

Towards DRAGON Version4

A. Hébert

Institut de génie nucléaire École Polytechnique de Montréal September 10, 2006

What is Version4?

Version4 is a new distribution of the reactor physics computer codes at GAN. Its components are:

- DRAGR module in NJOY and Python script PyNjoy.py
- Ganlib tools (CLE-2000, LCM/XSM API)
- Modules (calculation operators) of the following codes:
 - Dragon: lattice code
 - Trivac: reactor (full core) code
 - Donjon: simulation of reactor operation end of 2006
 - Optex: reactor design optimization current 2007
- Configuration scripts (sh), non-regression tests, JEF2.2/XMAS standard library, LATEX documentation, etc.

Version4 is not a complete replacement for Version3.

Motivations for building this distribution are:

- We want to introduce support for cross-section library production with NJOY.
- State-of-the-art ACR1000 modelization needs some advanced capabilities not available in Version3.
- We want to avoid duplication of similar capabilities and improve interoperability
- We want to adopt a more consistent development model for our reactor physics computer codes
- After 12 years of development, the Dragon flow diagram needs some cleaning
- We did our best to avoid changing anything in the user's interface.

Advanced capabilities in Version4

- Jef-2.2 XMAS (172-group) Draglib-formatted libraries
- capability to produce Dragon libraries with NJOY
- NXT: module (2D/3D new-generation Excell tracking)
- self-shielding USS: module based on the subgroup equations
- isotropic streaming model ECCO in FLU: (for space-dependent diffusion coefficient calculations)
- asymptotic SPH method for reflector model
- SPH method with simplified PN Thomas-Raviart finite elements in 2D

Advanced capabilities in Version4

- multi-parameter COMPO database (creation and interpolation)
- simplified PN Thomas-Raviart finite elements in 3D for full core models in Trivac (Cartesian 3D)
- capability to use the characteristic method for self-shielding, leakage, flux and SPH calculations
- availability of the double-heterogeneity model (Bihet) with Sybil, Excell (PIJ) and NXT (PIJ)
- discrete ordinates capabilities in 1D and 2D geometries (new SNT: module)
- availability of the current iteration method with the interface current (IC) method in Sybil

Capabilities under active development

- NXT: geometries
 - MERG GEOM (equigeom) capability
 - mergings
 - cylindrical boundaries and hexagonal geometries
 Developed in Version3 and copied in Version4
- NXT: inline tracking with the method of characteristics (available with EXCELT: in Version3)
- Thomas-Raviart-Schneider (i.e., hexagonal) simplified PN capabilities in 3D (for the qualification of some ZED2 experiments)

Avoiding duplication

	1	1
	J	L

٩	Donjon-Dragon duplication	
	Version3	Version4
	GEOD: in Donjon, GEO: in Dragon	GEO: in Dragon
	MACD: in Donjon, MAC: in Dragon	MAC: in Dragon
	BIVACT: in Donjon and Dragon	BIVACT: in Dragon

Duplication of flux solution modules (power iteration)

Version3	Version4
FLU: P_{ij} and IC	FLU: all methods
MOCC: cyclic characteristics in 2D	(based on MOCC:)
MCU: characteristics in 3D	

() ÉCOLE

Avoiding duplication

	Duplication	of system	matrix assembly modules
--	-------------	-----------	-------------------------

Version3	Version4
ASM: P_{ij} and IC	ASM: all types of
EXCELL: 3D P_{ij} (in-line tracking)	assemblies

ECOLE POLYTECHNIQUE MONTRÉAL **Improving interoperability**

resonance self-shielding	
Version3	Version4
SHI: Stamm'ler model	SHI: Stamm'ler model
• P_{ij} and IC (non-iterative)	• P_{ij} and IC (non-iterative)
	USS: subgroup model
	• P_{ij} and IC (iterative or not)
	 characteristics
	SN

Improving interoperability

Streaming models (space-dependent diffusion coefficients) in module FLU:

Version3	Version4
Isotropic streaming:	Isotropic streaming (ECCO):
 not available 	• P_{ij} and IC (iterative or not)
	• SP_n approximation
	 characteristics
	• SN
Anisotropic streaming (HETE):	Anisotropic streaming (HETE):
• P_{ij} in Excell and NXT	• P_{ij} in Excell and NXT

