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Abstract

In this paper we present a premilinary analysis of the NEAZ{B-2007 transport problem
proposed by the OECD/NEA expert group on radiative transféis computational benchmark
was originally proposed by Y. Azmy in 2007 to test the perfante of 3D transport methods and
codes over a suite of problems defined by large variationpanes parameters. Two deterministic
methods were applied to generate the numerical solutidresdiscrete ordinates methof,(),
and the method of open characteristics of I.R. Suslov (MCO®) provide comparisons between
MCNP reference solutions and MCCG and DRAGQON-esults in order to reveal the advantages
and limitations of both methods.

|. Introduction

The lattice code DRAGON! can solve 3D transport problems using various numericahmet
ods. Collision probabilities (CP) were implemented firstl ane still widely used for lattice trans-
port calculations. More recently, an open characterigliossolution has been made avalaible in
2D/3D 2 and discrete ordinates method have been extended to r&jul@artesian geometries
B, We propose in this paper to apply both methods to the NEABB-Z007 benchmark!, and
then to compare the numerical results generated by DRAGQINMCNP reference solutions.

Il. Presentation of the problem

The geometry defining the benchmark consists in two embepdedielepipeds, as depicted
in Figure 1. The outer is referred to with the index 1 and hasiasguare base and height
while the inner is referenced with the index 2 and is scaledrdby a parametey, i.e., it has
dimensionsy x ~ x vL. Vacuum boundary conditions are imposed on all the extdatals. A
fixed, distributed unit source with dimensiéh— ~)/2, (1 — v)/2, L x (1 — v)/2 is localised at
the origin as shown in Figure 2. The total macroscopic seci the scattering ratio are denoted
asy; andc; respectively, with=1 or 2. The suite of benchmarks is then defined by varyindnall t



parameterd,, v, X1, ¢1, X2, ¢z, With the range of variation provided in Table 1. As each diyan
can take three values, we obtain a total numb&fe729 cases.
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Figure 2: Localisation of the source



Table 1. Range of parameters

| Parameters Values |

L 0.1] 1.0] 5.0
~ 0.1/ 05/ 0.9
> 0.1/ 10|50
l 05]0.8] 1.0
N 0.1/ 10|50
cs 05]0.8] 1.0

[11. Computational strategy

In this section, we describe the options used for generaitimgerical solutions to the bench-
mark. Three main parameters are to be set for both methadsspatial order of integration,
angular quadrature order, and the inner iteration acdeeratrategy selected for each solution
algorithm.

lll.LA. Sy computational strategy

Let us first consider the spatial integration strategy. Tiserdte ordinates method available in
the lattice code DRAGON is based on a generalization of thesatal diamond differencing (DD)
scheme. Linear Diamond differencing (LD) scheme, whichygiealent to classical DD scheme,
is the option by default. We have used parabolic DD schemasgo introduce high-ordes
results. A cubic order solution was also programmed, buttibduces numerical instabilities
in some cases. For the angular quadrature, we have usedl-syewmetric quadraturel(Q,,),
restricted toS,, order. A Legendre-Chebychev angular quadrature is alsiabl@up to order
Ses, but due to memory limitations, we were not able to provideomglete suite of solutions
for the benchmark when > 32. In addition, it was shown that for this benchmarkpPaT,,
guadrature witm=32 is less accurate that), quadrature with n=20. Acceleration strategy of
the source iterations is an important issue for$hemethod. In case of strong heterogenous and
highly diffusive medias, inner iterations may convergeyvaowly®. Hence, we use a Diffusion
Synthetic Acceleration (DSA) preconditionning of theSy method conjugated with a Krylov
subspace method, GMRES{#). This strategy has been proven very effective for all thesas
the benchmark.

Options used in thé'y solver are:

e Parabolic Diamond-Differencing scheme.
¢ Uniform spatial discretization of the regular geometrystaym.

e S, Level-symmetric quadraturd.(),,), n < 20.



e DSA-preconditionning and GMRES(10) acceleration of theeiriterations.

e 1075 convergence criterion.

Two parameters will vary namebubm, the level of spatial discretization, andthe order of
the angular quadrature.

