

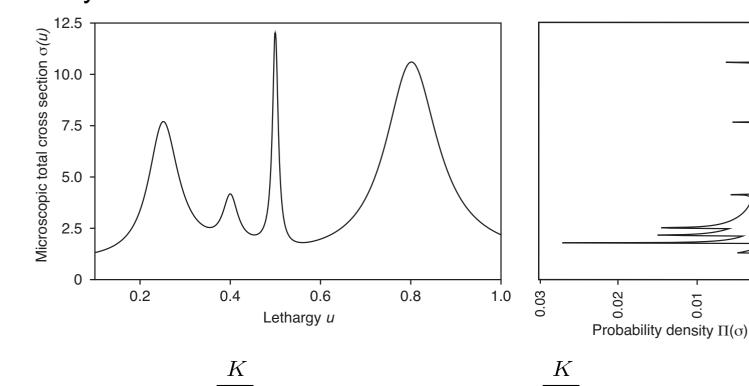
Refinement of the Santamarina– Hfaiedh energy mesh between 22.5 eV and 11.4 keV

A. Hébert^a and A. Santamarina^b

^aÉcole Polytechnique de Montréal, Montréal, Québec, CANADA H3C 3A7 ^bCEA Cadarache, DEN/DER/SPRC, 13108 Saint Paul-lez-Durance, France

September 15, 2008

Motivation of this study


- Attempt to improve the accuracy of the lattice calculation
- Creation of multigroup energy mesh with an improved selection of energy group limits in the resolved energy domain
 - the lower part of the resolved energy domain ($E \leq 22.5\,\mathrm{eV}$) is treated without self-shielding model using the existing SHEM–281g mesh
 - the upper part of the resolved energy domain $(22.5\,\mathrm{eV} < E \le 11.1\,\mathrm{keV})$ is treated with a simplified self-shielding model together with a finer mesh referred as SHEM–361g
- A simplified self-shielding model, the subgroup projection method (SPM), is used

Probability tables of cross sections

Many legacy and advanced self-shielding model are based on probability tables of cross sections

$$\Pi(\sigma) \simeq \sum_{k=1}^{K} \delta(\sigma - \sigma_k) \, \omega_k \quad \text{with} \quad \sum_{k=1}^{K} \omega_k = 1 \quad .$$

Probability tables of cross sections

Any Riemann integral in lethargy, with a σ -dependent integrand, can be replaced by an equivalent Lebesgue integral:

$$\frac{1}{\Delta u_q} \int_{u_{q-1}}^{u_g} du \ f\left[\sigma(u)\right] = \int_0^{\max(\sigma)} d\sigma \ \Pi(\sigma) \ f(\sigma)$$

We obtain the following discretization:

$$\frac{1}{\Delta u_g} \int_{u_{g-1}}^{u_g} du \ f\left[\sigma(u)\right] \simeq \sum_{k=1}^K \omega_k f(\sigma_k) \quad .$$

Probability tables are used in many self-shielding approaches

- the Sanchez-Coste method of Apollo2
- the CALENDF-based subgroup approaches (ECCO, SPM, Ribon extended)
- the subgroup method of Helios and Wims-7

Probability tables of cross sections

In real situations, the integrand is containing more than a simple σ -dependent function:

- a term in $e^{u-u'}$ is due to the elastic slowing-down kernel. This term creates a slowing-down correlation in probability tables. This correlation vanishes at high energy (above 10 keV) or if the energy mesh is fine.
- in case of overlapping resonances from many isotopes, the mutual shielding effect creates correlations between different resonant isotopes.
- the cross sections of a unique isotope present in the lattice at different temperatures are highly correlated. This is the temperature correlation effect.

