sent between FAs.

While there could be other factors skewing the results such as the finesse of the geometry, self-
shielding seems to be the major explanation for current differences. This is however a positive
note as this proves that actual minicore flux calculations are feasible in DRAGON5 and that the
limit is more calculation scheme side than software side. Moreover it shows that even with the
current simplified calculation scheme DRAGON5’s results are within the order of magnitude of
reference results provided by SERPENT2. It must be noted that DRAGON5 was updated to
accommodate some of this project’s needs such as OpenMP parallelization or library concatenation.
The improvements and additions made to DRAGON’s code which have been tested during this
project are also a major steppingstone for more refined minicore studies, whether for VVER cores
or not.

46

Chapter 6: Conclusion

6.1 Current and future state of the POLYVVER project

With an initial minicore calculation scheme and geometry being proven to work in DRAGON,
this step of the project proves conclusive and provides a base for future studies. New features
implemented to DRAGON5 from this project’s needs have lifted most of the technological barriers
preventing minicore studies, namely library size and calculation time. The first results have shown
that the challenges now lie mostly on the calculation scheme side than in the geometry itself or in
DRAGON. From these elements, it can be understood that much of the future work lies in developing
a more refined calculation scheme to better model the effects of self-shielding. If results prove
conclusive with much reduced relative differences, minicore studies in complex scenarios mirroring
that of KIT would become possible. With these intermediary steps providing reliable, precis results,
full core simulations in DONJON5 could be envisioned. Additionally, some performance tuning may
be of interest or even required to find optimal OpenMP parameters to speed up calculations with
improved parallelization..

6.2 Outlooks for SALAMANDER and geometry tools

This current minicore project was in part made possible by the SALAMANDER tool to both build
and process a uniquely large study domain. It has proven its relevance by providing a coherent and
trackable geometry for flux calculation. The companion CLE-2000 scripting code it generated has
accurately translated its material composition and medium location. In its current state can be also
be considered satisfying for the project and some future uses. It remains a rather limited tool with
no graphical editing abilities, its code generators are only project specific and the geometry files it
supports are meant to be defined with external CAD tools. As such, it is meant to be superseded
a longer term solution that would involve the developmen of an an open-source data format and a
module for the SALOME. This would allow the user to define geometries with a complex structure
and have access to more advanced operations, such as shape coherence checks and shape healing
procedures. Preliminary parts of this work, mainly on the data format and module architecture
are already being undertaken byD. Manzione, a newcleo engineer detached to the IGN to explore
the possible routes to develop such a software. This project would be named GLOW (Geometry
Layout for OpenCascade Workflow) and would offer an alternative to current proprietary SALOME
modules like ALAMOS. GLOW would make reactor geometry design a simpler and more streamlined
experience, eliminating the need for project specific glue tools.

47

Bibliography

[1] A VVER-1000 LEU and MOX Assembly Computational Benchmark. Tech. rep. Nuclear En-
ergy Agency, 2002. url: https://www.oecd-nea.org/upload/docs/application/pdf/
2020-01/nsc-doc2002-10.pdfl.

[2] B. Vezzoni A. Willien. D4.3 – Definitions of tests cases for the verification phases of the
multi-parametric library generator. Tech. rep. Electricité De Francce, Feb. 2021.

[3] Y. Bilodid, E. Fridman, and T. Lötsch. “X2 VVER-1000 benchmark revision: Fresh HZP
core state and the reference Monte Carlo solution”. In: Annals of Nuclear Energy 144 (2020),
p. 107558. issn: 0306-4549. doi: https://doi.org/10.1016/j.anucene.2020.107558. url:
https://www.sciencedirect.com/science/article/pii/S0306454920302565.

[4] R. Camarero. MEC6212 - Generation de maillages : Une introduction par la pratique. May
2024.

[5] Direction de l’énergie nucléaire Commissariat à l’énergie atomique. La neutronique. Editions
le moniteur, 2015. isbn: 978-2-281-11371-6.

[6] European Nuclear Assistance Constortium. ANALYSIS OF VVER SAFETY DOCUMEN-
TATION. Sept. 1993. url: https : / / nuclear - safety - cooperation . ec . europa . eu /
contracts/analysis-vver-safety-documentation_en.