Improving interoperability

diffusion approximation

Improving interope		J
SPH equivalence in module EDE	Γ:	
Version3	Version4	
Types of macro-calculations:	Types of macro-calculations:	
• P_{ij} and IC (non-iterative)	• P_{ij} and IC (iterative or not)	

- diffusion approximation
- SP_n approximation
- characteristics

SN

A more consistent development model

- Version control of the project components
 - A single Subversion repository holds the complete project
 - The repository contains sources, configuration scripts, non-regression tests, LATEX docs and issue-tracking info.
 - LGPL subsets are available for download
- Issue tracking and spiral development management
 - the issue-tracking data is kept in the Subversion repository
 - pre- and post-commit Python scripts are hooked in the repository to help issue-tracking
 - a web/CGI tool is available to all users for submitting issues
- Configuration management of the codes Njoy, Dragon, Trivac, Donjon and Optex.
 - simple UNIX install scripts are used
 - PCs are supported through Cygwin

Draglib production with NJOY

- DRAGR, a post-treatment Fortran 77 module
- PyNjoy.py, a Python script encapsulating NJOY modules
- one data-file per evaluation/library

Draglib production with NJOY

```
2. Defining instance variables:
jef2p2.evaluationName = "Jef2.2"
jef2p2.nstr = 22
jef2p2.iwt = 4
jef2p2.legendre = 1
jef2p2.hmat = "U238"
jef2p2.mat = 9237
jef2p2.evaluationFile = "$HOME/evaluations/Jef2.2/tape7"
jef2p2.fission = 2 # fission with delayed neutrons
jef2p2.ss = (2.76792, 1.22773e5)
jef2p2.potential = 11.1710
jef2p2.dilutions = ( 1.e10, 94.5, 56.3, 33.6, 20.0, 11.9, 7.1, 4.2 )
jef2p2.temperatures = (293., 550., 900., 1200.)
```

```
3. Invoking a method:
```

1. Instantiating an object:

from PyNjoy import *

jef2p2 = PyNjoy()

```
jef2p2.pendf()
```

Cross section library treatment

- Improved DRAGLIB library support
 - in-house library creation with NJOY99 and DRAGR
 - contains detailed isotopic depletion data (with reaction-wise energy components)
 - contains autolib data for the Riemann integration and Ribon extended methods.
 - contains delayed neutron data
 - no pseudo fission products
- WIMS-D4 and MATXS library support (available in V3.05)
- NDAS library support (not available in the LGPL subset)
 - use of certified AECL libraries
 - required to improve the quality of our validation studies

Resonance self-shielding models

- Models based on the Generalized Stamm'ler method (SHI: module)
 - without distributed self-shielding effects (available in V3.05)
 - with Nordheim distributed self-shielding model (new)
 - with Riemann integration method (new)
- Models based on the subgroup method (USS: module) (new)
 - with physical probability tables (aka WIMS-7 and HELIOS)
 - Ribon extended method (with or without a model to represent mutual shielding effects)

Improved isotopic depletion

- Take into account energy produced by
 - fission (aka Dragon V3.05)
 - radiative capture (important in gadolinium and dysprosium) (new)
 - radioactive decay (important when the fuel is out-of-core) (new)
- Use a linear variation of $\langle \sigma_x \phi \rangle$ in time. NOTE: Version 3.05 is assuming a linear variation of $\langle \phi \rangle$ in time.
 - possibility to extrapolate from the preceding time step (new)
- Availability of a saturation model for small-halflive isotopes (aka Dragon V3.05)

Method of characteristics

A new set of solvers based on the method of characteristics:

- 2D/3D EXCELT: and NXT: geometries
- 2D/3D isotropic or 2D specular (aka MOCC:) boundary conditions
- \checkmark scattering anisotropy to arbitrary P_n order
- algebraic collapsing acceleration (ACA)
- compatible with the flux solution module used for PIJ calculations
- use of vectorial doors (DOORAV and DOORFV)

In V3.05, only the specular 2D and isotropic 3D options with P_0 scattering are available in specific flux-solution modules (MOCC: and MCU:).