The subgroup projection model

We used a simplified self-shielding method known as the subgroup projection model (SPM), with the following characteristics:

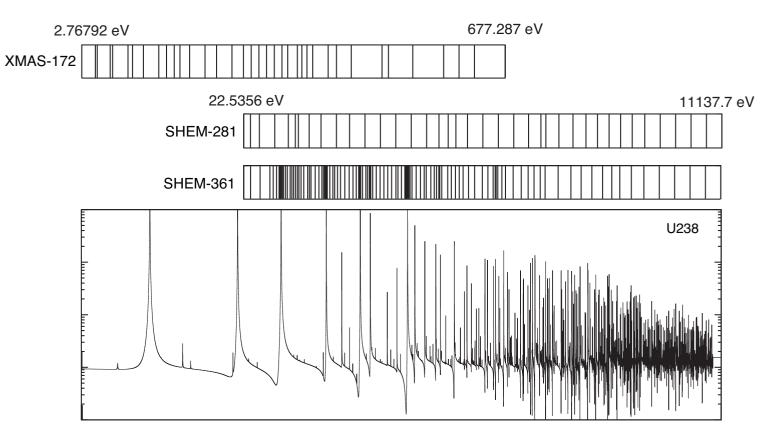
- based on CALENDF probability tables obtained from Autolib data present in the cross section libraries
- the slowing-down correlation is not represented.

 → A finer energy mesh is required.
- validated in the energy domain $4.96\,\mathrm{eV} < E \le 11.1\,\mathrm{keV}$ (accepted Nucl. Sci. Eng. paper).
- the mutual shielding effect is represented (using CALENDF correlated weight matrices).
- the temperature correlation effect is represented (using CALENDF correlated weight matrices).

NOTE: XMAS–172g and SHEM–281g cannot be used with SPM because the groups are too large.

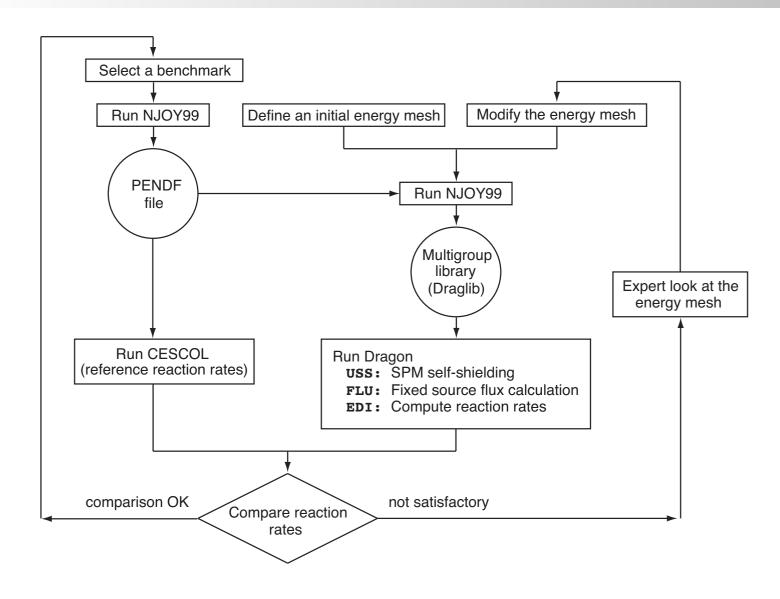
Available energy meshes

- XMAS-172 UK-French standard mesh currently used in a large fraction of available cross-section libraries
 - Defined in up107 official update of NJOY99
 - Group widths in the resolved energy domain are too large to neglect slowing-down correlation effects
- SHEM-281 French standard mesh currently used is latest computational schemes. Used at CEA, Areva and EDF.
 - Group widths in the resolved energy domain are too large to neglect slowing-down correlation effects
- **SHEM–361** Proposed in this study
 - Group widths in the resolved energy domain are small
 - It is possible to neglect slowing-down correlation effects.

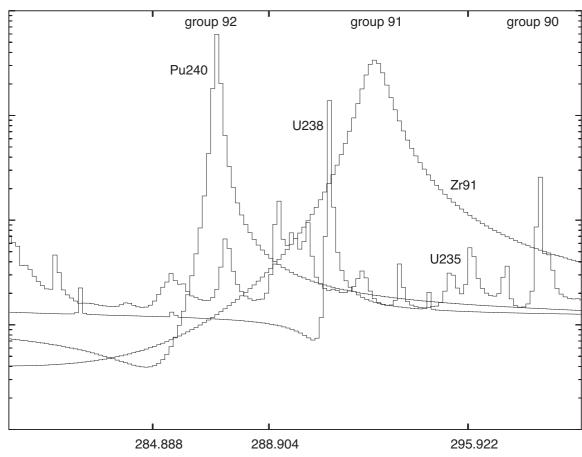


Available energy meshes

The figure represents the energy groups


- located in the resolved energy domain
- where a self-shielding model is applied, taking into account the position of resonances.