[7] Contribution au développement d’un schéma de calcul basé sur le code DRAGON5 pour l’étude
neutronique de crayons et d’assemblages de réacteurs de type VVER. Master thesis. Aug. 2023.

[8] A. Bruneton D. Tomatis F. Bidault and Z. Stankovski. “Overview of SERMA’s Graphical
User Interfaces for Lattice Transport Calculations”. In: Energies (Feb. 2022). doi: 10.3390/
en15041417. url: https://doi.org/10.3390/en15041417.

[9] ENDF/B-VII.1 U-235 Principal cross sections.

[10] Jordan A. Evans et al. “Burnable absorbers in nuclear reactors – A review”. In: Nuclear Engi-
neering and Design 391 (2022), p. 111726. issn: 0029-5493. doi: https://doi.org/10.1016/
j.nucengdes.2022.111726. url: https://www.sciencedirect.com/science/article/
pii/S0029549322000802.

[11] L. Fede and M. François. Développement de schémas de calcul avec le code de réseau DRAGON5
pour la simulation d’assemblages de réacteurs de type VVER-1000 et validation avec le code
stochastique Serpent2. Master thesis. Sept. 2023.

[12] P. Fontaine and P. Panisi. Contribution à la modélisation d’un mini cœur VVER dans l’environnement
DRAGON5 et validation avec le code stochastique Serpent2. Master thesis. Sept. 2024.

[13] A. Hébert G. Marleau and R. Roy. A user guide for Version5. Tech. rep. Institut de Génie
Nucléaire, June 2024.

48

https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/nsc-doc2002-10.pdfl
https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/nsc-doc2002-10.pdfl
https://doi.org/https://doi.org/10.1016/j.anucene.2020.107558
https://www.sciencedirect.com/science/article/pii/S0306454920302565
https://nuclear-safety-cooperation.ec.europa.eu/contracts/analysis-vver-safety-documentation_en
https://nuclear-safety-cooperation.ec.europa.eu/contracts/analysis-vver-safety-documentation_en
https://doi.org/10.3390/en15041417
https://doi.org/10.3390/en15041417
https://doi.org/10.3390/en15041417
https://doi.org/https://doi.org/10.1016/j.nucengdes.2022.111726
https://doi.org/https://doi.org/10.1016/j.nucengdes.2022.111726
https://www.sciencedirect.com/science/article/pii/S0029549322000802
https://www.sciencedirect.com/science/article/pii/S0029549322000802

[14] L. Ghasabyan. Validation of DRAGON5 lattice code for PWR (Pressurized Water Reactor)
applications using depletion benchmarks by detailed comparison with SERPENT2 Monte Carlo
code. Master thesis. Dec. 2020.

[15] P. Groudev et al. D3.3 – Definition report of SB LOCA + SG tubing break benchmark. Tech.
rep. Institute for Nuclear Research and Nuclear Energy, Aug. 2021. url: http : / / www .
camivver-h2020.eu/src/assets/doc/D3-3.pdf.

[16] O. Sevbo H. Artur. D3.1 - A comprehensive review of the available VVER data for verification
and validation of neutronics and thermal-hydraulics codes. Tech. rep. Energorisk, Apr. 2021.
url: http://www.camivver-h2020.eu/src/assets/doc/D3-1.pdf.

[17] G. Marleau H. Prabha and A. Hébert. “Tracking algorithms for multi-hexagonal assemblies
(2D and 3D)”. In: Annals of Nuclear Energy 69 (2014), pp. 175–182. issn: 0306-4549. doi:
https://doi.org/10.1016/j.anucene.2014.01.018. url: https://www.sciencedirect.
com/science/article/pii/S0306454914000267.

[18] Moataz Harb, Dieter Leichtle, and Ulrich Fischer. “A Novel Algorithm for CAD to CSG Conver-
sion in McCAD”. In: Journal of Nuclear Engineering 4.2 (2023), pp. 436–447. issn: 2673-4362.
doi: 10.3390/jne4020031. url: https://www.mdpi.com/2673-4362/4/2/31.

[19] A. Hébert. Applied Reactor Physics, second edition. Presses Internationales Polytechniques,
June 2016. isbn: 978-2-553-01698-1.