V. MOC computational strategy

The set of options for this solver are more numerous tharhi®6}, case and include param-
eters in both geometry tracking module and MOC flux solveslfifdl Premilinary studies have
shown that a high track density is mandatory, due to smalkedsions of computational cells
required to insure low relative error. Furthermore, anmagiewas made to use a 3D prismatic
MOC formalism, however strong restrictions appeared, dusumerical instabilities of the trak-
ing operator. This occured when relative errors generayethd 3D prismatic extension of the
tracking module NXT: are very close to machine numericatigien. As a consequence, we were
compelled to use the full 3D traking operator, in such a wat tbPU time for generating the
tracking lines combined with the flux resolution made the M§&x@ution was far more expensive
in computing ressources than tig method. Regarding the source integration, a step character
istics (SC) and a diamond differencing (DD) strategy ardaalvke. We used for this benchmark
the DD scheme, which is slightly better than the SC for a gispatial discretization. For the
angular discretization, a Legendre-ChebychByT;,) quadrature was selected. Concerning the
source integration strategy, in order to reduce computati@ssources, no asymptotical treatment
of the vanishing sources is applied and tabulated expaasrare used. To insure faster conver-
gence of the inner iterations, a SCR-preconditionningf{Sellision Rebalancing¥! is combined
with an Krylov subspace method, GMRES(m). The ACA-prectbadning (algebraic collapsing
acceleratior)! has been established as a more powerfull procedure to ratharterations, how-
ever in monokinetic problems, ACA leads to a large overhadadrnm of computational ressource.
As aresult, SCR is faster than ACA in terms of CPU time.

Options used are in the tracking module NXT:

e Uniform discretization of the geometry by a factorsaim.

e Track density (density of integration lines inm=2).

e Angular quadrature of typ&,-1,, with nangl, value lower than 46.
MCCG flux solver options are:

e Diamond Differencing scheme along the tracking lines.

e No asymptotical treatment for vanishing optical thickresss

e SCR preconditionning of inner iterations.
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e GMRES(m) Krylov Subspace method for accelerating SCR préditionned inner iteration.
e 1075 convergence criterion.

Hence, for the MCCG solutions, the parameters that will beéngled to generate the three
required runs are:

1. subm, corresponding to the level of mesh refinement of the gegmetr
2. p, the track density.

3. nangl, the angular quadrature order.

V. MCNP computational strategy

We present briefly the strategy adopted by the organizersotage MCNPS5 solutions for the
entire suite of benchmarks. Since this study is done usimgaoeary MCNP5 reference solutions,
note that for some cases, Monte-Carlo solutions exhibib@sg or significant statistical error. All
Monte-Carlo results used in this work are obtained with Rdrilparticle histories. Final reference
MCNP5 solutions are expected to be computed using a suitédsang method, such as a variance
reduction techniquél.

V1. Parametric study

In this section, we briefly present the parametric studygreréd with both the MOC andy
numerical methods. The procedure applied here is quitelsialpeit fastiduous, and is usually
reffered as model refinement. It consits in increasing thieoof angular and spatial discretiza-
tion, to observe a linear decrease in error. We finally obtaimmas for our level of angular and
spatial discretizations for which our numerical soluti@ms in the asymptotic regime. In some
cases, increasing the level of discretization may lead timenease in error: this is mainly due to
shortcomings of the method invoked during the generatidheohumerical solutions. The method-
ology applied for both methods involved an independentysafdhe angular and spatial quadra-
ture parameters. Hence, we initially impose a relativelg fpatial discretization, and increase
progressively the order of the angular quadrature. Oncetigellar quadrature has converged,
the spatial quadrature is coarsened progressively (dseradhe order of the spatial quadrature).
Note that for MCCG calculations, the density of trackingnsther variable of great influence. We
then assume that the combined minimums in space and angtetiigations is sufficient to ensure
that the asymptotic regime has been reached. This is nobeotig method, especially when a
strong coupling exists between space and angular variadmeis occurs when streaming effects
are important. To avoid this issue, we have selected thea2#&2?2, defined by, = 1.0; v = 0.5;

Y1 =Yy=1.0and¢; = ¢, =0.8.



For the spatial mesh studiesSa quadrature order is imposed respectively for$hemethod,
andnangl=32 for the MCCG solver. In Figures 3 and 4, the norm is a scalar quantity whose
value represents the size (or length) of a vector error sparding to a given discretization:
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Figure 3: Mesh refinement



For the angular study, we impose respectivalym=4 andsubm=8 respectively for they
and MCCG methods. The difference between our results ars thbMCNP are then presented
in Figure 4.
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Figure 4: Mesh refinement

We clearly observe that our MOC numerical solutions are méthé asymptotic regime when
angular and spatial discretization are set to their maxisuirror oscillations occur, both for
angular and spatial parameters. Nethertheless, we cosilongsthat for a spatial discretization
in the range between 4 and 8, and an angular disretizati@iegrthan 20, the relative errors are
acceptableS, numerical results approach MCNP solutions for a spatiarditzation greater than
2, and when angular quadrature is greater thign

VI.A. Generation of the results

The parametric study exposed before allows us to seleat tevel of discretization, both for
angular and spatial parameters, in order to generate fanamumumerical method the set of results
required for the whole suite of the benchmarks.