Modification strategy



Modification strategy

- reduce discrepancies between CESCOL: and USS:+FLU:
- avoid splitting a resonance in two parts
- use more groups in resonant sub-domains.

Validation

A tool based on SHEM-361g and SPM was validated using

- One-neutron source testcases similar in geometry to the UOX and MOX Rowland's benchmarks
 - cross sections were defined in the resolved energy domain and distributed over SHEM-361 energy groups 56 to 173, located between 22.5 eV and 11.14 keV.
 - a 1.0 n/cm³/s source was placed in group number 56, located between 9.1188 keV and 11.138 keV.
 - the absorption rates are computed in the remaining energy groups.
- Reference CESCOL calculations are ultra-fine energy mesh slowing-down calculations
- A fifth benchmark was added, including a strong temperature gradient in fuel.

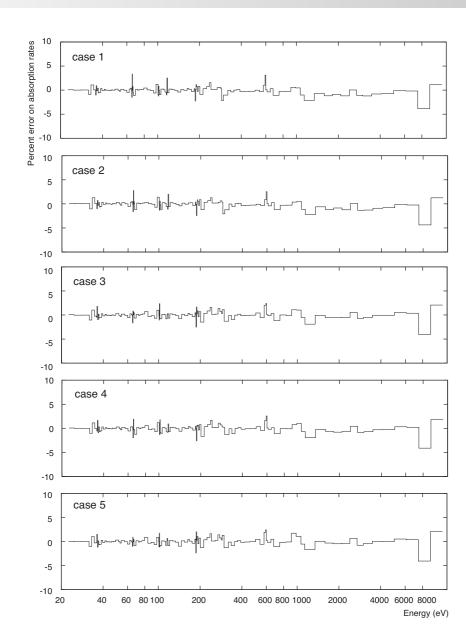
COX one-neutron source benchmarks

	Case 1	Case 2	Case 3	Case 4	Case 5
	Isoth. 293K	Reduced H_2O	Fuel at 900K	Isoth. 574K	Temp. $ abla$
		density			in fuel
ϵ^{int} (%)	-0.059	-0.145	0.057	-0.014	0.070
$ar{\epsilon}$ (%)	0.546	0.555	0.519	0.542	0.529
$\epsilon^{ m max}$ (%)	3.337	2.781	2.513	2.602	2.419
in group	142	142	106	106	79
235 U $\epsilon^{ m int}$ (%)	0.353	0.361	0.360	0.351	0.362
238 U $\epsilon^{ m int}$ (%)	-0.242	-0.377	-0.066	-0.170	-0.048
238 U $\epsilon^{ m int}$ (%)					
shell 1	0.051	-0.117	0.357	0.201	0.520
shell 2	0.023	-0.144	0.353	0.218	0.419
shell 3	-0.299	-0.425	0.090	-0.085	-0.090
shell 4	-0.508	-0.611	-0.378	-0.515	-0.645
shell 5	-0.806	-0.884	-1.129	-1.095	-1.347
shell 6	-1.158	-1.262	-1.669	-1.540	-1.919