[20] A. Hébert. Les géométries du calcul de réseau. May 2023.

[21] A. Hébert. “PyNjoy-2012: A system for producing cross-section libraries for the DRAGON lat-
tice code”. In: Sept. 2016. url: https://www.researchgate.net/publication/308566629.

[22] Alain Hébert. “DRAGON5 and DONJON5, the contribution of École Polytechnique de Mon-
tréal to the SALOME platform”. In: Annals of Nuclear Energy 87 (2016). Special Issue of
The 3rd International Conference on Physics and Technology of Reactors and Application,
pp. 12–20. issn: 0306-4549. doi: https://doi.org/10.1016/j.anucene.2015.02.033. url:
https://www.sciencedirect.com/science/article/pii/S0306454915001103.

[23] R. N. Hwang. Neutron Resonance Theory for Nuclear Reactor Applications: Modern Theory
and Practices. Tech. rep. Argonne National Laboratory, Sept. 2016. doi: 10.2172/1351300.
url: https://www.osti.gov/biblio/1351300.

[24] Jaakko Leppänen. Serpent - User’s manual. Tech. rep. Valtion Teknillinen Tutkimuskeskus
Technical Research Center of Finland, June 2015. doi: 10.2172/1351300. url: https://www.
osti.gov/biblio/1351300.

[25] T. Lötsch, V. Khalimonchuk, and A. Kuchin. “PROPOSAL OF A BENCHMARK FOR CORE
BURNUP CALCULATIONS FOR A VVER-1000 REACTOR CORE”. In: 2009. url: https:
//inis.iaea.org/collection/NCLCollectionStore/_Public/41/035/41035568.pdf.

[26] L. Mercatali et al. “High-Fidelity Serpent2/SCF Solutions for Rod Ejection Scenarios in Sup-
port to the Verification of the CAMIVVER APOLLO3®/CATHARE3 Coupling Prototype”.
In: Apr. 2024. url: https://www.researchgate.net/publication/308566629.

[27] V.L. Molchanov. “Nuclear fuel for VVER reactors. Current status and prospects”. In: Sept.
2005.

[28] OpenMOC : Theory and Methodology. Tech. rep. Massachusetts Institute of Technology, 2019.
url: https://mit-crpg.github.io/OpenMOC/methods/index.html.

49

http://www.camivver-h2020.eu/src/assets/doc/D3-3.pdf
http://www.camivver-h2020.eu/src/assets/doc/D3-3.pdf
http://www.camivver-h2020.eu/src/assets/doc/D3-1.pdf
https://doi.org/https://doi.org/10.1016/j.anucene.2014.01.018
https://www.sciencedirect.com/science/article/pii/S0306454914000267
https://www.sciencedirect.com/science/article/pii/S0306454914000267
https://doi.org/10.3390/jne4020031
https://www.mdpi.com/2673-4362/4/2/31
https://www.researchgate.net/publication/308566629
https://doi.org/https://doi.org/10.1016/j.anucene.2015.02.033
https://www.sciencedirect.com/science/article/pii/S0306454915001103
https://doi.org/10.2172/1351300
https://www.osti.gov/biblio/1351300
https://doi.org/10.2172/1351300
https://www.osti.gov/biblio/1351300
https://www.osti.gov/biblio/1351300
https://inis.iaea.org/collection/NCLCollectionStore/_Public/41/035/41035568.pdf
https://inis.iaea.org/collection/NCLCollectionStore/_Public/41/035/41035568.pdf
https://www.researchgate.net/publication/308566629
https://mit-crpg.github.io/OpenMOC/methods/index.html

[29] M. Ouisloumen. “Résolution par la méthode des probabilités de collision de l’équation inté-
grale du transport à deux ou trois dimensions en géométrie hexagonale”. PhD thesis. Ecole
Polytechnique de Montréal, Aug. 1993. url: http://merlin.polymtl.ca/downloads/these_
ouisloumen.pdf.

[30] H. P. Raghav. “Computation of Neutron Fluxes in Fuel Pins Arranged in Hexagonal Lattices”.
PhD thesis. Ecole Polytechnique de Montréal, Aug. 2012. url: https://publications.
polymtl.ca/785/1/2012_HemPrabhaRaghav.pdf.