Accordingly, for theS case we selected:

1. Auniform spatial discretization of the regular geométyyubm=2 with aS;4 level-symmetric
guadrature.

2. Auniform spatial discretization of the regular geométyyubm=3 with aS; 5 level-symmetric
guadrature.

3. Auniform spatial discretization of the regular geomdétyyubm=4 with aSy, level-symmetric
quadrature.

For the MOC solutions, the MCCG flux solver options remaingame and only the parameters
associed with the tracking module are modified:
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1. An uniform discretization of the geometry by a factor of BRhatrack density of5 x 102
integration lines irrm 2. and an angular quadrature of typg-7,, with nangl=16.

2. An uniform discretization of the geometry by a factor of Bhaa track density ofy x 102
integration lines inrm =2 and an angular quadrature of typg-T,, with nangl=24.

3. An uniform discretization of the geometry by a factor of #hna track density ofl x 103
integration lines inrm =2 and an angular quadrature of typg-T,, with nangl=32.

VII. Analysisof theresults

In this section, we provide comparison of ¢giyf and MCCG numerical results with the MCNP
reference solutions. The large number of data generatpdsatly 15 x 729 per run, burdens
strongly the analysis. We choose to use the mean relatigel®gyrcase, namely:

15 . .
1 P, ted q)ﬁ/lCNP
5n(%) - compu :
15 ; Phcnp

Hence, we will establish the total number of casebat satisfy a criterion on the mean relative
error:

O < €

with ¢ a tolerance on the mean relative error in %.
Another option is to compute the numbeof cases between two bounding error limits as:

€1 <6, < e

with ¢; and e, tolerances on the mean relative error in %. We can then ddimentmberm

as a function ok, which leads to a straightforward evaluation of the perfanoce of a method.
The distribution of results and the cumulative distribatias a function of error are presented
respectively in Figures 5 and 6.
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Figure 5: Distribution of results in function of the mearatale error
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Figure 6: Cumulative distribution of results in functiontbé mean relative error

At the light of theses figures, we notice that the computaitichallenge raised by this bench-
mark is a source of large relative errors between for both M@&S numerical methods. Even
though these two methods are totally different, it is wortiimg that total number of cases that
acheive a given precisionis quite similar. This can be explicited by realising thastbuite of
problems is defined by a large variation in space paramegergrating approximately the same
number of pathologic cases for MOC alsg methods. We also display in Figures 7 to 12 the
mean relative error by case for the three values.of
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Figure 8: MOC results fof. = 0.1.

10

20



relative error in %

600

Evolution of relative error, L=1.0
T

400 —

200 —

100 —

relative error in %

50

250 300 350 400
number of cases

Figure 9:Sy results forL, = 1.0.
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Figure 10: MOC results fof. = 1.0.
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Concentrating first on th&y relative error, one observes that strong peaks appear $eisca
in which X; = ¥, = 5.0. Peaks are getting wose when L=5.0, due to the combinedHactt t
source dimension is reduced and attenuation is high. Ancthss of problematic cases are when
¥, = 0.1 andX; = 5.0. This define a strong heterogeneous media combined with ldyhig
localized neutron source. As a result, ray effects starbtoidate the errors in thg€y method and
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Figure 11:Sy results forL = 5.0.
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Figure 12: MOC results fof, = 5.0.

the computed fluxes oscillate seriously and become non gdiysi

MOC solutions suffer globally in the same configurationseesly in high absorbing/diffusive
or heterogeneous cases, (= X, = 5.0 or £; = 50 x ¥;), altough the dimensions of the source
play an key role in the precision of the solution. Ag growing, the source dimension is reduced,
and the MOC computed error exceeds by far $heerrors. This is mainly a consequence of the

flat source approximation, which is non valid in some configjons.
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VIIl. Conclusion

The NEA3D-TAB-2007 benchmark study was intended to obskemigations of deterministic
methods, and to help reactor physicists propose new imprents for this class of numerical
methods. We first conclude that for the MCNP reference smistiith acceptable statistical errors,
both .S and MOC methods reach a level of accuracy close to the Moatt @sults. Moreover,
other deterministic solutions such as produced by the IDdeéd! have similar relative errors.
However, DRAGONSy results suffer deeply in some configuratiohs=£ 5.0) from ray effects, a
typical shortcoming appearing in case of strong heterogehmedias. Rising the quadrature order
has been established as the most powerfull solution to atdestriction. As a consequence,
new angular quadratures have been implemented, such asul@&(gple Range) quadrature up to
the S7, order!*?l, For the MOC method, if bad angular discretization is alsanaportant issue,
an inadequate spatial mesh discretization detoriorateBahsource approximation and leads to a
rapid growth of the numerical errors. Finally, an import@ste is also computational time. In this
case, thé5y method was far more advantagous than the MOC method. To ebenpis study, it
would be interesting to compare CPU time f¢ and MOC methods with that of MCNP.
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