MOX one-neutron source benchmarks

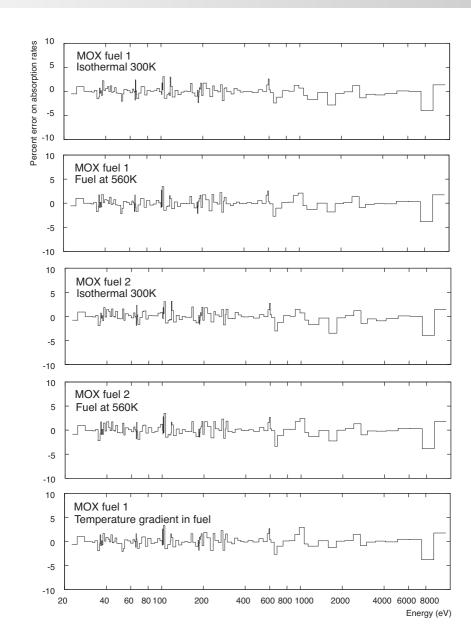
	MOX fuel 1	MOX fuel 1	MOX fuel 2	MOX fuel 2	MOX fuel 1
	Isoth. 300K	Fuel at	Isoth. 300K	Fuel at	Temp. $ abla$
		560K		560K	in fuel
$\epsilon^{ m int}$ (%)	0.098	0.157	0.140	0.211	0.211
$ar{\epsilon}$ (%)	0.751	0.777	0.816	0.841	0.770
ϵ^{max} (%)	3.079	3.458	3.495	3.508	3.318
in group	124	124	67	124	124
235 U $\epsilon^{ m int}$ (%)	0.420	0.402	0.403	0.382	0.389
238 U $\epsilon^{ m int}$ (%)	-0.209	-0.024	-0.204	-0.013	0.121
238 Pu $\epsilon^{ m int}$ (%)	0.237	0.303	0.355	0.421	0.343
239 Pu $\epsilon^{ m int}$ (%)	0.241	0.220	0.380	0.372	0.198
240 Pu $\epsilon^{ m int}$ (%)	0.597	0.536	0.504	0.465	0.569
241 Pu $\epsilon^{ m int}$ (%)	0.372	0.363	0.345	0.336	0.351
242 Pu $\epsilon^{ m int}$ (%)	0.657	0.400	0.464	0.278	0.206
241 Am $\epsilon^{ m int}$ (%)	0.342	0.335	0.324	0.313	0.317

MOX one-neutron source benchmarks



	MOX fuel 1	MOX fuel 1	MOX fuel 2	MOX fuel 2	MOX fuel 1
	Isoth. 300K	Fuel at	Isoth. 300K	Fuel at	Temp. $ abla$
		560K		560K	in fuel
ϵ^{int} (%)	0.098	0.157	0.140	0.211	0.211
<i>ē</i> (%)	0.751	0.777	0.816	0.841	0.770
$\epsilon^{ m max}$ (%)	3.079	3.458	3.495	3.508	3.318
in group	124	124	67	124	124
238 U $\epsilon^{ m int}$ (%)					
shell 1	0.242	0.557	0.248	0.564	0.860
shell 2	0.079	0.401	0.089	0.410	0.530
shell 3	-0.309	-0.051	-0.301	-0.036	-0.350
shell 4	-0.570	-0.548	-0.571	-0.531	-0.743
shell 5	-0.946	-1.160	-0.946	-1.147	-0.770
shell 6	-1.513	-1.696	-1.513	-1.685	-1.853

2 % error on UO2 absorption rates.



% error on MOX absorption rates.

Conclusions

- The SHEM-361g mesh is permitting a better representation of self-shielding phenomena between 22.5 eV and 11.14 keV.
- The SPM is a good candidate for performing resonance self-shielding calculations in association with SHEM–361g.
- This optimized SHEM—361g could be used in FBR calculations in order to reduce drastically the computing time linked to the current 1968 group structure.
- The SPM is compatible with any type of solution of the transport equation.
- The SPM permits the representation of distributed self-shielding effects, mutual shielding effects and temperature gradient effects.
- The SPM, coupled with SHEM-361g solves the longstanding problems of resonance escape factor and Doppler coefficient calculations in MOX and HCLWR lattices.

Ressources

Available at http://www.polymtl.ca/merlin/ on October 1st. The distribution available in Version 4.0.2 is including

- Updates to NJOY99 (definitions of SHEM–281 and SHEM–361)
- Availability if the SPM within the USS: module of Dragon Version4
- Open sources Draglibs in XMAS-172, SHEM-281 and SHEM-361 formats for
 - Jef 2.2
 - ENDF/B–VI rel. 8
 - Jeff 3.1
 - ENDF/B-VII rel. 0
- PyNjoy system to automate NJOY99 processing.