SPH model improvements

- A greater variety of macro-calculation techniques:
 - 1D, 2D and 3D collision probabilities (PIJ)
 - 1D, 2D and 3D method of characteristics (new)
 - 1D and 2D diffusion theory
 - 1D and 2D SP_n method (new)
 - 1D and 2D discrete ordinates method (new)
- Availability of the asymptotic normalization
- Use of vectorial doors (DOORAV, DOORPV and DOORFV)

Flow diagram of Dragon Version3

ÉCOLE

A multi-D reactor database

- We have generalized modules CPO: and CRE: to an arbitrary number of global / local parameters.
 - build a reactor database: COMPO: generalize CPO:
 - interpolate the database: NCR: generalize CRE:
- Definitions:
 - global parameter: characterize the complete lattice
 - Iocal parameter: characterize a unique cell in a checkerboard or supercell calculation
- Compatible with micro-depletion
- Contains delayed neutron data
- Available only in Dragon Version4

Database content

- set of elementary calculations characterized by a unique *n*-tuple of global / local parameters
- each of them is a microlib containing data condensed over G groups and homogenized over each local zone
- a table-of-content is used to classify the elementary calculations and to relate them to global / local parameters.

Database format

- build from
 - associative tables (aka hash tables or dictionaries)
 - heterogeneous lists (aka cell arrays) (new)
- use LCM (in core memory) and XSM (direct access file) access routines
 - available in Fortran-77 and ANSI C
- Other characteristics:
 - XSM: direct access binary format (big or little endian)
 - LCM and XSM: same auto-descriptive format (similar to XML). Can be serialized.
 - the XSM associative tables are used for the Draglib object.

Database construction in COMPO:

- Initialization call (at the beginning of the Dragon run)
 - define the number and types of global / local parameters
- Data gathering call (at the end of each burnup / edition step in Dragon)
 - find the values of the global / local parameters
 - store the corresponding homogenized / condensed microlib object.

Database construction in COMPO:

Initialization call:

```
EVALUATE FUEL1 := 3 ;

CPO := COMPO: ::

STEP UP fuel

COMM 'Line of comment' ENDC

PARA 'BCON' VALU REAL

PARA 'FTMP' TEMP LIBRARY <<FUEL1>>

PARA 'BURN' IRRA

PARA 'FLUB' FLUB

PARA 'PUIS' POWR

PARA 'XE1' CONC XE135PF LIBRARY <<FUEL1>>

LOCA 'burn' IRRA

LOCA 'flub' FLUB ;
```

Data gathering call:

CPO := COMPO: CPO EDIT BURNUP FLUX LIBRARY :: STEP UP fuel SET <<evoend>> DAY BCON <<BoronCont>> ;

Database interpolation in NCR :

- Multidimensional interpolation based on
 - Ceschino polynomial expansions
 - cubic Hermite polynomials
- Available functionalities:
 - interpolation at a specific parameter n-tuple
 - parameter-averaging (e. g., time-averaging)
 - delta-sigma contributions
- Produce a microlib or a macrolib
- Can gather parameters values from a map object in Donjon
- Micro-depletion is possible from the interpolated microlib.

Database interpolation in NCR :

Interpolation call:

```
MACRO2 := NCR: CPO ::
NMIX 7 MACRO COMPO CPO fuel
MIX 1 FROM 1 SET 'flub' 2.1248E-02 ENDMIX
MIX 2 FROM 2 SET 'BURN' 3.7498E+01 ENDMIX
MIX 3 FROM 3 SET 'FLUB' 2.1363E-02 ENDMIX
MIX 4 FROM 4 SET 'burn' 3.7426E+01 ENDMIX
MIX 5 FROM 5 SET 'flub' 2.1127E-02 ENDMIX
MIX 6 FROM 6 SET 'flub' 2.1289E-02 ENDMIX
MIX 7 FROM 7 SET 'BURN' 3.7498E+01 ENDMIX
```

;

The open-source subset of Version4 (including PyNjoy, Dragon and Trivac) is available for download. Visit: http://www.polymtl.ca/merlin

- Actually at level v4.0.0. NXT: is identical to the version in v3.0.5B
- This is open-source; you can contribute with
 - improved configuration scripts
 - new or improved Fortran sources
 - bug report and/or development suggestions
 Use our issue tracking submission form!