[31] P. Reuss. Précis de neutronique. EDP Sciences, 2003. isbn: 2-86883-637-2.

[32] Serpent Wiki: Validation and verification.

[33] J.-F. Vidal, E. Garcia-Cervantes, and A. Willien. D4.5 – Guideline for future VVER assembly
calculation schemes. Tech. rep. Comissariat à l’Energie Atomique and Electricité De France,
Aug. 2023. url: http://www.camivver-h2020.eu/src/assets/doc/D3-1.pdf.

[34] J.F. Vidal et al. “New Modelling of LWR Assemblies using the APOLLO2 Code Package”. In:
Apr. 2007.

[35] X. Warin. NOTICE THEORIQUE DE LA METHODE DES CARACTERISTIQUES 2D ET
DU GENERATEUR DE TRAJECTOIRES SALT. Tech. rep. IGE–329. Institut de Génie
Nucléaire, Mar. 2002.

[36] Zelong Zhao et al. “Validation and application of the Dragon5 lattice code for neutronics
and burnup analysis of VVER-1000 pin cell and assembly model”. In: Nuclear Engineering
and Design 407 (2023), p. 112279. issn: 0029-5493. doi: https://doi.org/10.1016/j.
nucengdes.2023.112279. url: https://www.sciencedirect.com/science/article/pii/
S0029549323001280.

50

http://merlin.polymtl.ca/downloads/these_ouisloumen.pdf
http://merlin.polymtl.ca/downloads/these_ouisloumen.pdf
https://publications.polymtl.ca/785/1/2012_HemPrabhaRaghav.pdf
https://publications.polymtl.ca/785/1/2012_HemPrabhaRaghav.pdf
http://www.camivver-h2020.eu/src/assets/doc/D3-1.pdf
https://doi.org/https://doi.org/10.1016/j.nucengdes.2023.112279
https://doi.org/https://doi.org/10.1016/j.nucengdes.2023.112279
https://www.sciencedirect.com/science/article/pii/S0029549323001280
https://www.sciencedirect.com/science/article/pii/S0029549323001280

	Introduction
	Institut de Génie Nucléaire (IGN)
	VVER reactors
	VVER simulations and the Poly VVER initiative
	The Version5 distribution
	Contents and layout of this report

	Geometries in transport codes : a literature review
	Fission & nuclear reactions
	Neutron / nucleus interactions
	Key nuclear variables and quantities
	The transport equation

	Numerical approaches to neutron transport
	The stochastic way
	The deterministic methods

	VVER core simulation endeavors
	Benchmarking & validation
	Early DRAGON VVER capabilities
	The CAMIVVER initiative
	POLYVVER: current state and future perspectives

	VVER core elements
	Moderating water
	Fuel rods
	Control rods & instrument tubes
	TVSA fuel assemblies

	Geometries and transport codes
	Geometries in deterministic codes : the DONJON & DRAGON example
	Constructive solid geometries
	Boundary representation
	Conclusion & future perspectives

	Study domain & methodology
	Proposed minicore geometry
	Fuel assemblies
	Fuel rod discretization
	Input geometries and construction challenges

	DRAGON5: setup & geometric data
	Region representation
	Library generation & Self-shielding
	Tracking & flux calculation
	Data manipulation & tracked parameters
	Conclusion: Interfacing with DRAGON

	Minicore calculation scheme
	POLYVVER's REL2005 basis
	Minicore adaptation

	The Salamander geometry assembler & processing tool
	General architecture
	Element representation
	Data formats

	Multi-layer containers
	Regions
	Cells
	Networks

	Geometric operations
	Elementary operations
	Connecting geometries

	Indexing operations & code generation
	Medium indexing
	Code generation

	Minicore design in SALAMANDER
	Assembly construction
	Assembly analysis and connection
	Adding reflectors
	Final analysis and outputting files

	Results & analysis
	Final SALOMON minicore geometry
	DRAGON5 simulation & comparison with SERPENT2

	Conclusion
	Current and future state of the POLYVVER project
	Outlooks for SALAMANDER and geometry tools

